首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amino acid composition of the EDTA-induced phloem exudatereaching the fruit and the seed, and of the solutes releasedby the seed coat during fruit development were determined inglasshouse-grown pea (Pisum sativum L. cv. Finale) suppliedeither with nitrate-free nutrients (nodulated plants) or withcomplete medium (non-nodulated plants). The EDTA-promoted exudationtechnique was used supposedly to collect phloem sap and theempty seed technique supposedly to collect the solutes secretedby the seed coat to the embryo sac cavity. In young seeds embryosac liquid was sampled directly from the embryo sac. The maincarbohydrate transported and secreted was sucrose. The mainamino acids reaching the fruit were asparagine, glutamine, andhomoserine. Their proportions were steady during a day-nightcycle and throughout fruit development. Amino acid compositionchanges occurred first in the pathway from fruit stalk to seedfunicle, due to the formation of threonine (probably from homoserine)and in the seed coat due to production of glutamine, alanineand valine which, together with threonine were the main secretedamino acids. The temporary nitrogen reserves of the pod walland seed coat were remobilized as asparagine during senescence.Phloem exudate of nodulated plants showed a higher (about twice)proportion of asparagine but lower proportions of homoserineand glutamine than in EDTA-induced phloem exudate of nitrate-fedplants. The two types of nitrogen nutrition also produced somechanges in relative proportions of threonine and homoserinesecreted by the seed coat. Key words: Pisum sativum, phloem, amino acids, pod wall, seed coat  相似文献   

2.
The synthesis, transport and assimilation of the ureides, allantoin and allantoic acid, in higher plants is reviewed. Evidence indicates that in nodulated legumes ureides are synthesized from products of N2-fixation via purine synthesis and degradation. Their synthesis in other plants also appears to be via purine degradation but is dependent on the inorganic nitrogen source fed to the plant; greatest ureide production is associated with ammonium assimilation. The use of ureides rather than amides for N-transport from the root to the shoot via the xylem stream results in an improved carbon economy of the plant. Good evidence for the transport of ureides in the phloem is lacking for most species examined although it is assumed to be important, particularly in fruit and seed development. Ureides are stored and assimilated mainly in the shoot. The precise pathways, localization and regulation of ureide assimilation are poorly understood and require further investigation. Similarities exist between the properties of the enzymes involved in ureide assimilation in higher plants and in micro-organisms. However, the evidence that light appears to be involved in ureide assimilation in green tissues suggests that different regulatory mechanisms may exist in plants compared with micro-organisms. The economically important legume crops such as soybeans, cowpeas and Phaseolus sp. are all ureide producers. To aid our understanding of the productivity of these plants knowledge of how ureide-N is converted into seed protein is essential.  相似文献   

3.
Liu YH  Cao JS  Li GJ  Wu XH  Wang BG  Xu P  Hu TT  Lu ZF  Patrick JW  Ruan YL 《Annals of botany》2012,109(7):1277-1284

Background and Aims

Coordination of sugar transport and metabolism between developing seeds and their enclosing fruit tissues is little understood. In this study the physiological mechanism is examined using two genotypes of asparagus bean (Vigna unguiculata ssp. sesquipedialis) differing in pod wall and seed growth rates. Pod growth dominates over seed growth in genotype ‘Zhijiang 121’ but not in ‘Zhijiang 282’ in which a ‘bulging pod’ phenotype is apparent from 8 d post-anthesis (dpa) onward.

Methods

Seed and pod wall growth rates and degree of pod-bulging were measured in the two genotypes together with assays of activities of sucrose-degrading enzymes and sugar content in pod wall and seed and evaluation of cellular pathways of phloem unloading in seed coat using a symplasmic fluorescent dye, 5(6)-carboxyfluorescein (CF).

Key Results

Activities of cell wall, cytoplasmic and vacuolar invertases (CWIN, CIN and VIN) were significantly smaller in pod walls of ‘282’ than in ‘121’ at 10 dpa onwards. Low INV activities were associated with weak pod wall growth of ‘282’. In seed coats, CF was confined within the vasculature in ‘282’ but moved beyond the vasculature in ‘121’, indicating apoplasmic and symplasmic phloem unloading, respectively. Higher CWIN activity in ‘282’ seed coats at 6–8 dpa correlated with high hexose concentration in embryos and enhanced early seed growth. However, CWIN activity in ‘282’ decreased significantly compared with ‘121’ from 10 dpa onwards, coinciding with earlier commencement of nuclei endoreduplication in their embryos.

Conclusions

The study shows genotypic differences between ‘bulging pod’ and ‘non-bulging’ phenotypes of asparagus bean in sucrose metabolism in relation to the pathway of phloem unloading in developing seed coats, and to pod and seed growth. Low INV activity in pod wall corresponds to its shortened and weak growth period; by contrast, the apoplasmic path in the seed coat is associated with high CWIN activity and strong early seed growth.  相似文献   

4.
Net balances of amino acids were constructed for stages of development of a leaf of white lupin (Lupinus albus L.) using data on the N economy of the leaf, its exchanges of amino acids through xylem and phloem, and net changes in its soluble and protein-bound amino acids. Asparagine, aspartate, and γ-aminobutyrate were delivered to the leaf in excess of amounts consumed in growth and/or phloem export. Glutamine was supplied in excess until full leaf expansion (20 days) but was later synthesized in large amounts in association with mobilization of N from the leaf. Net requirements for glutamate, threonine, serine, proline, glycine, alanine, valine, isoleucine, leucine, tyrosine, phenylalanine, histidine, lysine, and arginine were met mainly or entirely by synthesis within the leaf. Amides furnished the bulk of the N for amino acid synthesis, asparagine providing from 24 to 68%. In vitro activity of asparaginase (EC 3.5.1.1) exceeded that of asparagine:pyruvate aminotransferase (EC 2.6.1.14) during early leaf expansion, when in vivo estimates of asparagine metabolism were highest. Thereafter, aminotransferase activity greatly exceeded that of asparaginase. Rates of activity of one or both asparagine-utilizing enzymes exceeded estimated rates of asparagine catabolism throughout leaf development. In vitro activities of glutamine synthetase (EC 6.3.1.2) and glutamate synthase (EC 1.4.7.1) were consistently much higher than that of glutamate dehydrogenase (EC 1.4.1.3), and activities of the former two enzymes more than accounted for estimated rates of ammonia release in photorespiration and deamidation of asparagine.  相似文献   

5.
Layzell DB  Larue TA 《Plant physiology》1982,70(5):1290-1298
Xylem sap and phloem exudates from detached leaves and fruit tips were collected and analyzed during early pod-fill in nodulated soybeans (Glycine max (L.) Merr. cv Wilkin) grown without (−N) and with (+N) NH4NO3. Ureides were the predominant from (91%) of N transported in the xylem of −N plants, while amides (45%) and nitrate (23%) accounted for most of the N in the xylem of +N plants. Amino acids (44%) and ureides (36%) were the major N forms exported in phloem from leaves in −N plants, but amides (63%) were most important in +N plants. Based on the composition of fruit tip phloem, ureides (55% and 33%) and amides (26% and 47%) accounted for the majority of N imported by fruits of −N and +N plants, respectively.

C:N weight ratios were lowest in xylem exudate (1.37 and 1.32), highest in petiole phloem (24.5 and 26.0), and intermediate in fruit tip exudate (12.6 and 12.1) for the −N and +N treatments, respectively. The ratios were combined with data on fruit growth and respiration to construct a model of C and N transport to developing fruits. The model indicates xylem to phloem transfer provides 35% to 52% of fruit N. Results suggest the phloem entering fruits oversupplies their N requirement so that 13% of the N imported is exported from fruit in the xylem.

  相似文献   

6.
The apoplast of developing soybean (Glycine max cv Hodgson) embryos and seed coats was analyzed for sucrose, amino acids, ureides, nitrate, and ammonia. The apoplast concentration of amino acids and nitrate peaked during the most rapid stage of seed filling and declined sharply as the seed attained its maximum dry weight. Amino acids and nitrate accounted for 80 to 95% of the total nitrogen, with allantoin and allantoic acid either absent or present in only very small amounts. Aspartate, asparagine, glutamate, glutamine, serine, alanine, and γ-aminobutyric acid were the major amino acids, accounting for over 70% of the total amino acids present. There was a nearly quantitative conversion of glutamine to glutamate between the seed coat and embryo, most likely resulting from the activity of glutamate synthase found to be present in the seed coat tissue. This processing of glutamine suggests a partly symplastic route for solutes moving from the site of phloem unloading in the seed coat to the embryo.  相似文献   

7.
Sink to source translocation in soybean   总被引:2,自引:1,他引:1       下载免费PDF全文
The possibility that phloem loading may occur in the reproductive sink tissues of soybeans (Glycine max Merr. cv Chippewa 64) was examined. When [14C]sucrose was applied to seed coat tissues from which the developing embryo had been surgically removed, 0.1% to 0.5% of the radioactivity was translocated to the vegetative plant parts. This sink to source translocation was largely unaffected by destroying a band of phloem with steam treatment on the stem above and below the labeled pod. The same steam treatment, however, completely abolished translocation of [14C]sucrose between mature leaves and developing fruits. These results indicate that the movement of nutrients from developing seed coats to the vegetative plant parts occur in the xylem and that phloem loading does not occur in this sink tissue.  相似文献   

8.
Immature fruits of soybean ( Glycine max L. Merr. cv. Santa Rosa) were found to contain high ureide/amino acid ratios for plants dependent on atmospheric nitrogen (nodulated), but low ratios for plants cultivated on NO3 (non-nodulated). The pod tissue was responsible for almost all this difference, which reflects the N metabolism of these plants (nodulated:urcide-based; NO3 dependent: asparagine based). The capacity of fruit tissues to utilize ureides and asparagine via allantoinase (EC 3.5.2.5) and asparaginase (EC 3.5.1.1) was investigated during fruit development. Both enzymes were present in crude desalted extracts of all parts of the fruit analysed (pod, cotyledon and seed coat). Asparaginase was detected in pod tissue only at early stages and with very low activities, whereas high activities of allantoinase (up to 20 [imol pod−1 h−1) were present after this organ reached full expansion. The cotyledons contained most of the allantoinase and asparaginase activities of the seed, the highest activities being recorded during the period of rapid protein accumulation. There was little difference in the activity patterns for nodulated and NO3-grown plants, despite the large difference in nitrogen nutrition of the fruits.  相似文献   

9.
The significance of the osmotic potential of the seed apoplast sap as a regulator of assimilate transfer to and within coats of developing seed of Vicia faba (cv. Coles Prolific) was assessed using attached empty seed coats and intact developing seed. Following surgical removal of the embryos, through windows cut in the pod walls and underlying seed coats, the resulting attached “empty” seed coats were filled with solutions of known osmotic potentials (–0. 02 versus –0. 75 MPa). Sucrose efflux from the coats was elevated at the higher osmotic potential (high osmotic concentration) for the first 190 min of exchange. Thereafter, this efflux was depressed relative to efflux from coats exposed to the low osmotic potential (high osmotic concentration) solution. This subsequent reversal in efflux was attributable to an enhanced diminution of the coat sucrose pools at the high external osmotic potential. Indeed, when expressed as a proportion of the current sucrose pool size, relative efflux remained elevated for coats exposed to the high osmotic potential solution. Measurement of potassium and sucrose fluxes to and from their respective pools in the coat tissues demonstrated that the principal, fluxes, sensitive to variative in the external osmotic potential, were phloem import into and efflux from the “empty” coats. Phloem import, consistent with a pressure-driven phloem transport mechanism, responded inversely with changes in the external osmotic potential. In contrast, sucrose and potassium efflux from the coats exhibited a positive dependence on the osmotic potential. Growth rates of whole seed were approximately doubled by enclosing selected pods in water jackets held at temperatures of 25°C. compared to 15°C. The osmotic potential of sap collected from the seed apoplast remained constant and independent of the temperature-induced changes in seed growth rates and hence phloem import. Based on these findings, it is proposed that control of phloem import by changes in the external osmotic potential observed with “empty” seed coats has no significance as a regulator of assimilate import by intact seed. Rather, maintenance of the seed apoplast osmotic potential, independent of seed growth rate, suggests that the observed osmotic regulation of efflux from the coats may play a key role in integrating assimilate demand by the embryo with phloem import.  相似文献   

10.
Phloem import and unloading in perfused bean (Phaseolus vulgaris L.) seed coats were investigated using steady-state labeling. Though photosynthate import and unloading were significantly reduced by perfusion, measurements of photosynthate fluxes in perfused seed coats proved useful for the study of unloading mechanisms in vivo. Phloem import was stimulated by lowered seed coat cell turgor, as demonstrated by an increase in tracer and sucrose import to seed coats perfused with high concentrations of an osmoticum. The partitioning of photosynthates between retention in the seed coat and release to the perfusion solution also was turgor sensitive; increases in seed coat cell turgor stimulated photosynthate release to the apoplast at the expense of photosynthate retention within the seed coat. There was no evidence of a turgor-sensitive sucrose uptake mechanism in perfused seed coats. Thus, the turgor sensitivity of photosynthate partitioning within perfused seed coats was consistent with a turgor-sensitive efflux control mechanism. Measurements of tracer equilibration and sugar partitioning in perfused seed coats provided strong evidence for symplastic phloem unloading in seed coats.  相似文献   

11.
  • The seed coat composition of white (JS 335) and black (Bhatt) soybean (Glycine max (L.) Merr) having different water permeability was studied.
  • Phenols, tannins and proteins were measured, as well as trace elements and metabolites in the seed coats.
  • The seed coat of Bhatt was impermeable and imposed dormancy, while that of JS 335 was permeable and seeds exhibited imbibitional injury. Bhatt seed coats contained comparatively higher concentrations of phenols, tannins, proteins, Fe and Cu than those of JS 335. Metabolites of seed coats of both genotypes contained 164 compounds, among which only 14 were common to both cultivars, while the remaining 79 and 71 compounds were unique to JS 331 and Bhatt, respectively.
  • Phenols are the main compounds responsible for seed coat impermeability and accumulate in palisade cells of Bhatt, providing impermeability and strength to the seed coat. JS 335 had more cracked seed coats, mainly due to their lower tannin content. Alkanes, esters, carboxylic acids and alcohols were common to both genotypes, while cyclic thiocarbamate (1.07%), monoterpene alcohols (1.07%), nitric esters (1.07%), phenoxazine (1.07%) and sulphoxide (1.07%) compounds were unique to the JS 335 seed coat, while aldehydes (2.35%), amides (1.17%), azoles (1.17%) and sugar moieties (1.17%) were unique to Bhatt seed coats. This study provides a platform for isolation and understanding of each identified compound for its function in seed coat permeability.
  相似文献   

12.
Photosynthate unloading in Phaseolus vulgaris L. seed coatswas studied by treating perfused seed coats with differing concentrationsof an osmoticum and ethylenediaminetetraacetate (EDTA). Largechanges in osmoticum concentration typically produced rapidchanges in efflux of unlabelled sugar and steady-state-labelled14C-photosynthate. Osmoticum-induced changes in photosynthateefflux were caused by phloem import stimulation at low cellturgor and net efflux stimulation by high cell turgor. Eventhough rapid changes in sugar and tracer efflux were often inducedby osmoticum treatments, the specific activity of sugar releasedfrom seed coats was not greatly affected by these treatmentsand was similar to the specific activity of sugar remainingin the seed coat after perfusion. Thus, tracer was transportedfrom the phloem throughout the seed coat sugar pool before itwas released to the apoplast. This result is most consistentwith symplastic phloem unloading throughout perfused seed coats,because apoplastic transport between cells within the seed coatwas blocked by perfusion. Photosynthate efflux was stimulatedby simultaneous treatment of seed coats with EDTA and differentconcentrations of an osmoticum; loss of photosynthate from seedcoats did not appear to be tissue-specific. Key words: Phaseolus vulgaris, seed coat, photosynthate unloading, turgor, EDTA  相似文献   

13.
A technique has been developed which permits mechanistic studies of phloem unloading in developing seeds of soybean (Glycine max cv Clark) and other legumes. An opening is cut in the pod wall and the embryo surgically removed from the seedcoat without diminishing the capacity of that tissue for assimilate import, phloem unloading, or efflux. The sites of phloem unloading were accessible via the seedcoat apoplast and were challenged with inhibitors, solutes, buffers, etc., to characterize the unloading process.

Unloading is stimulated by divalent metal chelators and diethylstilbestrol, and inhibited by metabolic uncouplers and sulfhydryl group modifiers. Solutes released from the seed coat had a carbon/nitrogen ratio of 31 milligrams carbon per milligram nitrogen; sucrose represented 90% of the carbon present and various nitrogenous solutes contributed the remaining 10%. Unloading could be maintained for up 8 hours at rates of 0.5 to 1.0 micromoles per hour, providing a valid, convenient in vivo technique for studies of phloem unloading and seed growth mechanisms.

  相似文献   

14.
Mobilization of Minerals to Developing Seeds of Legumes   总被引:4,自引:0,他引:4  
HOCKING  P. J.; PATE  J. S. 《Annals of botany》1977,41(6):1259-1278
The mineral nutrition of fruiting plants of Pisum sativum L.,Lupinus albus L. and Lupinus angustifolius L. is examined insand cultures supplying adequate and balanced amounts of essentialnutrients. Changes in content of specific minerals in leaves,pods, seed coat, and embryo are described. P, N and Zn tendto increase precociously in an organ relative to dry matteraccumulation, other elements more or less parallel with (K,Mn, Cu, Mg and Fe) or significantly behind (Ca and Na) dry weightincrease. Some 60–90 per cent of the N, P and K is lostfrom the leaf, pod and seed coat during senescence, versus 20–60per cent of the Mg, Zn, Mn, Fe and Cu and less than 20 per centof the Na and Ca. Mobilization returns from pods are estimatedto provide 4–39 per cent of the seeds' accumulations ofspecific minerals, compared with 4–27 per cent for testatransfer to the embryo. Endosperm minerals are of only minorsignificance in embryo nutrition. Comparisons of the mineral balance of plant parts of Lupinusspp. with that of stem xylem sap and fruit tip phloem sap supportthe view that leaves and pod are principal recipients of xylem-borneminerals and that export from these organs via phloem is themajor source of minerals to the seeds. Endosperm and embryodiffer substantially in mineral compostition from phloem sap,suggesting that selective uptake occurs from the translocationstream during seed development. Considerable differences are observed between species in mineralcomposition of plant organs and in the effectiveness of transferof specific minerals to the seeds Differences between speciesrelate principally to Ca, Na and certain trace elements.  相似文献   

15.
Samples of stem exudate and plant tissue collected from field-grown soybean (Glycine max [L.] Merr.) plants were analyzed for allantoin and allantoic acid. Nitrogen in nitrate plus amino acids exceeded ureide N concentration in stem exudate prior to flowering. During all of reproductive development (from about 40 days after planting until maturity), ureide N concentration was two to six times greater than amino acid plus nitrate N concentration. Allantoin and allantoic acid, not asparagine, are the principal forms of nitrogen transported from nodulated roots to shoots of the soybean plant. During pod and seed development ureide N comprised as high as 2.3, 37.7, and 15.8% of total N in leaf blades, stems + petioles, and fruits, respectively. The concentration of ureide in stems and fruits declined to nearly zero at maturity.  相似文献   

16.
Radioactive photosynthetic assimilates, translocated to a soybean (Glycine max [L.] Merr. `Fiskeby V') pod can be measured directly by excising the stylar tip of the pod under 20 mm ethylenediaminetetraacetate solution (pH 7.0) and allowing the material to leak into the solution. Pods at the source node received approximately 50% of the 14C exported from the source leaf to the pod and leaked approximately 1 to 3% of this into the solution. More than 90% of the 14C that leaked from the pods was found in the neutral fraction and, of this, about 93% was in sucrose. Fifteen amino acids were identified in the leakage including: alanine, arginine, asparagine, γ-aminobutyric acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, phenylalanine, serine, threonine, tyrosine, and valine. The majority of the 14C in the basic fraction was found in serine (30%) and asparagine (23%). The inorganic ions K, Ca, P, Mg, Zn, and Fe were found in the leakage component. Nitrate was not detectable in the collected leakage solution. The absence of NO3 and the large proportion of the label in sucrose suggest a possible phloem origin for most of the material. The technique provides an uncomplicated, reproducible means of analyzing the material translocated into and through the soybean pod, as well as following the time course of label arrival at the pod.  相似文献   

17.
Collections of xylem exudate of root stumps or detached nodules, and of phloem bleeding sap from stems, petioles, and fruits were made from variously aged plants of Lupinus albus L. relying on nodules for their N supply. Sucrose was the major organic solute of phloem, asparagine, glutamine, serine, aspartic acid, valine, lysine, isoleucine, and leucine, the principal N solutes of both xylem and phloem. Xylem sap exhibited higher relative proportions of asparagine, glutamine and aspartic acid than phloem sap, but lower proportions of other amino acids. Phloem sap of petioles was less concentrated in asparagine and glutamine but richer in sucrose than was phloem sap of stem and fruit, suggesting that sucrose was unloaded from phloem and amides added to phloem as translocate passed through stems to sinks of the plant. Evidence was obtained of loading of histidine, lysine, threonine, serine, leucine and valine onto phloem of stems but the amounts involved were small compared with amides. Analyses of petiole phloem sap from different age groups of leaves indicated ontogenetic changes and effects of position on a shoot on relative rates of export of sucrose and N solutes. Diurnal fluctuations were demonstrated in relative rates of loading of sucrose and N solutes onto phloem of leaves. Daily variations in the ability of stem tissue to load N onto phloem streams were of lesser amplitude than, or out of phase with fluctuations in translocation of N from leaves. Data were related to recent information on C and N transport in the species.  相似文献   

18.
Tomato (Solanum lycopersium), an important fruit crop worldwide, requires efficient sugar allocation for fruit development. However, molecular mechanisms for sugar import to fruits remain poorly understood. Expression of sugars will eventually be exported transporters (SWEETs) proteins is closely linked to high fructose/glucose ratios in tomato fruits and may be involved in sugar allocation. Here, we discovered that SlSWEET15 is highly expressed in developing fruits compared to vegetative organs. In situ hybridization and β-glucuronidase fusion analyses revealed SlSWEET15 proteins accumulate in vascular tissues and seed coats, major sites of sucrose unloading in fruits. Localizing SlSWEET15-green fluorescent protein to the plasma membrane supported its putative role in apoplasmic sucrose unloading. The sucrose transport activity of SlSWEET15 was confirmed by complementary growth assays in a yeast (Saccharomyces cerevisiae) mutant. Elimination of SlSWEET15 function by clustered regularly interspaced short palindromic repeats (CRISPRs)/CRISPR-associated protein gene editing significantly decreased average sizes and weights of fruits, with severe defects in seed filling and embryo development. Altogether, our studies suggest a role of SlSWEET15 in mediating sucrose efflux from the releasing phloem cells to the fruit apoplasm and subsequent import into storage parenchyma cells during fruit development. Furthermore, SlSWEET15-mediated sucrose efflux is likely required for sucrose unloading from the seed coat to the developing embryo.

SlSWEET15, a specific sucrose uniporter in tomato, mediates apoplasmic sucrose unloading from phloem cells and seed coat to support fruit expansion and seed filling.  相似文献   

19.
The in vivo significance of turgor-dependent unloading was evaluated by examining assimilate transport to and within intact developing seeds of Phaseolus vulgaris (cv. Redland Pioneer) and Vicia faba (cv. Coles Prolific). The osmotic potentials of the seed apoplast were low. As a result, the osmotic gradients to the seed coat symplast were relatively small (i.e. 0.1 to 0.3 MPa). Sap concentrations of sucrose and potassium in the seed apoplast and coat symplast accounted for some 45 to 60% of the osmotic potentials of these compartments. Estimated turnover times of potassium and sucrose in the seed apoplast of < 1 h were some 5 to 13 times faster than the respective turnover times in the coat symplast pools. The small osmotic gradient between the seed apoplast and coat symplast combined with the relatively rapid turnover of solutes in the apoplast pool, confers the potential for a small change in assimilate uptake by the cotyledons to be rapidly translated into an amplified shift in the cell turgor of the seed coat. Observed adjustments in the osmotic potentials of solutions infused between the coat and cotyledons of intact seed were consistent with the in vivo operation of turgor-dependent unloading of solutes from the coat. Homeostatic regulation of turgor-dependent unloading was indicated by the maintenance of apoplast osmotic potentials of intact seeds when assimilate balance was manipulated by partial defoliation or elevating pod temperature. In contrast, osmotic potentials of the coat symplast adjusted upward to new steady values over a 2 to 4 h period. The resultant downward shift in coat cell turgor could serve to integrate phloem import into the seed coat with the new rates of efflux to the seed apoplast. Circumstantial evidence for this linkage was suggested by the approximate coincidence of the turgor changes with those in stem levels of 32P used to monitor phloem transport. The results obtained provide qualified support for the in vivo operation of a turgor homeostat mechanism. It is proposed that the homeostat functions to integrate assimilate demand by the cotyledons with efflux from and phloem import into the coats of developing legume seed.  相似文献   

20.
Nodulated winged bean [Psophocarpus tetragonolobus (L.) DC., cv. UPS 122] were grown under constant environmental conditions and supplied with mineral nutrient solution in which nitrogen was absent or was present as nitrate (12 mg N week-1 plant-1). Nitrate treatment dramatically promoted plant growth, increased fruit weight 1.6 fold, was necessary for tuberisation and enhanced nodulation. The in vitro accumulation of 14C into asparagine and aspartate components of excised nodules supplied with exogenous 14CO2 and [14C]-D-glucose was greater for nitrate-treated plants, whilst accumulation into ureides was reduced by nitrate treatment. Levels of amino acids in xylem sap were greater for plants supplied with a complete nutrient solution, than those grown without applied nitrate, particularly for asparagine, glutamine and proline. Xylem ureide levels were greater for plants grown in the absence of supplementary nitrate. Nitrogen accumulated in leaf, stem and petiole, and root nodule tissues for utilisation during fruit development; peak nitrogen levels and time of anthesis were retarded for plants grown without applied nitrate. The shoot ureide content increased during fruiting, coincident with decreases in the total nitrogen content, indicating that ureide pools are not utilised during the early reproductive phase. However ureide reserves, particularly allantoin, were utilised during the later stages of pod fill. Enzyme activity which metabolised asparagine was found throughout the plant and was identified as K+-dependent asparaginase (EC 3.5.1.1) and an aminotransferase. Apart from temporal differences in developmental profiles of enzyme activity, the activity of these enzymes and of allantoinase (EC 3.5.2.5) in developing tissues were similar for both treatments. The main differences were greater asparaginase and asparagine:pyruvate aminotransferase activities in root tissues and fruit of nitrate-supplied plants; allantoinase activity in the primary roots of plants grown without nitrate decreased during development, whilst activity in developing tubers (nitrate-supplied plants) increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号