首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The subcellular distribution of rat liver porin was investigated using the immunoblotting technique and monospecific antisera against the protein isolated from the outer membrane of rat liver mitochondria. Subfractionation of mitochondria into inner membranes, outer membranes and matrix fractions revealed the presence of porin only in the outer membranes. Porin was also not detected in highly purified subcellular fractions, including plasma membranes, nuclear membranes, Golgi I and Golgi II, microsomes and lysosomes. Thus, liver porin is located exclusively in the outer mitochondrial membrane.  相似文献   

2.
Two different putative precursor polypeptides of rat liver fumarase were synthesized when RNA prepared from rat liver were translated in vitro using the rabbit reticulocyte lysate system. One of these putative precursor polypeptides (P1) was synthesized as a larger molecular mass than the mature subunit of fumarase (45,000 daltons) by about 5,000 daltons and the other (P2) had the same molecular mass as the mature enzyme. When the 35S-labeled cell-free translation products were incubated with rat liver mitochondria at 30 degrees C, P1 and the 35S-labeled mature size fumarase were associated with the mitochondria. Of these, the 35S-labeled mature size fumarase was resistant to externally added protease, but P1 was not, indicating that the 35S-labeled mature size fumarase was located in the mitochondrial matrix. The following observations strongly suggested that the 35S-labeled mature size fumarase in mitochondria was derived from P1, which was energy-dependently imported and concomitantly processed to the mature size. 1) The amount of the 35S-labeled mature size fumarase recovered from the mitochondria increased proportionally to the duration of incubation, while the amount of P1 recovered from the post-mitochondrial and mitochondrial fractions decreased with the duration of the incubation. 2) Only P1 could bind with the mitochondrial outer membrane at 0 degrees C even in the presence of an uncoupler of the oxidative phosphorylation but P2 did not. 3) P1 bound to the mitochondrial outer membrane was imported into the matrix, when the mitochondria binding only P1 at 0 degrees C was reisolated and incubated at 30 degrees C in the presence of an energy-generating system. The specific receptor was involved in the binding of P1 to mitochondria, since a high concentration of NaCl did not interfere with the binding of P1 to the membrane and did not discharge P1 bound onto the membrane. It was shown that P1 formed an aggregate composed of 6 to 8 molecules and P2 was a dimer in the cell-free translation mixture and that P1 and P2 were enzymatically inactive. These results suggest that the precursor for the mitochondrial enzyme has a larger molecular weight than that of the mature enzyme, whereas the precursor for the cytosolic enzyme has the same molecular weight as the mature enzyme.  相似文献   

3.
Mitochondrial porin, the major protein of the outer mitochondrial membrane is synthesized by free cytoplasmic polysomes. The apparent molecular weight of the porin synthesized in homologous or heterologous cell-free systems is the same as that of the mature porin. Transfer in vitro of mitochondrial porin from the cytosolic fraction into the outer membrane of mitochondria could be demonstrated. Before membrane insertion, mitochondrial porin is highly sensitive to added proteinase; afterwards it is strongly protected. Binding of the precursor form to mitochondria occurs at 4 degrees C and appears to precede insertion into the membrane. Unlike transfer of many precursor proteins into or across the inner mitochondrial membrane, assembly of the porin is not dependent on an electrical potential across the inner membrane.  相似文献   

4.
The precursor polypeptides of a large subunit of succinate dehydrogenase and ornithine aminotransferase (the enzymes which are located in the mitochondrial inner membrane and matrix respectively) were synthesized as a larger molecular mass than their mature subunits, when rat liver RNA was translated in vitro. These precursor polypeptides were also detected in vivo in ascites hepatoma cells (AH-130 cells). When the 35S-labeled precursor polypeptides were incubated with isolated rat liver mitochondria at 30 degrees C in the presence of an energy-generating system, these two precursors were converted to their mature size and the 35S-labeled mature-size polypeptides associated with mitochondria. Furthermore, these mature-size polypeptides were recovered from their own locations, the inner mitochondrial membrane and the matrix. The precursor of ornithine aminotransferase incubated with rat liver mitochondria at 0 degree C was specifically and tightly bound to the surface of the mitochondria even in the presence of an uncoupler of oxidative phosphorylation. This precursor, bound to the mitochondria, was imported into the matrix when the mitochondria were reisolated and incubated at 30 degrees C in the presence of an energy-generating system, suggesting that a specific receptor may be involved in the binding of the precursor. The processing enzyme for both precursor polypeptides seemed to be located in the mitochondrial matrix and was partially purified from the mitochondria. A metal-chelating agent strongly inhibited the processing enzyme and the inhibition was recovered by the addition of Mn2+ or Co2+.  相似文献   

5.
The present investigation has attempted to define in rat liver mitochondria the distribution of outer membrane proteins in relation to the inner membrane by fractionation with digitonin and phospholipase A2. Porin, the channel-forming protein in the outer membrane, was measured quantitatively by immunological methods. Neither monoamine oxidase nor porin could be released by phospholipase A2 treatment, but both were released by digitonin, at the same detergent concentration. Thus, the release of monoamine oxidase and porin requires the disruption of the cholesterol but not the phospholipid domains of the membrane and the two polypeptides exist in the same, or similar, membrane environment with regard to cholesterol. Changes in the energy state, or binding of brain hexokinase to rat liver mitochondria prior to fractionation with digitonin, did not alter the release patterns of porin and monoamine oxidase. The uptake of Ca2+, however, resulted in the concomitant release of the outer membrane markers together with the matrix marker, malate dehydrogenase. The present findings with liver differ from those obtained recently with brain mitochondria (L. Dorbani et al. (1987) Arch. Biochem. Biophys. 252, 188-196) in which two populations of porin were located in two different cholesterol domains. The significance of these differences in the location of porin in liver and brain mitochondria is discussed.  相似文献   

6.
The synthesis, translocation, processing, and assembly of rat liver short chain acyl-CoA, medium chain acyl-CoA, long chain acyl-CoA, and isovaleryl-CoA dehydrogenases were studied. These four acyl-CoA dehydrogenases are homotetrameric flavoproteins which are located in the mitochondrial matrix. They were synthesized in a cell-free rabbit reticulocyte lysate system, programmed by rat liver polysomal RNA, as precursor polypeptides which are 2-4 kDa larger than their corresponding mature subunits (Mr 41,000-45,000). When the radiolabeled precursors were incubated with intact rat liver mitochondria, they appeared to bind tightly to the mitochondrial outer membrane. At this stage they were completely susceptible to the action of exogenous trypsin. The precursors bound to mitochondria at 0 degrees C were translocated into the mitochondria and processed when the temperature was raised to 30 degrees C. No reaction occurred when the temperature was kept at 0 degrees C, however, suggesting that the binding of the precursors is temperature independent while the subsequent steps of the pathway are energy dependent. Indeed, the translocation reaction was inhibited by compounds such as dinitrophenol and rhodamine 6G which inhibit mitochondrial energy metabolism. The newly imported (mature) enzymes were inaccessible to the proteolytic action of added trypsin. The processing of the precursors to mature subunits was proteolytically carried out in the mitochondrial matrix, and the processed mature subunits mostly assembled to their respective tetrameric forms. Newly synthesized larger precursors of each of the four acyl-CoA dehydrogenases were recovered from intact, cultured Buffalo rat liver cells in the presence of dinitrophenol. When dinitrophenol was removed in a pulse-chase protocol, the accumulated precursors were rapidly (t1/2 3-5 min) converted to their corresponding mature subunits. On the other hand, when the chase was performed in the presence of the inhibitor, the labeled precursors disappeared with t1/2 of greater than 4 h for long chain acyl-CoA dehydrogenase and 1-2 h for the other three enzyme precursors.  相似文献   

7.
Outer mitochondrial membrane was purified from rat liver. Its constituent proteins were analyzed by SDS-polyacrylamide gel electrophoresis and by electrophoretic immunoblotting employing antibodies raised against total outer mitochondrial membrane. Anti-outer mitochondrial membrane antiserum reacted with only one polypeptide (15 kDa) in rough microsomes, whereas no immunological cross-reactivity was observed with other mitochondrial compartments (intermembrane space, inner membrane, or matrix) or with lysosomes or total cytosol. The antiserum was employed to characterize precursors of outer mitochondrial membrane proteins synthesized in vitro in a rabbit reticulocyte cell-free system. One product (a 68 kDa polypeptide designated OMM-68) bound efficiently to mitochondria in vitro but did not interact with either dog pancreas or rat liver microsomes, either co-translationally or post-translationally. OMM-68 was synthesized exclusively by the membrane-free class of polyribosomes. Attachment of precursor OMM-68 to mitochondria was not accompanied by processing of the polypeptide to a different size.  相似文献   

8.
Summary Rat liver mitochondria were fractionated into inner and outer membrane components at various times after the intravenous injection of14C-leucine or14C-glycerol. The time curves of protein and lecithin labeling were similar in the intact mitochondria, the outer membrane fraction, and the inner membrane fraction. In rat liver slices also, the kinetics of3H-phenylalanine incorporation into mitochondrial KCl-insoluble proteins was identical to that of14C-glycerol incorporation into mitochondrial lecithin. These results suggest a simultaneous assembly of protein and lecithin during membrane biogenesisThe proteins and lecithin of the outer membrane were maximally labeledin vivo within 5 min after injection of the radioactive precursors, whereas the insoluble proteins and lecithin of the inner membrane reached a maximum specific acitivity 10 min after injection.Phospholipid incorporation into mitochondria of rat liver slices was not affected when protein synthesis was blocked by cycloheximide, puromycin, or actinomycin D. The injection of cycloheximide 3 to 30 min prior to14C-choline did not affect thein vivo incorporation of lecithin into the mitochondrial inner or outer membranes; however treatment with the drug for 60 min prior to14C-choline resulted in a decrease in lecithin labeling. These results suggest that phospholipid incorporation into membranes may be regulated by the amount of newly synthesized protein available.When mitochondria and microsomes containing labeled phospholipids were incubated with the opposite unlabeled fractionin vitro, a rapid exchange of phospholipid between the microsomes and the outer membrane occurred. A slight exchange with the inner membrane was observed.  相似文献   

9.
The proportion of hexokinase that is bound to the outer mitochondrial membrane is tissue specific and metabolically regulated. This study examined the role of the N,N-dicyclohexylcarbodiimide-binding domain of mitochondrial porin in binding to hexokinase I. Selective proteolytic cleavage of porin protein was performed and peptides were assayed for their, effect on hexokinase I binding to isolated mitochondria. Specificity of DCCD-reactive domain binding to hexokinase I was demonstrated by competition of the peptides for porin binding sites on hexokinase as well as by blockage hexokinase binding by N,N-dicyclohexylcarbodiimide. One of the peptides, designated as 5 kDa (the smallest of the porin peptides, which contains a DCCD-reactive site), totally blocked binding of the enzyme to the mitochondrial membrane, and significantly enhanced the release of the mitochondrially bound enzyme. These experiments demonstrate that there exists a direct and specific interaction between the DCCD-reactive domain of VDAC and hexokinase I. The peptides were further characterized with respect to their effects on certain functional properties of hexokinase I. None had any detectable effect on catalytic properties, including inhibition by glucose 6-phosphate. To evaluate further the outer mitochondrial membranes role in the hexokinase binding, insertion of VDAC was examined using isolated rat mitochondria. Pre-incubation of mitochondria with purified porin strongly increases hexokinase I binding to rat liver mitochondria. Collectively, the results imply that the high hexokinase-binding capability of porin-enriched mitochondria was due to a quantitative difference in binding sites.  相似文献   

10.
GTP-binding proteins (GTPases) have been detected in the mitochondria of human placenta. It has been proposed that porin interacts with GTPases in the mitochondrion to modulate contact site function, however, their identity and location is not known. In this study, we investigated the location of GTPases in mitochondria from term placentae as well as the expression of mitochondrial GTPases in mid-term placentae. Mitochondria obtained from human term and mid-term placentae were purified by sedimentation. Sub-mitochondrial vesicles prepared from ruptured and sonicated mitochondria were separated by ultracentrifugation in sucrose density gradients. The location of membrane vesicles was determined using marker enzymes. Mitochondrial proteins were separated by SDS-PAGE. Western blots were incubated in [alpha-(32)P]-GTP and detected using autoradiography or antibodies against known GTPases and porin followed by enhanced chemiluminescence. [alpha-(32)P]-GTP bound 24 and 28 kDa proteins located in the outer membrane. The G(salpha)antibody detected 42.5, 53 and 67 kDa proteins. The G(ialpha)antibody identified a 40.5 kDa band in contact sites and the outer membrane, as well as 55 and 105 kDa proteins in contact site vesicles. The Ran antibody detected a 28 kDa protein, mainly in the outer membrane. Porin migrated at 30 kDa. G(ialpha)and Ran were detected in mitochondria from both term and mid-term placentae. The location of porin and GTPases leave open the possibility that these proteins interact in contact sites and may also be responding to extra-mitochondrial signals. Ran and G(ialpha)are expressed by mid-term in human placentae and may be necessary for placental functions at this stage of development. It will be important in future experiments to characterise the physiological functions of these GTP-binding proteins in the mitochondria of human placenta.  相似文献   

11.
12.
Cross-linking analysis of yeast mitochondrial outer membrane   总被引:2,自引:0,他引:2  
By enrichment of contact sites between the two mitochondrial boundary membranes it has been shown that this fraction contained a high activity of glutathione transferase and hexokinase which was bound to the outer membrane pore protein (Ohlendieck, K. et al. (1986) Biochim. Biophys. Acta 860, 672-689). Therefore, an interaction between the three proteins in the contact sites has been suggested. Cross-linking experiments with isolated outer membrane of yeast mitochondria show that glutathione transferase and the pore protein are already associated in the free outer membrane. Porin appeared to adopt four different oligomeric complexes in the membrane, including interactions with a 14 kDa polypeptide, which has glutathione transferase activity. The latter polypeptide could be phosphorylated by intrinsic or extrinsic protein kinases, while the porin itself was not phosphorylated. Yeast hexokinase, when bound to the outer membrane, was able to cross-link to the pore protein.  相似文献   

13.
Purified mitochondria from rat brain contain microtubule-associated proteins (MAPs) bound to the outer membrane. Studies of binding in vitro performed with microtubules and with purified microtubule proteins showed that mitochondria preferentially interact with the high-molecular-mass MAPs (and not with Tau protein). Incubation of intact mitochondria with Taxol-stabilized microtubules resulted in the selective trapping of both MAPs 1 and 2 on mitochondria, indicating that an interaction between the two organelles occurred through a site on the arm-like projection of MAPs. Two MAP-binding sites were located on intact mitochondria. The lower-affinity MAP2-binding site (Kd = 2 x 10(-7) M) was preserved and enriched in the outer-membrane fraction, whereas the higher-affinity site (Kd = 1 x 10(-9) M) was destroyed after removing the outer membrane with digitonin. Detergent fractionation of mitochondrial outer membranes saturated with MAP2 bound in vitro showed that MAPs are associated with membrane fragments which contain the pore-forming protein (porin). MAP2 also partially prevents the solubilization of porin from outer membrane, indicating a MAP-induced change in the membrane environment of porin. These observations demonstrate the presence of specific MAP-binding sites on the outer membrane, suggesting an association between porin and the membrane domain involved in the cross-linkage between microtubules and mitochondria.  相似文献   

14.
Binding of the Type I isozyme of mammalian hexokinase to mitochondria is mediated by the porin present in the outer mitochondrial membrane. Type I hexokinase from rat brain is avidly bound by rat liver mitochondria while, under the same conditions, there is no significant binding to mitochondria from S. cerevisiae. Previously published work demonstrates the lack of significant interaction of yeast hexokinase with mitochondria from either liver or yeast. Thus, structural features required for the interaction of porin and hexokinase must have emerged during evolution of the mammalian forms of these proteins. If these structural features serve no functional role other than facilitating this interaction of hexokinase with mitochondria, it seems likely that they evolved in synchrony since operation of selective pressures on the hexokinase–mitochondrial interaction would require the simultaneous presence of hexokinase and porin capable of at least minimal interaction, and be responsive to changes in either partner that affected this interaction. Recent studies have indicated that a second type of binding site, which may or may not involve porin, is present on mammalian mitochondria. There are also reports of hexokinase binding to mitochondria in plant tissues, but the nature of the binding site remains undefined.  相似文献   

15.
We have previously reported that the precursor of rat liver mitochondrial malate dehydrogenase, synthesized in vitro, is about 1,500 to 2,000 Mr larger than the mature enzyme and can be processed to the mature size by isolated mitochondria from Chinese hamster ovary cells (Chien, S.-M. and Freeman, K. B. (1984) J. Biol. Chem. 259, 3337-3342). Furthermore, binding, but not processing, was observed in the presence of an uncoupler. Binding was insensitive to temperature and was completed within 2.5 min at 0 degrees C. The role of binding in the overall process of import of the precursor is now further characterized. The precursor form, bound either in the presence of an uncoupler or at 0 degrees C, was sensitive to trypsin suggesting that binding occurs on the mitochondrial outer membrane. Saturation of binding was observed with a limited amount of mitochondria and an excess of in vitro translated rat liver proteins indicating that there is a finite number of binding sites. Furthermore, when the precursor was prebound to mitochondria at 0 degrees C for 5 min, the precursor was processed to the mature size and the rate of processing was independent of the volume of reaction mixture. In contrast, the rate of processing of unbound precursor was dependent on reaction volume. These results strongly suggest that binding of the precursor of malate dehydrogenase to the mitochondrial outer membrane is an intermediate step in its import.  相似文献   

16.
Mitochondrial porin, the outer membrane pore-forming protein, was isolated in the presence of detergents and converted into a water-soluble form. This water-soluble porin existed under nondenaturing conditions as a mixture of dimers and oligomers. The proportion of dimers increased with decreasing porin concentration during conversion. Water-soluble porin inserted spontaneously into artificial bilayers as did detergent-solubilized porin. Whereas the latter form had no specific requirements for the lipid composition of the bilayer, water-soluble porin inserted only into membranes containing a sterol, and only in the presence of very low concentrations of Triton X-100 (0.001% w/v) in the solution bathing the bilayer. The channels formed by water-soluble porin were indistinguishable from those formed by detergent-purified porin with respect to specific conductance and voltage dependence of conductance. Water-soluble porin bound tightly in a saturable fashion to isolated mitochondria. The bound form was readily accessible to added protease, indicating its presence on the mitochondrial surface. The number of binding sites was in the range of 5-10 pmol/mg of mitochondrial protein. Water-soluble porin apparently binds to a site on the assembly pathway of the porin precursor, since mitochondria whose binding sites were saturated with the water-soluble form did not import porin precursor synthesized in a cell-free system.  相似文献   

17.
The protein(s) responsible for metabolite transport through the outer membrane of the yeast Saccharomyces cerevisiae mitochondria depleted of mitochondrial porin (also known as voltage-dependent anion selective channel), termed here porin1, is (are) still unidentified. It is postulated that the transport may be supported by the protein import machinery of the outer membrane, the TOM complex (translocase of the outer membrane). We demonstrate here that in the absence of functional porin1, the blockage of the TOM complex by the fusion protein termed pb(2)-DHFR (consisting of the first 167 amino acids of yeast cytochrome b(2) preprotein connected to mouse dihydrofolate reductase) limits the access of external NADH to mitochondria. It was measured by the ability of the blockage to inhibit external NADH oxidation by the proper dehydrogenase located at the outer surface of the inner membrane. The inhibition depends on external NADH concentration and increases with decreasing amounts of the substrate. In the presence of 1 microg of pb(2)-DHFR per 50 microg of mitochondrial protein almost quantitative inhibition was observed when external NADH was applied at the concentration of 70 nmol per mg of mitochondrial protein. On the other hand, external NADH decreases the levels of pb(2)-DHFR binding at the trans site of the TOM complex in porin1-depleted mitochondria in a concentration-dependent fashion. Our data define an important role of the TOM complex in the transport of external NADH across the outer membrane of porin1-depleted mitochondria.  相似文献   

18.
Spin-labeled phosphatidylcholine was incorporated into the membrane of isolated "inner membrane+matrix" particles of rat liver mitochondria by incubation with sonicated spin-labeled phosphatidylcholine vesicles at 22 degrees C. When the spin label was on the acyl chain the incorporation of phosphatidylcholine into the membrane was stimulated by the presence of the phosphatidylcholine exchange protein extracted from rat or beef liver. On the other hand no stimulation was observed when the nitroxide was on the polar head-group. When spin-labeled phosphatidycholine was incorporated into the mitochondrial membrane in the absence of phosphatidylcholine exchange protein, ascorbate treatment at 0 degrees C reduced the EPR signal of the spin-labeled membranes by approximately 50%, indicating that fusion incorporates molecules equally on both sides of the membrane. On the other hand when spin-labeled phosphatidylcholine was incorporated in the presence of the exchange protein most of the EPR signal could be destroyed by the ascorbate treatment at 0 degrees C, indicating that the spin-labeled phosphatidylcholine had been selectively incorporated in the outer layer of the membrane. Finally when the label is on the polar head-group the inner content of mitochondria reduces the label facing the matrix, thus creating again an anisotropy of the labeling. The anisotropic distribution of spin-labeled phosphatidylcholine in the mitochondrial membrane was found to be stable at 25 degrees C for more than 2 h. It is therefore concluded that the rate of outside-inside and inside-outside transitions are extremely slow (half-life greater than 24 h).  相似文献   

19.
20.
Porin, also termed the voltage-dependent anion channel, is the most abundant protein of the mitochondrial outer membrane. The process of import and assembly of the protein is known to be dependent on the surface receptor Tom20, but the requirement for other mitochondrial proteins remains controversial. We have used mitochondria from Neurospora crassa and Saccharomyces cerevisiae to analyze the import pathway of porin. Import of porin into isolated mitochondria in which the outer membrane has been opened is inhibited despite similar levels of Tom20 as in intact mitochondria. A matrix-destined precursor and the porin precursor compete for the same translocation sites in both normal mitochondria and mitochondria whose surface receptors have been removed, suggesting that both precursors utilize the general import pore. Using an assay established to monitor the assembly of in vitro-imported porin into preexisting porin complexes we have shown that besides Tom20, the biogenesis of porin depends on the central receptor Tom22, as well as Tom5 and Tom7 of the general import pore complex (translocase of the outer mitochondrial membrane [TOM] core complex). The characterization of two new mutant alleles of the essential pore protein Tom40 demonstrates that the import of porin also requires a functional Tom40. Moreover, the porin precursor can be cross-linked to Tom20, Tom22, and Tom40 on its import pathway. We conclude that import of porin does not proceed through the action of Tom20 alone, but requires an intact outer membrane and involves at least four more subunits of the TOM machinery, including the general import pore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号