首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactoferrin is recently under intense investigation because of its proposed several pharmacologically positive effects. Based on its iron-binding properties and its physiological presence in the human body, it may have a significant impact on pathological conditions associated with iron-catalysed reactive oxygen species (ROS). Its effect on a catecholamine model of myocardial injury, which shares several pathophysiological features with acute myocardial infarction (AMI) in humans, was examined. Male Wistar rats were randomly divided into four groups according to the received medication: control (saline), isoprenaline (ISO, 100 mg kg−1 s.c.), bovine lactoferrin (La, 50 mg kg−1 i.v.) or a combination of La + ISO in the above-mentioned doses. After 24 h, haemodynamic functional parameters were measured, a sample of blood was withdrawn and the heart was removed for analysis of various parameters. Lactoferrin premedication reduced some impairment caused by ISO (e.g. a stroke volume decrease, an increase in peripheral resistance and calcium overload). These positive effects were likely to have been mediated by the positive inotropic effect of lactoferrin and by inhibition of ROS formation due to chelation of free iron. The failure of lactoferrin to provide higher protection seems to be associated with the complexity of catecholamine cardiotoxicity and with its hydrophilic character.  相似文献   

2.
Elevated catecholamine levels are known to induce damage of the cardiac tissue. This catecholamine cardiotoxicity may stem from their ability to undergo oxidative conversion to aminochromes and concomitant production of reactive oxygen species (ROS), which damage cardiomyocytes via the iron-catalyzed Fenton-type reaction. This suggests the possibility of cardioprotection by iron chelation. Our in vitro experiments have demonstrated a spontaneous decrease in the concentration of the catecholamines epinephrine and isoprenaline during their 24-h preincubation in buffered solution as well as their gradual conversion to oxidation products. These changes were significantly augmented by addition of iron ions and reduced by the iron-chelating agent salicylaldehyde isonicotinoyl hydrazone (SIH). Oxidized catecholamines were shown to form complexes with iron that had significant redox activity, which could be suppressed by SIH. Experiments using the H9c2 cardiomyoblast cell line revealed higher cytotoxicity of oxidized catecholamines than of the parent compounds, apparently through the induction of caspase-independent cell death, whereas co-incubation of cells with SIH was able to significantly preserve cell viability. A significant increase in intracellular ROS formation was observed after the incubation of cells with catecholamine oxidation products; this could be significantly reduced by SIH. In contrast, parent catecholamines did not increase, but rather decreased, cellular ROS production. Hence, our results demonstrate an important role for redox-active iron in catecholamine autoxidation and subsequent toxicity. The iron chelator SIH has shown considerable potential to protect cardiac cells by both inhibition of deleterious catecholamine oxidation to reactive intermediates and prevention of ROS-mediated cardiotoxicity.  相似文献   

3.
Objectives: Rutin, quercetin-3-O-rutinoside, a natural flavonol glycoside, has shown various in vitro benefits with potential use treating human diseases, especially cardiovascular system disorders. Antioxidant properties are assumed to underlie the majority of these benefits. Yet rutin pro-oxidant properties have been reported as well. Our research group has recently shown aggravating effects on isoprenaline (ISO)-induced cardiotoxicity in Wistar:Han rats after 24?hours.

Methods: This study was designed to examine in more detail the reasons for the negative effects of rutin (11.5 and 46?mg/kg, i.v.) after administration of ISO (100?mg/kg, s.c.) in rats within 2?hours of continuous experiment and in the H9c2 cardiomyoblast-derived cell line.

Results: Like our previous findings, rutin did not (11.5 or 46?mg/kg, i.v.) reduce the ISO-induced mortality within 2?hours although the lower dose significantly reduced cardiac troponin T (cTnT) and partly improved the histological findings. In contrast, the higher dose increased the mortality in comparison with solvent (1.26% w/v sodium bicarbonate). This was not caused by any specific haemodynamic disturbances. It appears to be associated with oxidative stress as rutin enhanced intracellular reactive oxygen species formation in vitro and had the tendency to increase it in vivo.

Conclusions: Rutin, likely due to its pro-oxidative effects, can exacerbate catecholamine cardiotoxicity depending on the dose used.  相似文献   

4.
The therapeutic usefulness of doxorubicin (Dox), an anthracycline antibiotic used as an anticancer agent, is limited by its cardiotoxicity. Dox-induced cardiotoxicity is mainly attributed to accumulation of reactive oxygen species and interaction of Dox with cellular iron metabolism. The present study investigated the effects of the iron chelator deferiprone (Def) against Dox-induced cardiotoxicity in rats. Dox (15?mg/kg) was injected intraperitoneally as a single dose, and Def (10?mg/kg) was administered orally for 10?days. Dox showed cardiotoxicity as evidenced by increased heart rate, elevated ST segment, prolonged QTc interval, and increased T wave amplitude. In addition, Dox enhanced aconitine cardiotoxicity by decreasing its dose, producing ventricular tachycardia. Administration of Def significantly attenuated Dox-induced electrocardiographic changes. Cardiotoxicity of Dox was confirmed biochemically by a significant elevation in serum creatine kinase-MB and lactate dehydrogenase activities as well as by myocardial malondialdehyde and reduced glutathione contents. Moreover, Dox caused a significant decrease in myocardial superoxide dismutase activity. Administration of Def significantly attenuated the biochemical changes. These results suggest that Def might be a potential cardioprotective agent against Dox-induced cardiotoxicity.  相似文献   

5.
Dexrazoxane (DEX), an inhibitor of topoisomerase II and intracellular iron chelator, is believed to reduce the formation of reactive oxygen species (ROS) and protects the heart from the toxicity of anthracycline antineoplastics. As ROS also play a role in the pathogenesis of cardiac ischaemia/reperfusion (I/R) injury, the aim was to find out whether DEX can improve cardiac ischaemic tolerance. DEX in a dose of 50, 150, or 450?mg·(kg body mass)(-1) was administered intravenously to rats 60?min before ischaemia. Myocardial infarct size and ventricular arrhythmias were assessed in anaesthetized open-chest animals subjected to 20?min coronary artery occlusion and 3?h reperfusion. Arrhythmias induced by I/R were also assessed in isolated perfused hearts. Only the highest dose of DEX significantly reduced infarct size from 53.9%?± 4.7% of the area at risk in controls to 37.5%?± 4.3% without affecting the myocardial markers of oxidative stress. On the other hand, the significant protective effect against reperfusion arrhythmias occurred only in perfused hearts with the dose of DEX of 150?mg·kg(-1), which also tended to limit the incidence of ischaemic arrhythmias. It is concluded that DEX in a narrow dose range can suppress arrhythmias in isolated hearts subjected to I/R, while a higher dose is needed to limit myocardial infarct size in open-chest rats.  相似文献   

6.
 临床报道丹参酮Ⅱ-A磺酸钠(T)对冠心病心绞痛和胸闷症状有一定疗效,并能改善缺血性心电图。药理研究证明,具有抗钙和抗钙调蛋白(CaM)作用。本文进一步研究了T对正常的和异丙基肾上腺素(Isp)兴奋的家兔心肌线粒体摄取~(45)Ca~(2+)的影响。本文制备的心肌线粒体经透射和扫描电镜检查证明形态和内部结构均正常。线粒体蛋白在0.1mg/ml以下时其钙摄取与浓度呈线性关系。Isp10~(-6)mol/L可使线粒体钙摄取提高20±5%。T在10μg/ml时对正常的和Isp兴奋的线粒体摄取钙的抑制率分别为61.2±3.9%和54.2±5.1%。已知大剂量Isp可引起心肌线粒体钙超载和细胞坏死。戊脉安可减少以上病理性损害。本文结果表明T也具有类似戊脉安的保护心肌的作用。  相似文献   

7.
It has been reported that iron overload in beta-thalassemia leads to an enhanced generation of reactive oxygen species and to oxidative stress. We have studied the oxidant/antioxidant imbalance in the blood of 48 transfusion-dependent beta-thalassemic patients (TLP) (17 males, 31 females, 11-22 year), under chelation therapy, and in 40 sex and age matched healthy controls (CTR). Plasma and lymphocyte levels of vitamin E (Vit E), ubiquinol (CoQ10H2), ubiquinone (CoQ10), plasma concentrations of vitamin A (Vit A), beta-carotene, lycopene, vitamin C (Vit C), total thiols, fatty acid patterns of phospholipids (PL-FA), and plasma and urinary markers of lipoperoxidation (TBA-RM, conjugated dienes, and azelaic acid (AZA), as well as the urinary levels of catecholamine and serotonin metabolites, were evaluated by gas chromatography-mass spectrometry (GC-MS), HPLC and spectrophotometry. Routine laboratory blood analyses were performed on the same samples; 39/48 TLP were HCV positive. Blood samples were collected just before transfusion, the 24 h urine samples the day before. Our results clearly showed that a severe oxidative stress occurs in the plasma of TLP in comparison with CTR. In fact, the levels of lipophilic antioxidants and ascorbate were severely depleted: CoQ10H2 (-62.5%), total CoQ10 (-35.1%), Vit E (-43.8%), beta-carotene (-31.1%), lycopene (-63.7%), Vit A (-35.9%), Vit C (-23.1%). The impairment of the antioxidant status was associated with elevated plasma levels of by-products of lipoperoxidation and urinary concentrations of catecholamine metabolites and of AZA, indicating a high degree of both neurological stress and lipoperoxidation. A significant positive correlation was found between vitamin E and non-transferrin-bound iron (NTBI) (r = -0.81; p < 0.001), while no correlation was found between antioxidant depletion and ferritin serum levels, average blood consumption, or the presence of clinical complications. The administration of selective antioxidants along with an appropriate diet might represent a promising way of counteracting oxidative damage and its deleterious effects on the progression of the disease.  相似文献   

8.
In this report, we review the recent advances in evaluation and treatment of transfusional iron overload (IO). Results of the French thalassaemia registry are described. According to the disease, thalassaemia major or sickle cell anaemia, mechanisms and toxicity of iron overload, knowledge about IO long-term outcome and chelation treatment results, respective value of IO markers, differ. The recent tools evaluating organ specific IO and the diversification of iron chelator agents make possible to individualize chelation therapy in clinical practice. The severity of IO and the level of transfusional iron intake, the preferential localization of IO (heart/liver) as well as the tolerance and adherence profiles of the patient can now be taken into account. Introduction of cardiac magnetic resonance imaging for the quantification of myocardial iron and use of oral chelators have already been reported as decreasing the cardiac mortality rate related to IO in thalassaemia major patients. Long-term observation of patients under oral chelators will show if morbidity is also improving via a more continuous control of toxic iron and/or a better accessibility to cellular iron pools.  相似文献   

9.
The present study was designed to characterize the mitochondrial dysfunction induced by catecholamines and to investigate whether curcumin, a natural antioxidant, induces cardioprotective effects against catecholamine-induced cardiotoxicity by preserving mitochondrial function. Because mitochondria play a central role in ischemia and oxidative stress, we hypothesized that mitochondrial dysfunction is involved in catecholamine toxicity and in the potential protective effects of curcumin. Male Wistar rats received subcutaneous injection of 150 mg·kg(-1)·day(-1) isoprenaline (ISO) for two consecutive days with or without pretreatment with 60 mg·kg(-1)·day(-1) curcumin. Twenty four hours after, cardiac tissues were examined for apoptosis and oxidative stress. Expression of proteins involved in mitochondrial biogenesis and function were measured by real-time RT-PCR. Isolated mitochondria and permeabilized cardiac fibers were used for swelling and mitochondrial function experiments, respectively. Mitochondrial morphology and permeability transition pore (mPTP) opening were assessed by fluorescence in isolated cardiomyocytes. ISO treatment induced cell damage, oxidative stress, and apoptosis that were prevented by curcumin. Moreover, mitochondria seem to play an important role in these effects as respiration and mitochondrial swelling were increased following ISO treatment, these effects being again prevented by curcumin. Importantly, curcumin completely prevented the ISO-induced increase in mPTP calcium susceptibility in isolated cardiomyocytes without affecting mitochondrial biogenesis and mitochondrial network dynamic. The results unravel the importance of mitochondrial dysfunction in isoprenaline-induced cardiotoxicity as well as a new cardioprotective effect of curcumin through prevention of mitochondrial damage and mPTP opening.  相似文献   

10.
Myocardial Ca2+ overload and oxidative stress are well documented effects associated to isoproterenol (ISO)-induced myocardial necrosis, but information correlating these two issues is scarce. Using an ISO-induced myocardial infarction model, 3 stages of myocardial damage were defined: pre-infarction (0–12 h), infarction (12–24 h) and post-infarction (24–96 h). Alterations in Ca2+ homeostasis and oxidative stress were studied in mitochondria, sarcoplasmic reticulum and plasmalemma by measuring the Ca2+ content, the activity of Ca2+ handling proteins, and by quantifying TBARs, nitric oxide (NO) and oxidative protein damage (changes in carbonyl and thiol groups). Free radicals generated system, antioxidant enzymes and oxidative stress (GSH/GSSG ratio) were also monitored at different times of ISO-induced cardiotoxicity. The Ca2+ overload induced by ISO was counterbalanced by a diminution in the ryanodine receptor activity and the Na+-Ca+2 exchanger as well as by the increase in both calcium ATPases activities (vanadate- and thapsigargine-sensitive) and mitochondrial Ca2+ uptake during pre-infarction and infarction stages. Pro-oxidative reactions and antioxidant defences during the 3 stages of cardiotoxicity were observed, with maximal oxidative stress during the infarction. Significant correlations were found among pro-oxidative reactions with plasmalemma and sarcoplasmic reticulum Ca2+ ATPases, and ryanodine receptor activities at the onset and development of ISO-induced infarction. These findings could be helpful in the design of antioxidant therapies in this pathology.  相似文献   

11.
Myelodysplastic syndrome (MDS) is characterized by dysplastic and ineffective hematopoiesis, peripheral blood cytopenias, and a risk of leukemic transformation. Most MDS patients eventually require red blood cell (RBC) transfusions for anemia and consequently develop iron overload. Excess free iron in cells catalyzes generation of reactive oxygen species that cause oxidative stress, including oxidative DNA damage. However, it is uncertain how iron-mediated oxidative stress affects the pathophysiology of MDS. This study included MDS patients who visited our university hospital and affiliated hospitals (n=43). Among them, 13 patients received iron chelation therapy when their serum ferritin (SF) level was greater than 1000ng/mL or they required more than 20 RBC transfusions (or 100mL/kg of RBC). We prospectively analyzed 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in peripheral blood mononuclear cells (PBMC) obtained from MDS patients before and after iron chelator, deferasirox, administration. We showed that the 8-OHdG levels in MDS patients were significantly higher than those in healthy volunteers and were positively correlated with SF and chromosomal abnormalities. Importantly, the 8-OHdG levels in PBMC of MDS patients significantly decreased after deferasirox administration, suggesting that iron chelation reduced oxidative DNA damage. Thus, excess iron could contribute to the pathophysiology of MDS and iron chelation therapy could improve the oxidative DNA damage in MDS patients.  相似文献   

12.
Echinochrome, or 6-ethyl-2,3,5,7,8-pentahydroxy-1,4-naphthoquinone, possesses cardioprotective activity, and diminishes the myocardial ischemia/reperfusion injury that is known to be accompanied by free-radical oxidative damage and calcium overload. In this study, we investigated the lipophilicity of echinochrome, its ability to inhibit free-radical oxidation both in the bulk organic phase and in an artificial membrane system (liposomes), and to prevent the ferrous/ascorbate-induced leakage of calcium from the isolated sarcoplasmic reticulum (SR) of rabbit skeletal muscle. The experimentally-determined octanol/water partition coefficient (LogP) of echinochrome was +3.11, and the distribution coefficient (LogD) was +2.58 at pH 6.0 and -0.15 at pH 8.0. Echinochrome displayed high scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals with a stoichiometry of about 1:7. Echinochrome was more effective in inhibiting the phosphatidyl choline liposome peroxidation induced by Fe2+/ascorbate than that induced by hemin. The iron chelating ability of echinochrome was estimated spectrophotometrically. In isolated SR, echinochrome protected the ATP-dependent Ca2+-pump system from damage by Fe2+/ascorbate. It was concluded that iron chelation predominates in the overall antioxidant potential of echinochrome.  相似文献   

13.
The impact of cancer therapies on adult cardiac function is becoming a concern as more children survive their initial cancer. Cardiovascular disease is now a significant problem to adult survivors of childhood cancer. Specifically, doxorubicin (DOX) may be particularly harmful in young girls. The objective of this study was to characterize DOX damage and determine the ability of dexrazoxane (DEX) to reduce DOX-mediated cardiac damage in sedentary and swim-trained female rats. Female Sprague-Dawley rats were left intact or ovariectomized (OVX) at weaning then injected with DEX (60 mg/kg) before DOX (3 mg/kg), DOX alone, or PBS. Rats were separated into sedentary and swim cohorts. Body weight was reduced in DOX:DEX- but not PBS- or DOX-treated rats. Echocardiographic parameters were similar in sedentary rats. Swim training revealed greater concentric remodeling in DOX-treated rats and reduced fractional shortening in DOX:DEX-treated rats. Calsequestrin 2 was reduced with DOX and increased with DOX:DEX postswim. Sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a was reduced and calsequestrin 2 reduced further by swim training only in intact rats. OVX rats were heavier and developed eccentric remodeling post-swim with DOX and eccentric hypertrophy with DOX:DEX. Changes in SERCA2a and calsequestrin 2 expression were not observed. Ovariectomized DOX- and DOX:DEX-treated rats stopped growing during swim training. DEX coinjection did not relieve DOX-mediated cardiotoxicity in intact or hormone-deficient rats. DOX-mediated reductions in growth, cardiac function, and expression of calcium homeostasis proteins were exacerbated by swim. DEX coadministration did not substantially relieve DOX-mediated cardiotoxicity in young female rats. Ovarian hormones reduce DOX-induced cardiotoxicity.  相似文献   

14.
Iron deficiency hinders hippocampus-dependent learning processes and impairs cognitive performance, but current knowledge on the molecular mechanisms underlying the unique role of iron in neuronal function is sparse. Here, we investigated the participation of iron on calcium signal generation and ERK1/2 stimulation induced by the glutamate agonist N-methyl-D-aspartate (NMDA), and the effects of iron addition/chelation on hippocampal basal synaptic transmission and long-term potentiation (LTP). Addition of NMDA to primary hippocampal cultures elicited persistent calcium signals that required functional NMDA receptors and were independent of calcium influx through L-type calcium channels or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; NMDA also promoted ERK1/2 phosphorylation and nuclear translocation. Iron chelation with desferrioxamine or inhibition of ryanodine receptor (RyR)-mediated calcium release with ryanodine-reduced calcium signal duration and prevented NMDA-induced ERK1/2 activation. Iron addition to hippocampal neurons readily increased the intracellular labile iron pool and stimulated reactive oxygen species production; the antioxidant N-acetylcysteine or the hydroxyl radical trapper MCI-186 prevented these responses. Iron addition to primary hippocampal cultures kept in calcium-free medium elicited calcium signals and stimulated ERK1/2 phosphorylation; RyR inhibition abolished these effects. Iron chelation decreased basal synaptic transmission in hippocampal slices, inhibited iron-induced synaptic stimulation, and impaired sustained LTP in hippocampal CA1 neurons induced by strong stimulation. In contrast, iron addition facilitated sustained LTP induction after suboptimal tetanic stimulation. Together, these results suggest that hippocampal neurons require iron to generate RyR-mediated calcium signals after NMDA receptor stimulation, which in turn promotes ERK1/2 activation, an essential step of sustained LTP.  相似文献   

15.
Under conditions of iron overload, which are now reaching epidemic proportions worldwide, iron-overload cardiomyopathy is the most important prognostic factor in patient survival. We hypothesize that in iron-overload disorders, iron accumulation in the heart depends on ferrous iron (Fe2+) permeation through the L-type voltage-dependent Ca2+ channel (LVDCC), a promiscuous divalent cation transporter. Iron overload in mice was associated with increased mortality, systolic and diastolic dysfunction, bradycardia, hypotension, increased myocardial fibrosis and elevated oxidative stress. Treatment with LVDCC blockers (CCBs; amlodipine and verapamil) at therapeutic levels inhibited the LVDCC current in cardiomyocytes, attenuated myocardial iron accumulation and oxidative stress, improved survival, prevented hypotension and preserved heart structure and function. Consistent with the role of LVDCCs in myocardial iron uptake, iron-overloaded transgenic mice with cardiac-specific overexpression of the LVDCC alpha1-subunit had twofold higher myocardial iron and oxidative stress levels, as well as greater impairment in cardiac function, compared with littermate controls; LVDCC blockade was again protective. Our results indicate that cardiac LVDCCs are key transporters of iron into cardiomyocytes under iron-overloaded conditions, and potentially represent a new therapeutic target to reduce the cardiovascular burden from iron overload.  相似文献   

16.
It has been reported that iron overload in β-thalassemia leads to an enhanced generation of reactive oxygen species and to oxidative stress. We have studied the oxidant/antioxidant imbalance in the blood of 48 transfusion-dependent β-thalassemic patients (TLP) (17 males, 31 females, 11–22 year), under chelation therapy, and in 40 sex and age matched healthy controls (CTR). Plasma and lymphocyte levels of vitamin E (Vit E), ubiquinol (CoQ10H2), ubiquinone (CoQ10), plasma concentrations of vitamin A (Vit A), β-carotene, lycopene, vitamin C (Vit C), total thiols, fatty acid patterns of phospholipids (PL-FA), and plasma and urinary markers of lipoperoxidation (TBA-RM, conjugated dienes, and azelaic acid (AZA), as well as the urinary levels of catecholamine and serotonin metabolites, were evaluated by gas chromatography-mass spectrometry (GC-MS), HPLC and spectrophotometry. Routine laboratory blood analyses were performed on the same samples; 39/48 TLP were HCV positive. Blood samples were collected just before transfusion, the 24 h urine samples the day before. Our results clearly showed that a severe oxidative stress occurs in the plasma of TLP in comparison with CTR. In fact, the levels of lipophilic antioxidants and ascorbate were severely depleted: CoQ10H2 (-62.5%), total CoQ10 (-35.1%), Vit E (-43.8%, β-carotene (-31.1%), lycopene (-63.7%), Vit A (-35.9%), Vit C (-23.1%). The impairment of the antioxidant status was associated with elevated plasma levels of by-products of lipoperoxidation and urinary concentrations of catecholamine metabolites and of AZA, indicating a high degree of both neurological stress and lipoperoxidation. A significant positive correlation was found between vitamin E and non-transferrin-bound iron (NTBI) (r = -0.81; p < 0.001), while no correlation was found between antioxidant depletion and ferritin serum levels, average blood consumption, or the presence of clinical complications. The administration of selective antioxidants along with an appropriate diet might represent a promising way of counteracting oxidative damage and its deleterious effects on the progression of the disease.  相似文献   

17.
Alterations in the metabolism of iron and its accumulation in the substantia nigra pars compacta accompany the pathogenesis of Parkinson’s disease (PD). Changes in iron homeostasis also occur during aging, which constitutes a PD major risk factor. As such, mitigation of iron overload via chelation strategies has been considered a plausible disease modifying approach. Iron chelation, however, is imperfect because of general undesired side effects and lack of specificity; more effective approaches would rely on targeting distinctive pathways responsible for iron overload in brain regions relevant to PD and, in particular, the substantia nigra. We have previously demonstrated that the Transferrin/Transferrin Receptor 2 (TfR2) iron import mechanism functions in nigral dopaminergic neurons, is perturbed in PD models and patients, and therefore constitutes a potential therapeutic target to halt iron accumulation. To validate this hypothesis, we generated mice with targeted deletion of TfR2 in dopaminergic neurons. In these animals, we modeled PD with multiple approaches, based either on neurotoxin exposure or alpha-synuclein proteotoxic mechanisms. We found that TfR2 deletion can provide neuroprotection against dopaminergic degeneration, and against PD- and aging-related iron overload. The effects, however, were significantly more pronounced in females rather than in males. Our data indicate that the TfR2 iron import pathway represents an amenable strategy to hamper PD progression. Data also suggest, however, that therapeutic strategies targeting TfR2 should consider a potential sexual dimorphism in neuroprotective response.Subject terms: Metals, Ageing, Neurological disorders  相似文献   

18.
Knowledge of the basic mechanisms involved in iron metabolism has increased greatly in recent years, improving our ability to deal with the huge global public health problems of iron deficiency and overload. Several million people worldwide suffer iron overload with serious clinical implications. Iron overload has many different causes, both genetic and environmental. The two most common iron overload disorders are hereditary haemochromatosis and transfusional siderosis, which occurs in thalassaemias and other refractory anaemias. The two most important treatment options for iron overload are phlebotomy and chelation. Phlebotomy is the initial treatment of choice in haemochromatosis, while chelation is a mainstay in the treatment of transfusional siderosis. The classical iron chelator is deferoxamine (Desferal), but due to poor gastrointestinal absorption it has to be administered intravenously or subcutaneously, mostly on a daily basis. Thus, there is an obvious need to find and develop new effective iron chelators for oral use. In later years, particularly two such oral iron chelators have shown promise and have been approved for clinical use, namely deferiprone (Ferriprox) and deferasirox (Exjade). Combined subcutaneous (deferoxamine) and oral (deferiprone) treatment seems to hold particular promise.  相似文献   

19.
Cardiac hyperactivity and its consequent metabolically induced coronary vasodilation (MCD) were studied in isolated, perfused, electrically paced rat hearts. The alpha-adrenoceptor agonists, phenylephrine and methoxamine, produced a concentration-dependent inhibition of the inotropic responses to noradrenaline, dobutamine, isoprenaline, tyramine, and glucagon, while relatively potentiating their MCD reactions. This inhibition was unrelated to the alpha-agonists' known inotropic action and was not affected by catecholamine depletion of the heart. Withdrawal of the alpha-agonists or administration of the alpha-adrenoceptor antagonists phentolamine, phenoxybenzamine, or prazosin returned the inotropic and MCD reactions to normal. Neither the MCD response to electrically induced tachycardia nor the inotropic reactions produced by calcium chloride were affected by alpha-adrenoceptor agonists or antagonists. Alone, alpha-adrenoceptor antagonists were shown to potentiate the inotropic responses to noradrenaline and isoprenaline while the MCD was relatively diminished. The responses to glucagon were unaltered by alpha-antagonists. We postulate that myocardial reactivity to sympathetic stimulation can be modulated through alpha-adrenoceptors by the inhibition of processes that mediate cardiostimulation at post-beta-adrenoceptor sites, together with facilitation of those leading up to MCD. Accordingly, this modulation would act to prevent ischaemic damage to the heart by acting to limit the inotropic responses to increasing sympathetic stimulation while maximizing the blood supply to the myocardium.  相似文献   

20.
目的:观察右美托咪定(DEX)对高血压心肌肥厚患者心肌的保护作用。方法:将符合诊断标准54例患者随机分为两组(n=27):DEX组(D组)和对照组(C组)。D组于麻醉诱导前15 min给予负荷剂量右美托咪定1 μg/kg,静脉泵注10 min,随后维持剂量0.5 μg/(kg·h)至手术结束。C组相应时间泵注等量生理盐水。两组患者麻醉前2 h连接Holter记录仪,静息平卧连续记录1 h作为基础值,其后连续记录24 h。并在T0(诱导前)、T1(手术开始1 h)、T2(术后4 h)、T3(术后12 h)、T4(术后24 h)五个时间点采集血样测定缺血修饰白蛋白(IMA)和血清肌钙蛋白I(cTnI)。观察并记录两组患者手术时间、出血量和心血管并发症等临床指标。结果:D组在T1、T2、T3时IMA水平均明显低于C组(P<0.05),在T1、T2、T3、T4时cTnI水平均明显低于C组(P<0.05),Holter显示D组ST段缺血样改变和复杂室性心律失常明显低于C组(P<0.05)。结论:DEX可以减轻高血压心肌肥厚患者围术期心肌损伤,减少ST段缺血样改变和复杂室性心律失常的发生率,具有一定的心肌保护作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号