首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants detect the presence of neighbouring vegetation by monitoring changes in the ratio of red (R) to far‐red (FR) wavelengths (R:FR) in ambient light. Reductions in R:FR are perceived by the phytochrome family of plant photoreceptors and initiate a suite of developmental responses termed the shade avoidance syndrome. These include increased elongation growth of stems and petioles, enabling plants to overtop competing vegetation. The majority of shade avoidance experiments are performed at standard laboratory growing temperatures (>20°C). In these conditions, elongation responses to low R:FR are often accompanied by reductions in leaf development and accumulation of plant biomass. Here we investigated shade avoidance responses at a cooler temperature (16°C). In these conditions, Arabidopsis thaliana displays considerable low R:FR‐mediated increases in leaf area, with reduced low R:FR‐mediated petiole elongation and leaf hyponasty responses. In Landsberg erecta, these strikingly different shade avoidance phenotypes are accompanied by increased leaf thickness, increased biomass and an altered metabolite profile. At 16°C, low R:FR treatment results in the accumulation of soluble sugars and metabolites associated with cold acclimation. Analyses of natural genetic variation in shade avoidance responses at 16°C have revealed a regulatory role for the receptor‐like kinase ERECTA.  相似文献   

2.
Many plants display a characteristic suite of developmental"shade avoidance" responses, such as stem elongation and acceleratedreproduction, to the low ratio of red to far-red wavelengths(R:FR) reflected or transmitted from green vegetation. ThisR:FR cue of crowding and vegetation shade is perceived by thephytochrome family of photoreceptors. Phytochrome-mediated responsesprovide an ideal system for investigating the adaptive evolutionof phenotypic plasticity in natural environments. The molecularand developmental mechanisms underlying shade avoidance responsesare well studied, and testable ecological hypotheses exist fortheir adaptive significance. Experimental manipulation of phenotypesdemonstrates that shade avoidance responses may be adaptive,resulting in phenotypes with high relative fitness in the environmentsthat induce those phenotypes. The adaptive value of shade avoidancedepends upon the competitive environment, resource availability,and the reliability of the R:FR cue for predicting the selectiveenvironment experienced by an induced phenotype. Comparativestudies and a reciprocal transplant experiment with Impatienscapensis provide evidence of adaptive divergence in shade avoidanceresponses between woodland and clearing habitats, which mayresult from population differences in the frequency of selectionon shade avoidance traits, as well as differences in the reliabilityof the R:FR cue. Recent rapid progress in elucidating phytochromesignaling pathways in the genetic model Arabidopsis thalianaand other species now provides the opportunity for studyinghow selection on shade avoidance traits in natural environmentsacts upon the molecular mechanisms underlying natural phenotypicvariation.  相似文献   

3.
We investigated the response to increasing intensity of red (R) and far‐R (FR) light and to a decrease in R:FR ratio in Pinus sylvestris L. (Scots pine) seedling. The results showed that FR high‐irradiance response for hypocotyl elongation may be present in Scots pine and that this response is enhanced by increasing light intensity. However, both hypocotyl inhibition and pigment accumulation were more strongly affected by the R light compared with FR light. This is in contrast to previous reports in Arabidopsis thaliana (L.) Heynh. In the angiosperm, A. thaliana R light shows an overall milder effect on inhibition of hypocotyl elongation and on pigment biosynthesis compared with FR suggesting conifers and angiosperms respond very differently to the different light regimes. Scots pine shade avoidance syndrome with longer hypocotyls, shorter cotyledons and lower chlorophyll content in response to shade conditions resembles the response observed in A. thaliana. However, anthocyanin accumulation increased with shade in Scots pine, which again differs from what is known in angiosperms. Overall, the response of seedling development and physiology to R and FR light in Scots pine indicates that the regulatory mechanism for light response may differ between gymnosperms and angiosperms.  相似文献   

4.
Light limitation caused by dense vegetation is one of the greatest threats to plant survival in natural environments. Plants detect such neighboring vegetation as a reduction in the red to far-red ratio (R:FR) of the incoming light. The low R:FR signal, perceived by phytochromes, initiates a set of responses collectively known as the shade avoidance syndrome, intended to reduce the degree of current or future shade from neighbors by overtopping such competitors or inducing flowering to ensure seed production. At the seedling stage these responses include increased hypocotyl elongation. We have systematically analyzed the Arabidopsis seedling response and the contribution of phyA and phyB to perception of decreased R:FR, at three different levels of photosynthetically active radiation. Our results show that the shade avoidance syndrome, induced by phyB deactivation, is gradually antagonized by phyA, operating through the so-called FR-High Irradiance Response, in response to high FR levels in a range that simulates plant canopy shade. The data indicate that the R:FR signal distinguishes between the presence of proximal, but non-shading, neighbors and direct foliar shade, via a intrafamily photosensory attenuation mechanism that acts to suppress excessive reversion toward skotomorphogenic development under prolonged direct vegetation shade.  相似文献   

5.
Correlations between developmentally plastic traits may constrain the joint evolution of traits. In plants, both seedling de-etiolation and shade avoidance elongation responses to crowding and foliage shade are mediated by partially overlapping developmental pathways, suggesting the possibility of pleiotropic constraints. To test for such constraints, we exposed inbred lines of Impatiens capensis to factorial combinations of leaf litter (which affects de-etiolation) and simulated foliage shade (which affects phytochrome-mediated shade avoidance). Increased elongation of hypocotyls caused by leaf litter phenotypically enhanced subsequent elongation of the first internode in response to low red:far red (R:FR). Trait expression was correlated across litter and shade conditions, suggesting that phenotypic effects of early plasticity on later plasticity may affect variation in elongation traits available to selection in different light environments.  相似文献   

6.
Photomorphogenic shade avoidance responses provide an ideal model system for integrating genetic, physiological and population biology approaches to the study of adaptive plasticity. The adaptive plasticity hypothesis predicts that shade avoidance phenotypes induced by low ratios of red to far-red light (R:FR) will have high relative fitness in dense stands, but will suffer a fitness disadvantage at low density. Experiments with transgenic and mutant plants in which photomorphogenic genes are disabled, as well as phenotype manipulation by means of altered R:FR, strongly support the shade avoidance hypothesis. The observation of photomorphogenic ecotypes in different selective environments also suggests that the shade avoidance response has undergone adaptive evolution. Quantitative genetic variation in R:FR sensitivity has been detected in wild populations, indicating that the evolutionary potential exists for response to natural selection. However, evolutionary response may be constrained by genetic correlations among developmentally linked traits. Therefore it cannot be assumed that an observed suite of photomorphogenic responses represents an adaptive optimum for every trait.  相似文献   

7.
8.
Plants modify growth in response to the proximity of neighbors. Among these growth adjustments are shade avoidance responses, such as enhanced elongation of stems and petioles, that help plants to reach the light and outgrow their competitors. Neighbor detection occurs through photoreceptor-mediated detection of light spectral changes (i.e. reduced red:far-red ratio [R:FR] and reduced blue light intensity). We recently showed that physiological regulation of these responses occurs through light-mediated degradation of nuclear, growth-inhibiting DELLA proteins, but this appeared to be only part of the full mechanism. Here, we present how two hormones, auxin and ethylene, coregulate DELLAs but regulate shade avoidance responses through DELLA-independent mechanisms in Arabidopsis (Arabidopsis thaliana). Auxin appears to be required for both seedling and mature plant shoot elongation responses to low blue light and low R:FR, respectively. Auxin action is increased upon exposure to low R:FR and low blue light, and auxin inhibition abolishes the elongation responses to these light cues. Ethylene action is increased during the mature plant response to low R:FR, and this growth response is abolished by ethylene insensitivity. However, ethylene is also a direct volatile neighbor detection signal that induces strong elongation in seedlings, possibly in an auxin-dependent manner. We propose that this novel ethylene and auxin control of shade avoidance interacts with DELLA abundance but also controls independent targets to regulate adaptive growth responses to surrounding vegetation.  相似文献   

9.
Shade avoidance in plants involves rapid shoot elongation to grow toward the light. Cell wall-modifying mechanisms are vital regulatory points for control of these elongation responses. Two protein families involved in cell wall modification are expansins and xyloglucan endotransglucosylase/hydrolases. We used an alpine and a prairie ecotype of Stellaria longipes differing in their response to shade to study the regulation of cell wall extensibility in response to low red to far-red ratio (R/FR), an early neighbor detection signal, and dense canopy shade (green shade: low R/FR, blue, and total light intensity). Alpine plants were nonresponsive to low R/FR, while prairie plants elongated rapidly. These responses reflect adaptation to the dense vegetation of the prairie habitat, unlike the alpine plants, which almost never encounter shade. Under green shade, both ecotypes rapidly elongate, showing that alpine plants can react only to a deep shade treatment. Xyloglucan endotransglucosylase/hydrolase activity was strongly regulated by green shade and low blue light conditions but not by low R/FR. Expansin activity, expressed as acid-induced extension, correlated with growth responses to all light changes. Expansin genes cloned from the internodes of the two ecotypes showed differential regulation in response to the light manipulations. This regulation was ecotype and light signal specific and correlated with the growth responses. Our results imply that elongation responses to shade require the regulation of cell wall extensibility via the control of expansin gene expression. Ecotypic differences demonstrate how responses to environmental stimuli are differently regulated to survive a particular habitat.  相似文献   

10.
Plants respond to proximate neighbors with a suite of responses that comprise the shade avoidance syndrome. These phytochrome-mediated responses include hyponasty (i.e. a more vertical orientation of leaves) and enhanced stem and petiole elongation. We showed recently that ethylene-insensitive tobacco (Nicotiana tabacum) plants (Tetr) have reduced responses to neighbors, showing an important role for this gaseous plant hormone in shade avoidance. Here, we investigate interactions between phytochrome signaling and ethylene action in shade avoidance responses. Furthermore, we investigate if ethylene acts in these responses through an interaction with the GA class of hormones. Low red to far-red light ratios (R:FR) enhanced ethylene production in wild-type tobacco, resulting in shade avoidance responses, whereas ethylene-insensitive plants showed reduced shade avoidance responses. Plants with inhibited GA production showed hardly any shade avoidance responses at all to either a low R:FR or increased ethylene concentrations. Furthermore, low R:FR enhanced the responsiveness of hyponasty and stem elongation in both wild-type and Tetr plants to applied GA(3), with the stem elongation process being more responsive to GA(3) in the wild type than in Tetr. We conclude that phytochrome-mediated shade avoidance responses involve ethylene action, at least partly by modulating GA action.  相似文献   

11.
A reduced red to far-red (R/FR) light ratio and low photosynthetically active radiation (PAR) irradiance are both strong signals for inducing etiolation growth of plant stems. Under natural field conditions, plants can be exposed to either a reduced R/FR ratio or lower PAR, or to a combination of both. We used Helianthus annuus L., the sunflower, to study the effect of reduced R/FR ratio, low PAR or their combination on hypocotyl elongation. To accomplish this, we attempted to uncouple light quality from light irradiance as factors controlling hypocotyl elongation. We measured alterations in the levels of endogenous gibberellins (GAs), cytokinins (CKs) and the auxin indole-3-acetic acid (IAA), and the effect of exogenous hormones on hypocotyl growth. As expected, both reduced R/FR ratio and lower PAR can significantly promote sunflower hypocotyl elongation when given separately. However, providing the reduced R/FR ratio at a low PAR resulted in the greatest hypocotyl growth, and this was accompanied by significantly higher levels of endogenous IAA, GA1, GA8, GA20 and of a wide range of CKs. Providing a reduced R/FR ratio under normal PAR also significantly increased growth and again gave significantly higher levels of endogenous IAA, GAs and CKs. However, only under the de-etiolating influence of a normal R/FR ratio did lowering PAR significantly increase levels of GA1, GA8 and GA20. We thus conclude that light quality (e.g. the R/FR ratio) is the most important component of shade for controlling hypocotyl growth and elevated growth hormone content.  相似文献   

12.
Shade avoidance in higher plants is regulated by the action of multiple phytochrome (phy) species that detect changes in the red/far-red ratio (R/FR) of incident light and initiate a redirection of growth and an acceleration of flowering. The phyB mutant of Arabidopsis is constitutively elongated and early flowering and displays attenuated responses to both reduced R/FR and end-of-day far-red light, conditions that induce strong shade-avoidance reactions in wild-type plants. This indicates that phyB plays an important role in the control of shade avoidance. In Arabidopsis phyB and phyD are the products of a recently duplicated gene and share approximately 80% identity. We investigated the role played by phyD in shade avoidance by analyzing the responses of phyD-deficient mutants. Compared with the monogenic phyB mutant, the phyB-phyD double mutant flowers early and has a smaller leaf area, phenotypes that are characteristic of shade avoidance. Furthermore, compared with the monogenic phyB mutant, the phyB-phyD double mutant shows a more attenuated response to a reduced R/FR for these responses. Compared with the phyA-phyB double mutant, the phyA-phyB-phyD triple mutant has elongated petioles and displays an enhanced elongation of internodes in response to end-of-day far-red light. These characteristics indicate that phyD acts in the shade-avoidance syndrome by controlling flowering time and leaf area and that phyC and/or phyE also play a role.  相似文献   

13.
Monaco  T.A.  Briske  D.D. 《Plant Ecology》2001,156(2):173-182
We designed an experiment with potted plants grown outdoors to investigate the expression of shade avoidance in simulated sparse and dense canopies by two perennial grasses known to express contrasting responses to low red:far-red ratios (R:FR). Plants were grown in canopy microenvironments designed to lower the R:FR by reflection of horizontally propagated FR from neighbors and by direct attenuation of R by filters located above plants. Two specific hypotheses were tested: (1) Paspalum dilatatum will express greater shade avoidance than Schizachyrium scoparium to low R:FR in both sparse and dense canopies, and (2) low R:FR will produce greater expressions of shade avoidance in sparse than in dense canopies in both species. P. dilatatum was more responsive to low R:FR than S. scoparium in both the sparse and dense canopies and lower ramet number plant–1 was the only common shade avoidance response between species in sparse canopies. P. dilatatum also showed significant reductions in juvenile ramet initiation, juvenile ramet mass, total shoot mass, and shoot:root ratios in sparse canopies, but only juvenile ramet initiation was reduced in dense canopies. The suppression of juvenile ramet initiation in the dense canopy was at least partially modulated by the vertically propagated R:FR because a similar reduction in PFD and horizontally propagated R:FR showed 42% greater juvenile ramet initiation in the respective control. S. scoparium only showed a significant reduction in ramet number plant–1 and a significant increase in blade length in sparse canopies, but no significant responses occurred in dense canopies. Consequently, neither hypothesis was rejected. Variable shade avoidance responses between species and canopy densities indicate that both interspecific variation and various proportions of vertically and horizontally propagated low R:FR can influence the expression of shade avoidance responses of perennial grasses in field settings.  相似文献   

14.
Plants growing at high densities express shade avoidance traits as a response to the presence of neighbours. Enhanced shoot elongation is one of the best researched shade avoidance components and increases light capture in dense stands. We show here that also leaf movements, leading to a more vertical leaf orientation (hyponasty), may be crucial in the early phase of competition. The initiation of shade avoidance responses is classically attributed to the action of phytochrome photoreceptors that sense red:far-red (R:FR) ratios in light reflected by neighbours, but also other signals may be involved. It was recently shown that ethylene-insensitive, transgenic (Tetr) tobacco plants, which are insensitive to the gaseous plant hormone ethylene, have reduced shade avoidance responses to neighbours. Here, we report that this is not related to a reduced response to low R:FR ratio, but that Tetr tobacco plants are unresponsive to a reduced photon fluence rate of blue light, which normally suppresses growth inhibition in wild-type (WT) plants. In addition to these light signals, ethylene levels in the canopy atmosphere increased to concentrations that could induce shade avoidance responses in WT plants. Together, these data show that neighbour detection signals other than the R:FR ratio are more important than previously anticipated and argue for a particularly important role for ethylene in determining plant responses to neighbours.  相似文献   

15.
16.
Sessile plants must continuously adjust their growth and development to optimize photosynthetic activity under ever-fluctuating light conditions. Among such light responses in plants, one of the best-characterized events is the so-called shade avoidance, for which a low ratio of the red (R):far-red (FR) light intensities is the most prominent stimulus. Such shade avoidance responses enable plants to overtop their neighbors, thereby enhancing fitness and competitiveness in their natural habitat. Considerable progress has been achieved during the last decade in understanding the molecular mechanisms underlying the shade avoidance responses in the model rosette plant, Arabidopsis thaliana. We characterize here the fundamental aspects of the shade avoidance responses in the model legume, Lotus japonicus, based on the fact that its phyllotaxis (or morphological architecture) is quite different from that of A. thaliana. It was found that L. japonicus displays the characteristic shade avoidance syndrome (SAS) under defined laboratory conditions (a low R:FR ratio, low light intensity, and low blue light intensity) that mimic the natural canopy. In particular, the outgrowth of axillary buds (i.e., both aerial and cotyledonary shoot branching) was severely inhibited in L. japonicus grown in the shade. These results are discussed with special emphasis on the unique aspects of SAS observed with this legume.  相似文献   

17.
It is often suggested that traits will be integrated, either because of pleiotropy or because natural selection may favor suites of integrated traits. Plant responses to different environments can provide evidence of such integration. We grew Mercurialis annua plants in high-density stands in high irradiance, in neutral shade, and in high red to far-red (R:FR) shade, resulting in environments of high irradiance, low R:FR; low irradiance, low R:FR; and low irradiance, high R:FR. We measured gas exchange, leaf morphology, stem elongation, and biomass traits and tested the prediction that traits within each functional group would show higher trait integration, as evidenced by high correlations among traits within environments, higher correlations of trait plasticity, and lower plasticity of trait correlations. Overall, we found evidence of only moderate integration for some groups of traits. Functionally related groups of traits, or pairs of traits, could be strongly integrated by one criterion but weakly integrated by another of the criteria. Stem elongation traits, though often observed to be strongly integrated in other taxa, showed little evidence of integration. Internode traits exhibited a novel pattern of responses to low R:FR, with increased elongation of the hypocotyl, decreased elongation of the first internode, and no change in the second internode. We propose that these responses to light are more likely to be the result of natural selection than the consequence of constraints imposed by pleiotropy.  相似文献   

18.
On exposure to ultraviolet radiation (UV), many plant species both reduce stem elongation and increase production of phenolic compounds that absorb in the UV region of the spectrum. To demonstrate that such developmental plasticity to UV is adaptive, it is necessary to show that the induced phenotype is both beneficial in inductive environments and maladaptive in non-inductive environments. We measured selection on stem elongation and phenolic content of seedlings of Impatiens capensis transplanted into ambient-UV and UV-removal treatments. We extended the range of phenotypes expressed, and thus the opportunity for selection in each UV treatment, by pretreating seedlings with either a low ratio of red:far-red wavelengths (R:FR), which induced stem elongation and reduced phenolic concentrations, or high R:FR, which had the opposite effect on these two phenotypic traits. Reduced stem length relative to biomass was advantageous for elongated plants under ambient UV, whereas increased elongation was favored in the UV-removal treatment. Selection favored an increase in the level of phenolics induced by UV in the ambient-UV treatment, but a decrease in phenolics in the absence of UV. These results are consistent with the hypotheses that reduced elongation and increased phenolic concentrations serve a UV-protective function and provide the first explicit demonstration in a wild species that plasticity of these traits to UV is adaptive. The observed cost to phenolics in the absence of UV may explain why many species plastically upregulate phenolic production when exposed to UV, rather than evolve constitutively high levels of these compounds. Finally, pretreatment with low R:FR simulating foliar shade did not exacerbate the fitness impact of UV exposure when plants had several weeks to acclimate to UV. This observation suggests that the evolution of adaptive shade avoidance responses to low R:FR in crowded stands will not be constrained by increased sensitivity to UV in elongated plants when they overtop their neighbors.  相似文献   

19.
The photocontrol of hypocotyl elongation has been studied in two transgenic lines of Arabidopsis thaliana which contain elevated levels of phytochrome B encoded by either an introduced rice- or Arabidopsis -derived cDNA driven by the 35S CaMV promoter. Inhibition of hypocotyl growth in etiolated seedlings of the phyB -transformed lines was saturated at photon fluence rates of continuous red light (R) which were markedly lower than those required for inhibition of growth in seedlings of the isogenic wild-type (WT). Inhibition of hypocotyl growth in etiolated seedlings of the phyB -transgenic lines under continuous far-red irradiation (FR), however, showed the same relationship with fluence rate as WT. Light-grown seedlings of the phyB -transgenic lines responded to end-of-day FR by an acceleration of growth, in a manner comparable with WT. This response was unaltered when the end-of-day FR was extended from a 15 min pulse to 14 h of continuous irradiation. The response of light-grown, phyB -transformed seedlings to decreasing R:FR ratio was also qualitatively similar to WT, i.e. increased elongation growth of the hypocotyl and petioles occurred under low R:FR quantum ratio. However, absolute elongation growth was markedly less in the transgenic seedlings at all R:FR ratios tested than in WT. Together, these data indicate that seedlings over-expressing phytochrome B are more responsive to R than are WT, but are unaltered in their responsiveness to FR. By contrast, seedlings overexpressing phytochrome A are more responsive than WT to both R and FR; whereas the phytochrome B-deficient mutant hy3 is unresponsive to R while retaining WT-like responsiveness to FR. These data indicate that in WT etiolated seedlings phytochrome A mediates the effects of continuous FR, and phytochrome B the effects of continuous R. The evidence thus supports the conclusion that these two molecular species of the photoreceptor have differential regulatory roles in the plant.  相似文献   

20.
Shade avoidance is a syndrome of plastic responses to light signals encountered in crowded plant communities and is a crucial component of competitive strategy in higher plants. The responses are mediated via signal perception by specific members of the phytochrome family of photoreceptors, which detect the relative proportions of red (R) and far‐red (FR) radiation within dense communities. We analysed two aspects of shade avoidance, the acceleration of flowering and the enhancement of elongation growth, displayed by more than 100 accessions of Arabidopsis thaliana (Heyn.) in response to FR‐proximity signals. Both traits showed wide variation between accessions, which was unrelated to the latitude of the location of original collection. Flowering acceleration is a major feature of shade avoidance in rosette plants such as Arabidopsis, and most accessions showed dramatic responses, but several were identified as being recalcitrant to the proximity signal. These accessions are likely to be informative in the analysis of quantitative variation in shade avoidance. Hypocotyl elongation, treated here as an indicator of elongation growth responses, also varied widely amongst accessions. The variations in flowering acceleration and elongation were not correlated, indicating that microevolution in the downstream pathways from signal perception has occurred separately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号