首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Co-contraction of the muscles is proposed in the literature as one of the strategies that anterior cruciate ligament deficient (ACLD) subjects can use to compensate the loss of ACL function. This study examined the response of ACLD and control subjects to different shear forces in isometric and slow-dynamic knee extensions. Twelve chronic ACLD and 10 control subjects performed submaximal positioning and slow-dynamic knee extensions (between 45 degrees and 5 degrees of knee flexion) with two external flexion moments both applied at two distances on the lower leg. The shear force was controlled by changing the moment arm without changing the moment. Electromyographic data were collected from knee flexor and extensor muscles. In the analysis of variance, no significant effect of subject group was found in positioning or slow-dynamic tasks across all muscles. The effect of knee angle was significantly different between the subject groups for biceps femoris in positioning and for rectus femoris in slow-dynamic tasks, but these effects were very small and will not have a great impact on the resulting shear forces. There was no interaction between moment arm and subject group. Therefore, the hypothesis that ACLD subjects increase co-contraction in situations with an increased shear load in positioning and slow-dynamic knee extensions could not be confirmed.  相似文献   

2.
Stair ascent and descent requires large knee motions and muscle forces that can be challenging for people with anterior cruciate ligament (ACL) deficiency. Movement and muscle activity patterns were compared in two groups of ACL deficient subjects and a group of uninjured subjects. The ACL deficient subjects were prospectively classified according to functional ability. "Copers" were defined as individuals with complete ACL rupture and no symptoms of knee instability and participated in high-level sports without difficulty. "Non-copers" were defined as ACL deficient individuals who had instability with low-level daily activities and were not able to participate in sports. Sagittal plane kinematic and kinetic data from the hip, knee and ankle and electromyographic data from the vastus lateralis, lateral hamstring, medial gastrocnemius, and soleus were collected as subjects stepped up and over a 26 cm high step. Both coper and non-coper subjects had altered movement patterns as they controlled the rapid movement from step ascent to descent with their involved limbs. Only non-copers used significantly different movement patterns on their involved limb compared to controls after they had descended from the step and their involved side accepted the weight of the body. Classifying subjects by functional ability resulted in more pronounced differences in movement patterns between non-copers and copers. Copers moved more like uninjured subjects.  相似文献   

3.
Recently, a training program that includes perturbation of support surfaces has been shown to allow most active individuals with ACL injury who pass a screening examination to successfully return to high level activities. The purpose of this study was to identify the effect of this rehabilitation program on involved side muscle activation during walking in subjects with acute ACL rupture and to determine if the activation changes were coincident with improved function. Nine subjects with an acute, unilateral ACL injury or rupture of an ACL graft, who met the screening examination criteria, received ten sessions of rehabilitation that included perturbation training. Motion analysis of five self-paced walking trials were performed before and after training. Electromyographic (EMG) data were collected during stance. After training during walking, the vastus lateralis (VL) integral of activity increased, and relationships between muscles were significantly altered. During walking, VL activation variables were dependent on lateral hamstrings (LH) and/or the soleus (SOL) activation, while no relationships were found before training. Function improved after training, and all subjects returned to their pre-injury activities without experiencing instability. The relationships formed between muscles post-training suggests that perturbation training enhances dynamic knee stability by inducing a well-coordinated strategy among muscles that affect tibial translation.  相似文献   

4.
The purpose of this study was to examine the effects of moment of antagonistic muscle on the resultant joint moment during isokinetic eccentric and concentric efforts of the knee extensors. Ten males performed maximum eccentric and concentric knee extension and flexion efforts on a Biodex dynamometer at 0.52 rad · s−1 (30° · s−1). Electromyographic (EMG) activity of vastus medialis and biceps femoris (hamstrings) was also recorded. The antagonistic moment of the hamstrings was determined by recording the integrated EMG (iEMG)/moment relationship at different levels of muscle effort. The iEMG/moment curves were fitted using second-degree polynomials. The polynomials were then used to predict the antagonistic moment exerted by the hamstrings from the antagonist iEMG. The antagonistic moment had a maximum of 42.92 Nm and 28.97 Nm under concentric and eccentric conditions respectively; paired t-tests indicated that this was a significant difference (P < 0.05). These results indicate that the resultant joint moment of knee extensors is the result of both agonist and antagonist muscle activation. The greater antagonist muscle activity under concentric activation conditions may be partly responsible for the lower resultant joint concentric moment of knee extensors compared with the corresponding eccentric activation. The antagonist moment significantly affects comparisons between the isokinetic moments and agonist EMG and in vitro force measurements under different testing (muscle action and angular velocity) conditions. Accepted: 25 February 1997  相似文献   

5.
The relationships between extrinsic forces acting at the knee and knee kinematics were examined with the purpose of identifying specific phases of the walking cycle that could cause abnormal kinematics in the anterior cruciate ligament (ACL) deficient knee. Intersegmental forces and moments in directions that would produce anterior-posterior (AP) translation, internal-external (IE) rotation and flexion-extension (FE) at the knee were compared with the respective translation and rotations of the tibia relative to the femur during four selected phases (heel strike, weight acceptance, terminal extension and swing) of the walking cycle. The kinematic changes associated with loss of the ACL occurred primarily during the terminal portion of swing phase of the walking cycle where, for the ACL deficient knee, the tibia had reduced external rotation and anterior translation as the knee extended prior to heel strike. The kinematic changes during swing phase were associated with a rotational offset relative to the contralateral knee in the average position of the tibia towards internal rotation. The offset was maintained through the entire gait cycle. The abnormal offsets in the rotational position were correlated with the magnitude of the flexion moment (balanced by a net quadriceps moment) during weight acceptance. These results suggest that adaptations to the patterns of muscle firing during walking can compensate for kinematic changes associated with the loss of the ACL. The altered rotational position would cause changes in tibiofemoral contact during walking that could cause the type of degenerative changes reported in the meniscus and the articular cartilage following ACL injury.  相似文献   

6.
Anterior cruciate ligament (ACL) injury is a common injury encountered by sport medicine clinicians. Surgical reconstruction is the recommended treatment of choice for those athletes wishing to return to full-contact sports participation and for sports requiring multi-directional movement patterns. The aim of ACL reconstruction is to restore knee joint mechanical stability such that the athlete can return to sporting participation. However, knowledge regarding the extent to which lower limb kinematic profiles are restored following ACL reconstruction is limited. In the present study the hip and knee joint kinematic profiles of 13 ACL reconstructed (ACL-R) and 16 non-injured control subjects were investigated during the performance of a diagonal jump landing task. The ACL-R group exhibited significantly less peak knee joint flexion (P=0.01). Significant between group differences were noted for time averaged hip joint sagittal plane (P<0.05) and transverse plane (P<0.05) kinematic profiles, as well as knee joint frontal plane (P<0.05) and sagittal plane (P<0.05) kinematic profiles. These results suggest that aberrant hip and knee joint kinematic profiles are present following ACL reconstruction, which could influence future injury risk.  相似文献   

7.
Examination of the effects of fatigue on antagonist function can provide information on the role of antagonists in limiting the resultant joint moment and stabilizing the knee. Therefore, the purpose of this study was to examine the moment, agonist and antagonist electromyographic (EMG) activity levels at different angular positions during an isokinetic muscular endurance knee extension test. Fifteen healthy males (age 22.6+/-1.9 yr) performed 34 maximal isokinetic concentric efforts of the knee extensors at 120 degrees s(-1). The EMG activity of vastus medialis and biceps femoris was recorded using surface electrodes. The motion ranged from 90 degrees to 0 degrees of knee flexion. The average moment and average EMG (AEMG) at 10-35 degrees, 36-55 degrees and 56-80 degrees angular position intervals were calculated for each repetition. Twenty eight efforts were further analysed. The moment of force demonstrated a decline of 70% at the end of the test. Two-way repeated measures analysis of variance tests indicated that this decline was significant (p < 0.05). No significant effects of angular position on fatigue moment characteristics were found. The agonist (vastus medialis) AEMG during the first repetition demonstrated a significant increase of 40-60% towards the middle part of the test (p < 0.05). In the second part of the test, the VM AEMG at longer muscle lengths was significantly higher compared to the initial efforts whereas the AEMG at short muscle lengths returned to initial values. The antagonist AEMG at all angular positions did not change significantly during the test. The decline in the resultant joint moment could be attributed to the effects of fatigue on the agonist muscle function. The agonist AEMG fatigue-patterns are dependent on the length of the muscle and may be due to alterations in the motor unit recruitment and/or activation failure in the quadriceps muscle. The biceps femoris maintains constant submaximal (21-33% of the maximum) AEMG activity which may play an important role in the stability of the knee joint. The contribution of antagonist activity to the resultant joint moment increases during the last part of an isokinetic concentric muscle endurance test.  相似文献   

8.
The torque-time curve patterns of concentric isokinetic knee extension in anterior cruciate ligament (ACL) deficient patients usually present mid-range irregularities associated with the level of anterior tibial translation. The purpose of this study was to compare the smoothness in isokinetic torque production between the ACL deficient and the healthy knee. Thirty ACL deficient soccer players performed bilaterally five trials of maximum concentric knee extension-flexion at 60 degrees /s on a Biodex dynamometer. The three middle trials (a total of six curves) were retained and submitted to further data processing. Maximum frequency values contained within the 90%, 95% and 99% level of the signal power were calculated for each extension and flexion curve. The frequency content of the ACL deficient side proved to be statistically higher compared to the intact side at all levels of the power spectrum. The percentage differences in the frequency content were 18.8%, 10.6% and 40.0% for knee extension, and 49.5%, 24.5% and 16.3% for knee flexion, for the respective power levels. This indicated higher oscillations and, therefore, more unstable mechanical output of the injured knee. An overall biological interpretation of the present results is based on the notion that disturbed motion is generally connected to poor level of joint functionality.  相似文献   

9.
Bilateral knee strength evaluations of unilateral anterior cruciate ligament (ACL) deficient patients using isokinetic dynamometry are commonly performed in rehabilitation settings. The most frequently-used outcome measure is the peak moment value attained by the knee extensor and flexor muscle groups. However, other strength curve features may also be of clinical interest and utility. The purpose of this investigation was to identify, using Principal Component Analysis (PCA), strength curve features that explain the majority of variation between the injured and uninjured knee, and to assess the capabilities of these features to detect the presence of injury. A mixed gender cohort of 43 unilateral ACL deficient patients performed 6 continuous concentric knee extension and flexion repetitions bilaterally at 60° s−1 and 180° s−1 within a 90° range of motion. Moment waveforms were analyzed using PCA, and binary logistic regression was used to develop a discriminatory decision rule. For all directions and speeds, a statistically significant overall reduction in strength was noted for the involved knee in comparison to the uninvolved knee. The discriminatory decision rule yielded a specificity and sensitivity of 60.5% and 60.5%, respectively, corresponding to an accuracy of ∼62%. As such, the curve features extracted using PCA enabled only limited clinical usefulness in discerning between the ACL deficient and contra lateral, healthy knee. Improvement in discrimination capabilities may perhaps be achieved by consideration of different testing speeds and contraction modes, as well as utilization of other data analysis techniques.  相似文献   

10.
Anterior cruciate ligament (ACL) injury commonly occurs during single limb landing or stopping from a run, yet the conditions that influence ACL strain are not well understood. The purpose of this study was to develop, test and apply a 3D specimen-specific dynamic simulation model of the knee designed to evaluate the influence of deceleration forces during running to a stop (single-leg landing) on ACL strain. This work tested the conceptual development of the model by simulating a physical experiment that provided direct measurements of ACL strain during vertical impact loading (peak value 1294N) with the leg near full extension. The properties of the soft tissue structures were estimated by simulating previous experiments described in the literature. A key element of the model was obtaining precise anatomy from segmented MR images of the soft tissue structures and articular geometry for the tibiofemoral and patellofemoral joints of the knee used in the cadaver experiment. The model predictions were correlated (Pearson correlation coefficient 0.889) to the temporal and amplitude characteristic of the experimental strains. The simulation model was then used to test the balance between ACL strain produced by quadriceps contraction and the reductions in ACL strain associated with the posterior braking force. When posterior forces that replicated in vivo conditions were applied, the peak ACL strain was reduced. These results suggest that the typical deceleration force that occurs during running to a single limb landing can substantially reduce the strain in the ACL relative to conditions associated with an isolated single limb landing from a vertical jump.  相似文献   

11.
Two-dimensional dynamic modelling of human knee joint   总被引:1,自引:0,他引:1  
A mathematical dynamic model of the two-dimensional representation of the knee joint is presented. The profiles of the joint surfaces are determined from X-ray films and they are represented by polynomials. The joint ligaments are modelled as nonlinear elastic springs of realistic stiffness properties. Nonlinear equations of motion coupled with nonlinear constraint conditions are solved numerically. Time derivatives are approximated by Newmark difference formulae and the resulting nonlinear algebraic equations are solved employing the Newton-Raphson iteration scheme. Several dynamic loads are applied to the center of mass of the tibia and the ensuing motion is investigated. Numerical results on ligament forces, contact point locations between femur and tibia, and the orientation of tibia relative to femur are presented. The results are shown to be consistent with the anatomy of the knee joint.  相似文献   

12.
The overall objective of this study was to introduce knee joint power as a potential measure to investigate knee joint stability following total knee arthroplasty (TKA). Specific aims were to investigate whether weakened knee joint stabilizers cause abnormal kinematics and how it influences the knee joint kinetic (i.e., power) in response to perturbation.Patient-specific musculoskeletal models were simulated with experimental gait data from six TKA patients (baseline models). Muscle strength and ligament force parameter were reduced by up to 30% to simulate weak knee joint stabilizers (weak models). Two different muscle recruitment criteria were tested to examine whether altered muscle recruitment pattern can mask the influence of weakened stabilizers on the knee joint kinematics and kinetics. Level-walking knee joint kinematics and kinetics were calculated though force-dependent kinematic and inverse dynamic analyses. Bode analysis was then recruited to estimate the knee joint power in response to a simulated perturbation.Weak models resulted in larger anterior-posterior (A-P) displacement and internal-external (I-E) rotation compared to baseline (I-E: 18.4 ± 8.5 vs. 11.6 ± 5.7 (deg), A-P: 9.7 ± 5.6 vs. 5.5 ± 4.1 (mm)). Changes in muscle recruitment criterion however altered the results such that A-P and I-E were not notably different from baseline models. In response to the simulated perturbation, weak models versus baseline models generated a delayed power response with unbounded magnitudes. Perturbed power behavior of the knee remained unaltered regardless of the muscle recruitment criteria.In conclusion, impairment at the knee joint stabilizers may or may not lead to excessive joint motions but it notably affects the knee joint power in response to a perturbation. Whether perturbed knee joint power is associated with the patient-reported outcome requires further investigation.  相似文献   

13.
Non-contact anterior cruciate ligament (ACL) injuries account for 70% of all ACL injuries, and can lead to missed time from activity for athletes and a predisposition for knee osteoarthritis. Prior research has shown that athletes who land in a stiff manner, with larger internal knee adduction and extension moments, are at greater risk for an ACL injury. A three-dimensional accelerometer placed at the tibial tuberosity may prove to be a low-cost means of assessing these risk factors. The primary purpose of this study was to compare tibial accelerations during drop landings with kinematic and kinetic risk factors for ACL injury measured with three-dimensional motion capture. The secondary purpose of this study was to compare these measures between soft and stiff landings. Participants were instructed to land bilaterally in preferred, soft, and stiff manners. Peak knee flexion decreased significantly from soft to stiff landings. Peak internal knee extension moment, peak anterior/posterior knee acceleration, and peak medial knee acceleration all increased significantly from soft to stiff landings. No associations were found between landing condition and either frontal plane knee angle at maximum vertical ground reaction force or peak internal knee adduction moment. Significant positive associations between kinetics and accelerations were found only in the sagittal plane. As such, while a three-dimensional accelerometer could discern between soft and stiff landings in both planes, it may be better suited to predict kinetic risk factors in the sagittal plane.  相似文献   

14.
Altered gait kinematics and kinetics are observed in patients with medial compartment knee osteoarthritis. Although various kinematic adaptations are proposed to be compensatory mechanisms that unload the knee, the nature of these mechanisms is presently unclear. We hypothesized that an increased toe-out angle during early stance phase of gait shifts load away from the knee medial compartment, quantified as the external adduction moment about the knee. Specifically, we hypothesized that by externally rotating the lower limb anatomy, primarily about the hip joint, toe-out gait alters the lengths of ground reaction force lever arms acting about the knee joint in the frontal and sagittal planes and transforms a portion of knee adduction moment into flexion moment. To test this hypothesis, gait data from 180 subjects diagnosed with medial compartment knee osteoarthritis were examined using two frames of reference. The first frame was attached to the tibia (reporting actual toe-out) and the second frame was attached to the laboratory (simulating no-toe-out). Four measures were compared within subjects in both frames of reference: the lengths of ground reaction force lever arms acting about the knee joint in the frontal and sagittal planes, and the adduction and flexion components of the external knee moment. The mean toe-out angle was 11.4 degrees (S.D. 7.8 degrees , range -2.2 degrees to 28.4 degrees ). Toe-out resulted in significant reductions in the frontal plane lever arm (-6.7%) and the adduction moment (-11.7%) in early stance phase when compared to the simulated no-toe-out values. These reductions were coincident with significant increases in the sagittal plane lever arm (+33.7%) and flexion moment (+25.0%). Peak adduction lever arm and moment were also reduced significantly in late stance phase (by -22.9% and -34.4%, respectively) without a corresponding increase in sagittal plane lever arm or flexion moment. These results indicate that toe-out gait in patients with medial compartment knee osteoarthritis transforms a portion of the adduction moment into flexion moment in early stance phase, suggesting that load is partially shifted away from the medial compartment to other structures.  相似文献   

15.
The purpose of this study was to develop a subject-specific 3-D model of the lower extremity to predict neuromuscular control effects on 3-D knee joint loading during movements that can potentially cause injury to the anterior cruciate ligament (ACL) in the knee. The simulation consisted of a forward dynamic 3-D musculoskeletal model of the lower extremity, scaled to represent a specific subject. Inputs of the model were the initial position and velocity of the skeletal elements, and the muscle stimulation patterns. Outputs of the model were movement and ground reaction forces, as well as resultant 3-D forces and moments acting across the knee joint. An optimization method was established to find muscle stimulation patterns that best reproduced the subject's movement and ground reaction forces during a sidestepping task. The optimized model produced movements and forces that were generally within one standard deviation of the measured subject data. Resultant knee joint loading variables extracted from the optimized model were comparable to those reported in the literature. The ability of the model to successfully predict the subject's response to altered initial conditions was quantified and found acceptable for use of the model to investigate the effect of altered neuromuscular control on knee joint loading during sidestepping. Monte Carlo simulations (N = 100,000) using randomly perturbed initial kinematic conditions, based on the subject's variability, resulted in peak anterior force, valgus torque and internal torque values of 378 N, 94 Nm and 71 Nm, respectively, large enough to cause ACL rupture. We conclude that the procedures described in this paper were successful in creating valid simulations of normal movement, and in simulating injuries that are caused by perturbed neuromuscular control.  相似文献   

16.
The aim of this study was to investigate the prevalence of abnormal knee biomechanical patterns in 40 patients with a modern TKA prosthesis, compared to 40 matched control participants when ascending and descending stairs. Fewer patients were able to ascend (65%) or descend stairs (53%) unassisted than controls (83%). Of the participants who could ascend and descend, cluster analysis classified most patients (up to 77%) as demonstrating a similar knee moment pattern as all controls. A small subgroup of patients who completed the tasks did so with distinctly abnormal biomechanics compared to other patients and controls. These findings suggest that recovery of normal stair climbing is possible. However, rehabilitation might be more effective if it were tailored to account for these differences between patients.  相似文献   

17.
PurposeEvidence concerning the alteration of knee function during landing suffers from a lack of consensus. This uncertainty can be attributed to methodological flaws, particularly in relation to the statistical analysis of variable human movement data. The aim of this study was to compare single-subject and group analyses in detecting changes in knee stiffness and coordination during step landing that occur independent of an experimental intervention.MethodsA group of healthy men (N=12) stepped-down from a knee-high platform for 60 consecutive trials, each trial separated by a 1-minute rest. The magnitude and within-participant variability of sagittal stiffness and coordination of the landing knee were evaluated with both group and single-subject analyses.ResultsThe group analysis detected significant changes in knee coordination. However, the single-subject analyses detected changes in all dependent variables, which included increases in variability with task repetition. Between-individual variation was also present in the timing, size and direction of alterations.ConclusionThe results have important implications for the interpretation of existing information regarding the adaptation of knee mechanics to interventions such as fatigue, footwear or landing height. It is proposed that a participant's natural variation in knee mechanics should be analysed prior to an intervention in future experiments.  相似文献   

18.
The inclusion of muscle forces into the analysis of joint contact forces has improved their accuracy. But it has not been validated if such force and activity calculations are valid during highly dynamic multidirectional movements. The purpose of this study was to validate calculated muscle activation of a lower extremity model with a spherical knee joint for running, sprinting and 90°-cutting. Kinematics, kinetics and lower limb muscle activation of ten participants were investigated in a 3D motion capture setup including EMG. A lower extremity rigid body model was used to calculate the activation of these muscles with an inverse dynamics approach and a cubic cost function. Correlation coefficients were calculated to compare measured and calculated activation. The results showed good correlation of the modelled and calculated data with a few exceptions. The highest average correlations were found during walking (r = 0.81) and the lowest during cutting (r = 0.57). Tibialis anterior had the lowest average correlation (r = 0.33) over all movements while gastrocnemius medius had the highest correlation (r = 0.9). The implementation of a spherical knee joint increased the agreement between measured and modelled activation compared to studies using a hinge joint knee. Although some stabilizing muscles showed low correlations during dynamic movements, the investigated model calculates muscle activity sufficiently.  相似文献   

19.
Healthy humans display a preference for walking at a stride frequency dependent on the inertial properties of their legs. Walking at preferred stride frequency (PSF) is predicted to maximize local dynamic stability, whereby sensitivity to intrinsic perturbations arising from natural variability inherent in biological motion is minimized. Previous studies testing this prediction have employed different variability measures, but none have directly quantified local dynamic stability by computing maximum finite-time Lyapunov exponent (λMax), which quantifies the rate of divergence of nearby trajectories in state space. Here, ten healthy adults walked 45 m overground while sagittal motion of both knees was recorded via electrogoniometers. An auditory metronome prescribed 7 different frequencies relative to each individual's PSF (PSF; ±5, ±10, ±15 strides/min). Stride frequencies were performed under both freely adopted speed (FS) and controlled speed (CS: set at the speed of PSF trials) conditions. Local dynamic stability was maximal (λMax was minimal) at the PSF, becoming less stable for higher and lower stride frequencies. This occurred under both FS and CS conditions, although controlling speed further reduced local dynamic stability at non-preferred stride frequencies. In contrast, measures of variability revealed effects of stride frequency and speed conditions that were distinct from λMax. In particular, movement regularity computed by approximate entropy (ApEn) increased for slower walking speeds, appearing to depend on speed rather than stride frequency. The cadence freely adopted by humans has the benefit of maximizing local dynamic stability, which can be interpreted as humans tuning to their resonant frequency of walking.  相似文献   

20.
Gastrocnemius is a premier muscle crossing the knee, but its role in knee biomechanics and on the anterior cruciate ligament (ACL) remains less clear when compared to hamstrings and quadriceps. The effect of changes in gastrocnemius force at late stance when it peaks on the knee joint response and ACL force was initially investigated using a lower extremity musculoskeletal model driven by gait kinematics—kinetics. The tibiofemoral joint under isolated isometric contraction of gastrocnemius was subsequently analyzed at different force levels and flexion angles (0°–90°). Changes in gastrocnemius force at late stance markedly influenced hamstrings forces. Gastrocnemius acted as ACL antagonist by substantially increasing its force. Simulations under isolated contraction of gastrocnemius confirmed this role at all flexion angles, in particular, at extreme knee flexion angles (0° and 90°). Constraint on varus/valgus rotations substantially decreased this effect. Although hamstrings and gastrocnemius are both knee joint flexors, they play opposite roles in respectively protecting or loading ACL. Although the quadriceps is also recognized as antagonist of ACL, at larger joint flexion and in contrast to quadriceps, activity in gastrocnemius substantially increased ACL forces (anteromedial bundle). The fact that gastrocnemius is an antagonist of ACL should help in effective prevention and management of ACL injuries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号