首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infection of BHK cells by Sindbis virus leads to rapid inhibition of host cell protein synthesis and cytopathic effects (CPE). We have been studying these events to determine whether the expression of a specific viral gene is required and, in the present study, have focused our attention on the role of the structural proteins--the capsid protein and the two membrane glycoproteins. We tested a variety of Sindbis viruses and Sindbis virus replicons (virus particles containing an RNA that is self-replicating but with some or all of the viral structural protein genes deleted) for their abilities to inhibit host cell protein synthesis and cause CPE in infected BHK cells. Our results show that shutoff of host cell protein synthesis occurred in infected BHK cells when no viral structural proteins were synthesized and also under conditions in which the level of the viral subgenomic RNA was too low to be detected. These results support the conclusion that the early steps in viral gene expression are the ones required for the inhibition of host cell protein synthesis in BHK cells. In contrast, the Sindbis viruses and Sindbis virus replicons were clearly distinguished by the time at which CPE became evident. Viruses that synthesized high levels of the two membrane glycoproteins on the surface of the infected cells caused a rapid (12 to 16 h postinfection) appearance of CPE, and those that did not synthesize the glycoprotein spikes showed delayed (30 to 40 h) CPE.  相似文献   

2.
CD46, which serves as a receptor for measles virus (MV; strain Edmonston), is rapidly downregulated from the cell surface after contact with viral particles or infected cells. We show here that the same two CD46 complement control protein (CCP) domains responsible for primary MV attachment mediate its downregulation. Optimal downregulation efficiency was obtained with CD46 recombinants containing CCP domains 1 and 2, whereas CCP 1, alone and duplicated, induced a slight downregulation. Using persistently infected monocytic/promyelocytic U937 cells which release very small amounts of infectious virus, and uninfected HeLa cells as contact partners, we then showed that during contact the formation of CD46-containing patches and caps precedes CD46 internalization. Nevertheless, neither substances inhibiting capping nor the fusion-inhibiting peptide Z-D-Phe-L-Phe-Gly-OH (FIP) blocked CD46 downregulation. Thus, CD46 downregulation can be uncoupled from fusion and subsequent virus uptake. Interestingly, in that system cell-cell contacts lead to a remarkably efficient infection of the target cells which is only partially inhibited by FIP. The finding that the contact of an infected with uninfected cells results in transfer of infectious viral material without significant (complete) fusion of the donor with the recipient cell suggests that microfusion events and/or FIP-independent mechanisms may mediate the transfer of MV infectivity from cell to cell.  相似文献   

3.
The relationship between the development of cytopathic effect (CPE) and the inhibition of host macromolecular synthesis was examined in a CPE-susceptible cloned line of Aedes albopictus cells after infection with vesicular stomatitis virus. To induce rapid and maximal CPE, two conditions were required: (i) presence of serum in the medium and (ii) incubation at 34 degrees C rather than at 28 degrees C. In the absence of serum, incubation of infected cultures at 34 degrees C resulted in a significant increase in viral protein and RNA synthesis compared with that observed at 28 degrees C. However, when serum was present in the medium, by 6 h after infection protein synthesis (both host and viral) was markedly inhibited when infected cells were maintained at 34 degrees C. RNA synthesis (host and viral) was also inhibited in vesicular stomatitis virus-infected cells maintained at 34 degrees C with serum, but somewhat more slowly than protein synthesis. Examination of polysome patterns indicated that when infected cultures were maintained under conditions which predispose to CPE, more than half of the ribosomes existed as monosomes, suggesting that protein synthesis was being inhibited at the level of initiation. In addition, the phosphorylation of one (or two) polysome-associated proteins was reduced when protein synthesis was inhibited. Our findings indicate a strong correlation between virus-induced CPE in the LT-C7 clone of A. albopictus cells and the inhibition of protein synthesis. Although the mechanism of the serum effect is not understood, incubation at 34 degrees C probably predisposes to CPE and inhibition of protein synthesis by increasing the amount of viral gene products made.  相似文献   

4.
Sendai virus (SV) infection and replication lead to a strong cytopathic effect with subsequent death of host cells. We now show that SV infection triggers an apoptotic program in target cells. Incubation of infected cells with the peptide inhibitor z-VAD-fmk abrogated SV-induced apoptosis, indicating that proteases of the caspase family were involved. Moreover, proteolytic activation of two distinct caspases, CPP32/caspase-3 and, as shown for the first time in virus-infected cells, FLICE/caspase-8, could be detected. So far, activation of FLICE/caspase-8 has been described in apoptosis triggered by death receptors, including CD95 and tumor necrosis factor (TNF)-R1. In contrast, we could show that SV-induced apoptosis did not require TNF or CD95 ligand. We further found that apoptosis of infected cells did not influence the maturation and budding of SV progeny. In conclusion, SV-induced cell injury is mediated by CD95- and TNF-R1-independent activation of caspases, leading to the death of host cells without impairment of the viral life cycle.  相似文献   

5.
African swine fever virus (ASFV) A224L is a member of the inhibitor of apoptosis protein (IAP) family. We have investigated the antiapoptotic function of the viral IAP both in stably transfected cells and in ASFV-infected cells. A224L was able to substantially inhibit caspase activity and cell death induced by treatment with tumor necrosis factor alpha and cycloheximide or staurosporine when overexpressed in Vero cells by gene transfection. We have also observed that ASFV infection induces caspase activation and apoptosis in Vero cells. Furthermore, using a deletion mutant of ASFV lacking the A224L gene, we have shown that the viral IAP modulates the proteolytic processing of the effector cell death protease caspase-3 and the apoptosis which are induced in the infected cells. Our findings indicate that A224L interacts with the proteolytic fragment of caspase-3 and inhibits the activity of this protease during ASFV infection. These observations could indicate a conserved mechanism of action for ASFV IAP and other IAP family members to suppress apoptosis.  相似文献   

6.
Although MV infection causes lymphopenia and degradation of cell‐mediated immunity, the mechanisms are poorly known. MV interacts with cellular receptors which mediate virus binding and uptake and are on the surface of PBMC. In this study, apoptosis of MV‐infected PBMC in vitro was analyzed. Both PBMC treated with UV‐inactivated viruses and those infected with live MV underwent apoptosis. Apoptosis of wild‐type MV‐infected PBMC was blocked by anti‐SLAM and anti‐MV hemagglutinin antibodies, respectively. Furthermore, addition of soluble MV hemagglutinin recombinant protein induced apoptosis in PBMC. These data suggest that induction of apoptosis in MV‐infected PBMC is triggered by interaction between hemagglutinin protein of MV and receptor, without other viral components. To further determine the mechanisms of apoptosis, caspase activity was analyzed by Western blotting. Wild‐type virus Yonekawa strain‐induced apoptosis was blocked by pretreatment with pan‐caspase inhibitor (Z‐VAD‐fmk). Intriguingly, the laboratory‐adapted Nagahata strain‐induced apoptosis was not blocked by Z‐VAD‐fmk, indicating that there may be different apoptosis pathways which depend on the viral receptors, SLAM and CD46. Both extrinsic and intrinsic apoptotic pathways, including activation of caspase‐3, ‐8 and ‐9, are involved in Yonekawa strain‐induced apoptosis. Taken together, the findings of this study could open up a new avenue for understanding the molecular mechanisms of MV‐induced PBMC apoptosis and immunosuppression.  相似文献   

7.
Poxviruses demonstrate strict species specificity in vivo that range from narrow to broad, however the fundamental factors that mediate the basis of poxvirus tropism remain poorly understood. It is generally believed that most, if not all, poxviruses can efficiently bind and enter a wide range of mammalian cells and all of the known host anti-viral pathways that block viral replication in nonpremissive cells operate downstream of virus entry. A productive poxvirus infection is heavily dependent upon the production of a vast array of host modulatory products that specifically target and manipulate both extracellular immune response pathways of the host, as well as intracellular signal transduction pathways of the individually infected cells. The unique pathogenesis and host tropism of specific poxviruses can be attributed to the broad diversity of host modulatory proteins they express. Myxoma virus (MV) is a rabbit-specific poxviruses that encodes multiple host range factors, including an ankyrin-repeat protein M-T5, which functions to regulate tropism of MV for rabbit lymphocytes and some human cancer cells. At the molecular level, M-T5 binds and alters at least two distinct cellular proteins: Akt and cullin-1. The direct interaction between M-T5 and Akt was shown to be a key restriction determinant for MV tropism in a spectrum of human cancer cells making MV an excellent oncolytic candidate. Thus, the intricate relationship between viral encoded proteins and components of the host cell signaling networks can have profound impact on poxvirus tropism. The lessons we continue to learn from poxvirus host range factors like M-T5 will provide further insights into the factors that regulate poxvirus tropism and the mechanisms by which poxviruses micromanipulate the signaling pathways of the infected cell.  相似文献   

8.
9.
Rapid and efficient methods for the detection and quantification of infectious viruses are required for public health risk assessment. Current methods to detect infectious viruses are based on mammalian cell culture and rely on the production of visible cytopathic effects (CPE). For hepatitis A virus (HAV), viral replication in cell culture has been reported to be nonlytic and relatively slow. It may take more than 1 week to reach the maximum production and subsequent visualization of CPE. A molecular beacon (MB), H1, specifically targeting a 20-bp 5' noncoding region of HAV, was designed and synthesized. MB H1 was introduced into fixed and permeabilized fetal rhesus monkey kidney (FRhK-4) cells infected with HAV strain HM-175. Upon hybridizing with the viral mRNA, fluorescent cells were visualized easily under a fluorescence microscope. Discernible fluorescence was detected only in infected cells by using the specific MB H1. A nonspecific MB, which was not complementary to the viral RNA sequence, produced no visible fluorescence signal. This MB-based fluorescence assay enabled the direct counting of fluorescent cells and could achieve a detection limit of 1 PFU at 6 h postinfection, demonstrating a significant improvement in viral quantification over current infectivity assays.  相似文献   

10.
The Edmonston strain of measles virus (MV) that utilizes the human CD46 as the cellular receptor produced cytopathic effects (CPE) in all of the primate cell lines examined. In contrast, the wild-type MV strains isolated in a marmoset B-cell line B95a (the KA and Ichinose strains) replicated and produced CPE in some but not all of the primate lymphoid cell lines. To determine the mechanism underlying this difference in cell tropism, we used a recently developed recombinant vesicular stomatitis virus (VSV) containing as a reporter the green fluorescent protein gene in lieu of the VSV G protein gene (VSVDeltaG*). MV glycoproteins were efficiently incorporated into VSVDeltaG*, producing the VSV pseudotypes. VSVDeltaG* complemented with VSV G protein efficiently infected all of the cell lines tested. The VSV pseudotype bearing the Edmonston hemagglutinin (H) and fusion (F) protein (VSVDeltaG*-EdHF) infected all cell lines in which the Edmonston strain caused CPE, including the rodent cell lines to which the human CD46 gene was stably transfected. The pseudotype bearing the wild-type KA H protein and Edmonston F protein (VSVDeltaG*-KAHF) infected all lymphoid cell lines in which the wild-type MV strains caused CPE as efficiently as VSVDeltaG*-EdHF, but it did not infect any of the cell lines resistant to infection with the KA strain. The results indicate that the difference in cell tropism between these MV strains was largely determined by virus entry, in which the H proteins of respective MV strains play a decisive role.  相似文献   

11.
Productive poliovirus infection of HeLa cells leads to the canonical cytopathic effect (CPE), whereas certain types of abortive infection result in apoptosis. To define the time course of commitment to the different types of poliovirus-induced death, inhibitors of viral replication (guanidine HCl) or translation (cycloheximide) were added at different times postinfection (p.i.). Early in the infection (during the first approximately 2 h p.i.), predominantly proapoptotic viral function was expressed, rendering the cells committed to apoptosis, which developed several hours after viral expression was arrested. In the middle of infection, concomitantly with the onset of fast generation of viral progeny, the implementation of the viral apoptotic program was abruptly interrupted. In particular, activation of an Asp-Glu-Val-Asp (DEVD)-specific caspase(s) occurring in the apoptosis-committed cells was prevented by the ongoing productive infection. Simultaneously, the cells retaining normal or nearly normal morphology became committed to CPE, which eventually developed regardless of whether or not further viral expression was allowed to proceed. The implementation of the poliovirus-induced apoptotic program was suppressed in HeLa cells overexpressing the Bcl-2 protein, indicating that the fate of poliovirus-infected cells depends on the balance of host and viral pro- and antiapoptotic factors.  相似文献   

12.
13.
C. Liu  H. Y. Xu    D. X. Liu 《Journal of virology》2001,75(14):6402-6409
Avian coronavirus infectious bronchitis virus (IBV) is the causative agent of chicken infectious bronchitis, an acute, highly contagious viral respiratory disease. Replication of IBV in Vero cells causes extensive cytopathic effects (CPE), leading to destruction of the entire monolayer and the death of infected cells. In this study, we investigated the cell death processes during acute IBV infection and the underlying mechanisms. The results show that both necrosis and apoptosis may contribute to the death of infected cells in lytic IBV infection. Caspase-dependent apoptosis, as characterized by chromosomal condensation, DNA fragmentation, caspase-3 activation, and poly(ADP-ribose) polymerase degradation, was detected in IBV-infected Vero cells. Addition of the general caspase inhibitor z-VAD-FMK to the culture media showed inhibition of the hallmarks of apoptosis and increase of the release of virus to the culture media at 16 h postinfection. However, neither the necrotic process nor the productive replication of IBV in Vero cells was severely affected by the inhibition of apoptosis. Screening of 11 IBV-encoded proteins suggested that a 58-kDa mature cleavage product could induce apoptotic changes in cells transiently expressing the protein. This study adds one more example to the growing list of animal viruses that induce apoptosis during their replication cycles.  相似文献   

14.
Nakatsu Y  Takeda M  Ohno S  Koga R  Yanagi Y 《Journal of virology》2006,80(23):11861-11867
In addition to the phosphoprotein, the P gene of measles virus (MV) also encodes the V and C proteins by an RNA editing process and by alternative initiation of translation in a different reading frame, respectively. Although the MV C protein is required for efficient MV replication in vivo and in some cultured cells, its exact functions in virus infection are currently unclear. Here, we report that a recombinant MV lacking the C protein (MVDeltaC) grew poorly in a human cell line possessing the intact interferon (IFN) pathway and that this growth defect was associated with reduced viral translation and genome replication. The translational inhibition was correlated with phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Moreover, increased IFN induction was observed in MVDeltaC-infected cells. The NS1 protein of influenza virus, which binds to double-stranded RNA (dsRNA) and consequently inhibits IFN induction and dsRNA-dependent protein kinase activation, complemented the growth defect of MVDeltaC. These results indicate that the MV C protein inhibits IFN induction and modulates host antiviral responses, thereby ensuring MV growth in host cells.  相似文献   

15.
Replication-defective mutants of herpes simplex virus type 1 (HSV-1) may prove useful as vectors for gene transfer, particularly to nondividing cells. Cgal delta 3 is an immediate-early gene 3 (IE 3) deletion mutant of HSV-1 that expresses the lacZ gene of Escherichia coli from the human cytomegalovirus immediate-early control region but does not express viral early or late genes. This vector was able to efficiently infect and express lacZ in cells refractory to traditional methods of gene transfer. However, 1 to 3 days postinfection, Cgal delta 3 induced cytopathic effects (CPE) in many cell types, including neurons. In human primary fibroblasts Cgal delta 3 induced chromosomal aberrations and host cell DNA fragmentation. Other HSV-1 strains that caused CPE, tested under conditions of viral replication-inhibition, included mutants of the early gene UL42, the virion host shutoff function, single mutants of IE 1, IE 2, and IE 3, and double mutants of IE 3 and 4 and IE 3 and 5. Inhibition of viral gene expression by UV irradiation of virus stocks or by preexposure of cells to interferon markedly reduced the CPE. We conclude from these studies that HSV-1 IE gene expression is sufficient for the induction of CPE, although none of the five IE gene products appear to be solely responsible. After infection of human fibroblasts with Cgal delta 3 at a low multiplicity of infection, we were able to recover up to 6% of the input virus 2 weeks later by a superinfection-rescue procedure, even though the virally transduced human cytomegalovirus-lacZ transgene was not expressed at this time. It is therefore likely that inhibition or inactivation of viral IE gene expression, either for establishing latency or for the long-term transduction of foreign genes by HSV-1 vectors, is essential to avoid the death of infected cells.  相似文献   

16.
In one-step growth experiment of measles virus (MV) in Vero cells at 39 C, the appearance of MV infectivity was delayed for 24 hr and the maximum titer was reduced by approximately 1,000-fold, when compared with those at 35 C. MV infectivity was thermolabile at the high temperature. Penetration was rather enhanced at 39 C. By Northern blot hybridization, viral RNAs including 50S genome-sized RNA and mRNAs were first detectable 24 hr post-infection (PI) at 35 C and 36 hr PI at 39 C, respectively. Rapid degradation of viral mRNAs was not observed in the infected cells at 39 C. The synthesis of N, F, and M proteins was relatively reduced at the high temperature and appearance of the other viral protein was delayed, in agreement with the time course of viral RNA synthesis. All these data suggest that less efficient synthesis of viral RNA, restriction of synthesis of N, F, and M proteins at translational level and thermolability of infectivity are all involved in the suppressed MV production in Vero cells at 39 C.  相似文献   

17.
研究麻疹病毒减毒疫苗沪191株(MV沪191)在组织培养中和裸鼠体内对HeLa肿瘤细胞的抑制作用.用空斑实验测定MV沪191感染HeLa细胞后细胞裂解液中病毒量;用MTF试验测定MV沪191感染对细胞活性的影响;用流式细胞仪分析测定MV沪191感染引起的细胞凋亡和对细胞周期的影响;HeLa肿瘤细胞背部皮下接种BALB/C裸鼠引起的肿瘤,评估MV沪191体内抑瘤作用.MV沪191感染HeLa细胞后可引起广泛的CPE,感染的HeLa细胞与对照组相比细胞活性明显降低.MV沪191感染HeLa细胞后随着时间延长,G1/G0细胞率明显增多,S期率明显减少,细胞凋亡率明显增加(P<0.01).给药第60天时瘤内治疗组、静脉治疗组和对照组肿瘤体积平均分别为15.5、64.6、156.4 mm3.瘤内治疗组与对照组相比有显著差异(P<0.01);静脉治疗组与对照组相比有明显差异(P<0.05).MV沪191减毒株在组织培养中和裸鼠体内对HeLa肿瘤有明显的杀伤作用.  相似文献   

18.
19.
20.
Measles virus (MV) can infect the central nervous system and, in rare cases, causes subacute sclerosing panencephalitis, characterized by a progressive degeneration of neurons. The route of MV transmission in neurons was investigated in cultured rat hippocampal slices by using MV expressing green fluorescent protein. MV infected hippocampal neurons and spread unidirectionally, in a retrograde manner, from CA1 to CA3 pyramidal cells and from there to the dentate gyrus. Spreading of infection depended on cell-to-cell contact and occurred without any detectable release of infectious particles. The role of the viral proteins in the retrograde MV transmission was determined by investigating their sorting in infected pyramidal cells. MV glycoproteins, the fusion protein (F) and hemagglutinin (H), the matrix protein (M), and the phosphoprotein (P), which is part of the viral ribonucleoprotein complex, were all sorted to the dendrites. While M, P, and H proteins remained more intracellular, the F protein localized to prominent, spine-type domains at the surface of infected cells. The detected localization of MV proteins suggests that local microfusion events may be mediated by the F protein at sites of synaptic contacts and is consistent with a mechanism of retrograde transmission of MV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号