首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the fate of linear DNA in Escherichia coli cells, we linearized plasmid DNA at a specific site in vivo and monitored its behavior in recA mutant cells deficient in recombinational repair. Earlier, we had found that in wild-type (WT) cells linearized DNA is degraded to completion by RecBCD nuclease. We had also found that in WT cells chi sites on linear DNA inhibit RecBCD degradation by turning off its nucleolytic activities. Now we report that chi sites do not work in the absence of the RecA protein, suggesting that RecA is required in vivo to turn off the degradative activities of the RecBCD enzyme. We also report that the degradation of linearized plasmid DNA, even devoid of chi sites, is never complete in recA cells. Investigation of this linear DNA stability indicates that a fraction of recA cells are recBC phenocopies due to ongoing chromosomal DNA degradation, which titrates RecBCD nuclease. A possible role for RecBCD-promoted DNA degradation in controlling chromosomal DNA replication in E. coli is discussed.  相似文献   

2.
The mechanism of recombination of tandem repeats in the chromosome of Escherichia coli was investigated by genetic means. Tandem repeats 624 bp long were introduced into the lacZ gene of E. coli and the efficiency of deletion of one repeat was compared in different recombination mutants. No effects of the recA , recBC , recF , ruvA or ruvA recG mutations were detected. Hence, tandem repeat deletion appears to not proceed via the RecBCD or RecF homologous recombination pathways. A new mutant in which RecA-independent recombination is increased 15-fold was isolated. The mutation lies in the dnaE gene coding for the alpha subunit of polymerase III: it is a Gly to Asp change at codon 133. Another dnaE mutation, dnaE486 , was tested and also shown to stimulate RecA-independent recombination. It is proposed that tandem-repeat recombination occurs by a replication slippage mechanism. RecA-independent recombination is also enhanced in a rep mutant, in which chromosomal replication is slowed down by the absence of the Rep helicase, suggesting that replication pausing may facilitate slippage.  相似文献   

3.
Lethality of rep recB and rep recC double mutants of Escherichia coli   总被引:4,自引:1,他引:3  
A rep mutation in combination with a recB or a recC mutation renders Escherichia coli non-viable. This conclusion is based on the following lines of evidence: (i) double mutants cannot be constructed by P1 transduction; (ii) induction of the λ Gam protein, which inactivates most of the RecBCD activities, is lethal in rep mutants; (iii) rep recBts recCts mutants are not viable at high temperature. The reasons for a requirement for the RecBCD enzyme in rep strains were investigated. Initiation of chromosome replication, elongation and chromosomal segregation do not seem impaired in the rep recBts recCts mutant at the non-permissive temperature. The viability of other rep derivatives was tested. rep recA recD triple mutants are not viable, whereas rep recD and rep recA double mutants are. Inactivation of both exoV activity and recBC -dependent homologous recombination is therefore responsible for the non-viability of rep recBC strains. However, sbcA and sbcB mutations, which render recBC mutants recombination proficient, do not restore viability of rep recBC mutants, indicating that recombination via the RecF or the RecE pathways cannot functionally replace RecBCD-mediated recombination. The specific requirement for RecBCD suggests the occurrence of double-strand DNA breaks in rep strains. Additional arguments in favour of the presence of DNA lesions in rep mutants are as follows: (i) expression of SOS repair functions delays lethality of rep derivatives after inactivation of RecBCD; (ii) sensitivity of rep strains to ultraviolet light is increased by partial inactivation of RecBCD. A model for the recovery of cells from double-strand breaks in rep mutants is discussed.  相似文献   

4.
After UV irradiation, recA mutants fail to recover replication, and a dramatic and nearly complete degradation of the genomic DNA occurs. Although the RecBCD helicase/nuclease complex is known to mediate this catastrophic DNA degradation, it is not known how or where this degradation is initiated. Previous studies have speculated that RecBCD targets and initiates degradation from the nascent DNA at replication forks arrested by DNA damage. To test this question, we examined which enzymes were responsible for the degradation of genomic DNA and the nascent DNA in UV-irradiated recA cells. We show here that, although RecBCD degrades the genomic DNA after UV irradiation, it does not target the nascent DNA at arrested replication forks. Instead, we observed that the nascent DNA at arrested replication forks in recA cultures is degraded by RecJ/RecQ, similar to what occurs in wild-type cultures. These findings indicate that the genomic DNA degradation and nascent DNA degradation in UV-irradiated recA mutants are mediated separately through RecBCD and RecJ/RecQ, respectively. In addition, they demonstrate that RecBCD initiates degradation at a site(s) other than the arrested replication fork directly.  相似文献   

5.
We have developed an assay for intermolecular crossing over between circular plasmids carrying variable amounts of homology. Screens of Escherichia coli mutants demonstrated that known recombination functions can only partially account for the observed recombination. Recombination rates increased three to four orders of magnitude as homology rose from 25 to 411 bp. Loss of recA blocked most recombination; however, RecA-independent crossing over predominated at 25 bp and could be detected at all homology lengths. Products of recA-independent recombination were reciprocal in nature. This suggests that RecA-independent recombination may involve a true break-and-join mechanism, but the genetic basis for this mechanism remains unknown. RecA-dependent crossing over occurred primarily by the RecF pathway but considerable recombination occurred independent of both RecF and RecBCD. In many respects, the genetic dependence of RecA-dependent crossing over resembled that reported for single-strand gap repair. Surprisingly, ruvC mutants, in both recA(+) and recA mutant backgrounds, scored as hyperrecombinational. This may occur because RuvC preferentially resolves Holliday junction intermediates, critical to both RecA-dependent and RecA-independent mechanisms, to the noncrossover configuration. Levels of crossing over were increased by defects in DnaB helicase and by oxidative damage, showing that damaged DNA or stalled replication can initiate genetic recombination.  相似文献   

6.
RecBCD has two conflicting roles in Escherichia coli. (i) As ExoV, it is a potent double-stranded (ds)DNA exonuclease that destroys linear DNA produced by restriction of foreign DNA. (ii) As a recombinase, it promotes repair of dsDNA breaks and genetic recombination in the vicinity of chi recombination hot-spots. These paradoxical roles are accommodated by chi-dependent attenuation of RecBCD exonuclease activity and concomitant conversion of the enzyme to a recombinase. To challenge the proposal that chi converts RecBCD from a destructive exonuclease to a recombinogenic helicase, we mutated the nuclease catalytic centre of RecB and tested the resulting mutants for genetic recombination and DNA repair in vivo. We predicted that, if nuclease activity inhibits recombination and helicase activity is sufficient for recombination, the mutants would be constitutive recombinases, as has been seen in recD null mutants. Conversely, if nuclease activity is required, the mutants would be recombination deficient. Our results indicate that 5' --> 3' exonuclease activity is essential for recombination by RecBCD at chi recombination hot-spots and at dsDNA ends in recD mutants. In the absence of RecB-dependent nuclease function, recombination becomes entirely dependent on the 5' --> 3' single-stranded (ss)DNA exonuclease activity of RecJ and the helicase activity of RecBC(D).  相似文献   

7.
RecBCD enzyme has multiple activities including helicase, exonuclease and endonuclease activities. Mutations in the genes recB or recC, encoding two subunits of the enzyme, reduce the frequency of many types of recombinational events. Mutations in recD, encoding the third subunit, do not reduce recombination even though most of the activities of the RecBCD enzyme are severely reduced. In this study, the genetic dependence of different types of recombination in recD mutants has been investigated. The effects of mutations in genes in the RecBCD pathway (recA and recC) as well as the genes specific for the RecF pathway (recF, recJ, recN, recO, recQ, ruv and lexA) were tested on conjugational, transductional and plasmid recombination, and on UV survival. recD mutants were hyper-recombinogenic for all the monitored recombination events, especially those involving plasmids, and all recombination events in recD strains required recA and recC. In addition, unlike recD+ strains, chromosomal recombination events and the repair of UV damage to DNA in recD strains were dependent on one RecF pathway gene, recJ. Only a subset of the tested recombination events were affected by ruv, recN, recQ, recO and lexA mutations.  相似文献   

8.
Y. Cao  T. Kogoma 《Genetics》1995,139(4):1483-1494
The mechanism of recA polA lethality in Escherichia coli has been studied. Complementation tests have indicated that both the 5' -> 3' exonuclease and the polymerization activities of DNA polymerase I are essential for viability in the absence of RecA protein, whereas the viability and DNA replication of DNA polymerase I-defective cells depend on the recombinase activity of RecA. An alkaline sucrose gradient sedimentation analysis has indicated that RecA has only a minor role in Okazaki fragment processing. Double-strand break repair is proposed for the major role of RecA in the absence of DNA polymerase I. The lexA(Def)::Tn5 mutation has previously been shown to suppress the temperature-sensitive growth of recA200(Ts) polA25::spc mutants. The lexA(Def) mutation can alleviate impaired DNA synthesis in the recA200(Ts) polA25::spc mutant cells at the restrictive temperature. recF(+) is essential for this suppression pathway. recJ and recQ mutations have minor but significant adverse effects on the suppression. The recA200(Ts) allele in the recA200(Ts) polA25::spc lexA(Def) mutant can be replaced by δrecA, indicating that the lexA(Def)-induced suppression is RecA independent. lexA(Def) reduces the sensitivity of δrecA polA25::spc cells to UV damage by ~10(4)-fold. lexA(Def) also restores P1 transduction proficiency to the δrecA polA25::spc mutant to a level that is 7.3% of the recA(+) wild type. These results suggest that lexA(Def) activates a RecA-independent, RecF-dependent recombination repair pathway that suppresses the defect in DNA replication in recA polA double mutants.  相似文献   

9.
Plasmids that carry one of several type II restriction modification gene complexes are known to show increased stability. The underlying mechanism was proposed to be the lethal attack by restriction enzyme at chromosomal recognition sites in cells that had lost the restriction modification gene complex. In order to examine bacterial responses to this postsegregational cell killing, we analyzed the cellular processes following loss of the EcoRI restriction modification gene complex carried by a temperature-sensitive plasmid in an Escherichia coli strain that is wild type with respect to DNA repair. A shift to the nonpermissive temperature blocked plasmid replication, reduced the increase in viable cell counts and resulted in loss of cell viability. Many cells formed long filaments, some of which were multinucleated and others anucleated. In a mutant defective in RecBCD exonuclease/recombinase, these cell death symptoms were more severe and cleaved chromosomes accumulated. Growth inhibition was also more severe in recA, ruvAB, ruvC, recG, and recN mutants. The cells induced the SOS response in a RecBC-dependent manner. These observations strongly suggest that bacterial cells die as a result of chromosome cleavage after loss of a restriction modification gene complex and that the bacterial RecBCD/RecA machinery helps the cells to survive, at least to some extent, by repairing the cleaved chromosomes. These and previous results have led us to hypothesize that the RecBCD/Chi/RecA system serves to destroy restricted "nonself" DNA and repair restricted "self" DNA.  相似文献   

10.
Replication arrests due to the lack or the inhibition of replicative helicases are processed by recombination proteins. Consequently, cells deficient in the Rep helicase, in which replication pauses are frequent, require the RecBCD recombination complex for growth. rep recA mutants are viable and display no growth defect at 37 or 42 degrees C. The putative role of chaperone proteins in rep and rep recA mutants was investigated by testing the effects of dnaK mutations. dnaK756 and dnaK306 mutations, which allow growth of otherwise wild-type Escherichia coli cells at 40 degrees C, are lethal in rep recA mutants at this temperature. Furthermore, they affect the growth of rep mutants, and to a lesser extent, that of recA mutants. We conclude that both rep and recA mutants require DnaK for optimal growth, leading to low viability of the triple (rep recA dnaK) mutant. rep recA mutant cells form colonies at low efficiency when grown to exponential phase at 30 degrees C. Although the plating defect is not observed at a high temperature, it is not suppressed by overexpression of heat shock proteins at 30 degrees C. The plating defect of rep recA mutant cells is suppressed by the presence of catalase in the plates. The cryosensitivity of rep recA mutants therefore results from an increased sensitivity to oxidative damage upon propagation at low temperatures.  相似文献   

11.
12.
Helicobacter pylori colonization of the human stomach is characterized by profound disease-causing inflammation. Bacterial proteins that detoxify reactive oxygen species or recognize damaged DNA adducts promote infection, suggesting that H. pylori requires DNA damage repair for successful in vivo colonization. The molecular mechanisms of repair remain unknown. We identified homologues of the AddAB class of helicase-nuclease enzymes, related to the Escherichia coli RecBCD enzyme, which, with RecA, is required for repair of DNA breaks and homologous recombination. H. pylori mutants lacking addA or addB genes lack detectable ATP-dependent nuclease activity, and the cloned H. pylori addAB genes restore both nuclease and helicase activities to an E. coli recBCD deletion mutant. H. pylori addAB and recA mutants have a reduced capacity for stomach colonization. These mutants are sensitive to DNA damaging agents and have reduced frequencies of apparent gene conversion between homologous genes encoding outer membrane proteins. Our results reveal requirements for double-strand break repair and recombination during both acute and chronic phases of H. pylori stomach infection.  相似文献   

13.
The RecA protein in its functional state is in complex with single-stranded DNA, i.e., in the form of a RecA filament. In SOS induction, the RecA filament functions as a coprotease, enabling the autodigestion of the LexA repressor. The RecA filament can be formed by different mechanisms, but all of them require three enzymatic activities essential for the processing of DNA double-stranded ends. These are helicase, 5′–3′ exonuclease, and RecA loading onto single-stranded DNA (ssDNA). In some mutants, the SOS response can be expressed constitutively during the process of normal DNA metabolism. The RecA730 mutant protein is able to form the RecA filament without the help of RecBCD and RecFOR mediators since it better competes with the single-strand binding (SSB) protein for ssDNA. As a consequence, the recA730 mutants show high constitutive SOS expression. In the study described in this paper, we studied the genetic requirements for constitutive SOS expression in recA730 mutants. Using a β-galactosidase assay, we showed that the constitutive SOS response in recA730 mutants exhibits different requirements in different backgrounds. In a wild-type background, the constitutive SOS response is partially dependent on RecBCD function. In a recB1080 background (the recB1080 mutation retains only helicase), constitutive SOS expression is partially dependent on RecBCD helicase function and is strongly dependent on RecJ nuclease. Finally, in a recB-null background, the constitutive SOS expression of the recA730 mutant is dependent on the RecJ nuclease. Our results emphasize the importance of the 5′–3′ exonuclease for high constitutive SOS expression in recA730 mutants and show that RecBCD function can further enhance the excellent intrinsic abilities of the RecA730 protein in vivo.  相似文献   

14.
Inhibiting the progress of replication forks in E. coli makes them susceptible to breakage. Broken replication forks are evidently reassembled by the RecBCD recombinational repair pathway. These findings explain a particular pattern of DNA degradation during inhibition of chromosomal replication, the role of recombination in the viability of mutants with displaced replication origin, and hyper-recombination observed in the Terminus of the E. coli chromosome in rnh mutants. Breakage and repair of inhibited replication forks could be the reason for the recombination-dependence of inducible stable DNA replication. A mechanism by which RecABCD-dependent recombination between very short inverted repeats may help E. coli to invert an operon, transcribed in the direction opposite to that of DNA replication, is discussed.  相似文献   

15.
The survival of Escherichia coli following treatment with a low dose (1-3 mM) of hydrogen peroxide (H(2)O(2)) that causes extensive mode-one killing of DNA repair mutants is stimulated by the induction of the SOS regulon. Results for various mutants indicate that induction of recA and RecA protein-mediated recombination are critical factors contributing to the repair of H(2)O(2)-induced oxidative DNA damage. However, because DNA damage activates RecA protein's coprotease activity essential to cleavage of LexA repressor protein and derepression of all SOS genes, it is unclear to what extent induction of RecA protein stimulates this repair. To make this determination, we examined mode-one killing of DeltarecA cells carrying plasmid-borne recA (P(tac)-recA(+)) and constitutively expressing a fully induced level of wild-type RecA protein when SOS genes other than recA are non-inducible in a lexA3 (Ind(-)) genetic background or inducible in a lexA(+) background. At a H(2)O(2) dose resulting in maximal killing, DeltarecA lexA3 (Ind(-)) cells with P(tac)-recA(+) show 40-fold greater survival than lexA3 (Ind(-)) cells with chromosomal recA having a low, non-induced level of RecA protein. However, they still show 10- to 15-fold lower survival than wild-type cells and DeltarecA lexA(+) cells with P(tac)-recA(+). To determine if the inducible RuvA protein stimulates survival, we examined a ruvA60 mutant that is defective for the repair of UV-induced DNA damage. This mutant also shows 10- to 15-fold lower survival than wild-type cells. We conclude that while induction of RecA protein has a pronounced stimulatory effect on the recombinational repair of H(2)O(2)-induced oxidative DNA damage, the induction of other SOS proteins such as RuvA is essential for wild-type repair.  相似文献   

16.
Restart of arrested replication forks is an important process and PriA, the main Escherichia coli replication restart protein, is essential for viability under any condition that increases the frequency of fork arrest. In priA mutant, replication forks are arrested by spontaneously occurring roadblocks and blocked replication forks persist as a result of the defect in replication restart. In the present work, we analysed how recombination proteins contribute to the viability of the priA mutant. RecFOR-mediated homologous recombination occurs in a large fraction of priA mutant cells, indicating a frequent formation of DNA single strand gaps and their recombinational repair. This high level of homologous recombination renders the proteins that resolve Holliday junctions recombination intermediates essential for viability. When homologous recombination is blocked at early steps by recFOR or recA inactivation, exonuclease V-mediated DNA degradation is required for full viability of priA mutants, indicating that unrepaired gaps are broken and that DNA degradation of the broken DNA allows the formation of viable cells. Models for the formation of single strand DNA gaps consequently to a replication restart defect and for gap processing are proposed.  相似文献   

17.
According to Kogoma's model of DNA recombination by replication, the PriA protein is involved in the RecBCD pathway of double-strand break (DSB) repair, which is associated with extensive DNA degradation, at the stage of primosome assembly in D-loops (intermediates of strand exchange at the ends of DSB) for the subsequent switch to DSB-induced DNA resynthesis. Comparable data on possible involvement of the PriA protein in the repair of gamma-ray-induced lethal lesions in cells of the wild-type strain of Escherichia coli (strain AB1157) and in two radiation-resistant mutants Gamr445 and Gamr444 were obtained. In all the three strains examined, the null priA2::kan mutation in the structural priA gene was shown to markedly enhance the radiation sensitivity, causing a two- to threefold increase in the slopes of linear dose-survival curves. In the AB1157 strain, the inactivation of PriA is manifested most clearly in the range of low doses (up to 0.15 kGy) when the priA2::kan mutation had only a slight effect on the radiation resistance of Gamr mutants. It can be assumed that, in these mutants with a decreased level of postradiation DNA degradation, the PriA-dependent RecBCD pathway of DSB repair associated with extensive DNA resynthesis is not essential for the repair of lethal lesions at low doses. However, this pathway becomes crucial at higher doses (> 0.5 kGy) even for radiation-resistant strains, especially for the most resistant Gamr444 mutant.  相似文献   

18.
Amundsen SK  Smith GR 《Genetics》2007,175(1):41-54
The major pathway of genetic recombination and DNA break repair in Escherichia coli requires RecBCD enzyme, a complex nuclease and DNA helicase regulated by Chi sites (5'-GCTGGTGG-3'). During its unwinding of DNA containing Chi, purified RecBCD enzyme has two alternative nucleolytic reactions, depending on the reaction conditions: simple nicking of the Chi-containing strand at Chi or switching of nucleolytic degradation from the Chi-containing strand to its complement at Chi. We describe a set of recC mutants with a novel intracellular phenotype: retention of Chi hotspot activity in genetic crosses but loss of detectable nucleolytic degradation as judged by the growth of mutant T4 and lambda phages and by assay of cell-free extracts. We conclude that RecBCD enzyme's nucleolytic degradation of DNA is not necessary for intracellular Chi hotspot activity and that nicking of DNA by RecBCD enzyme at Chi is sufficient. We discuss the bearing of these results on current models of RecBCD pathway recombination.  相似文献   

19.
The only DNA helicase essential for Escherichia coli viability is DnaB, the chromosome replication fork helicase. In contrast, in Bacillus subtilis , in addition to the DnaB counterpart called DnaC, we have found a second essential DNA helicase, called PcrA. It is 40% identical to the Rep and UvrD DNA helicases of E. coli and 61% identical to the PcrA helicase of Staphylococcus aureus . This gene is located at 55° on the chromosome and belongs to a putative operon together with a ligase gene ( lig ) and two unknown genes named pcrB and yerH . As PcrA was essential for cell viability, conditional mutants were constructed. In such mutants, chromosomal DNA synthesis was slightly decreased upon PcrA depletion, and rolling-circle replication of the plasmid pT181 was inhibited. Analysis of the replication intermediates showed that leading-strand synthesis of pT181 was prevented upon PcrA depletion. To compare PcrA with Rep and UvrD directly, the protein was produced in rep and uvrD mutants of E. coli . PcrA suppressed the UV sensitivity defect of a uvrD mutant but not its mutator phenotype. Furthermore, it conferred a Rep phenotype on E. coli . Altogether, these results show that PcrA is an helicase used for plasmid rolling-circle replication and suggest that it is also involved in UV repair.  相似文献   

20.
The two main recombination pathways in Escherichia coli (RecBCD and RecF) have different recombination machineries that act independently in the initiation of recombination. Three essential enzymatic activities are required for early recombinational processing of double-stranded DNA ends and breaks: a helicase, a 5'-->3' exonuclease, and loading of RecA protein onto single-stranded DNA tails. The RecBCD enzyme performs all of these activities, whereas the recombination machinery of the RecF pathway consists of RecQ (helicase), RecJ (5'-->3' exonuclease), and RecFOR (RecA-single-stranded DNA filament formation). The recombination pathway operating in recB (nuclease-deficient) mutants is a hybrid because it includes elements of both the RecBCD and RecF recombination machineries. In this study, genetic analysis of recombination in a recB (nuclease-deficient) recD double mutant was performed. We show that conjugational recombination and DNA repair after UV and gamma irradiation in this mutant are highly dependent on recJ, partially dependent on recFOR, and independent of recQ. These results suggest that the recombination pathway operating in a nuclease-deficient recB recD double mutant is also a hybrid. We propose that the helicase and RecA loading activities belong to the RecBCD recombination machinery, while the RecJ-mediated 5'-->3' exonuclease is an element of the RecF recombination machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号