首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The role of nucleotides in providing energy for polypeptide transfer across the endoplasmic reticulum (ER) membrane is still unknown. To address this question, we treated ER-derived mammalian microsomal vesicles with a photoactivatable analogue of ATP, 8-N3ATP. This treatment resulted in a progressive inhibition of translocation activity. Approximately 20 microsomal membrane proteins were labeled by [alpha 32P]8-N3ATP. Two of these were identified as proteins with putative roles in translocation, alpha signal sequence receptor (SSR), the 35-kDa subunit of the signal sequence receptor complex, and ER-p180, a putative ribosome receptor. We found that there was a positive correlation between inactivation of translocation activity and photolabeling of alpha SSR. In contrast, our data demonstrate that the ATP-binding domain of ER-p180 is dispensable for translocation activity and does not contribute to the observed 8-N3ATP sensitivity of the microsomal vesicles.  相似文献   

3.
Thin-section and critical-point-dried fracture-labeled preparations are used to determine the distribution and partition of glycophorin- associated wheat germ agglutinin (WGA) binding sites over protoplasmic and exoplasmic faces of freeze-fractured human erythrocyte membranes. Most wheat germ agglutinin binding sites are found over exoplasmic faces. Label is sparse over the protoplasmic faces. These results contrast with previous observations of the partition of band 3 component where biochemical analysis and fracture-label of concanavalin A (Con A) binding sites show preferential partition of this transmembrane protein with the protoplasmic face. Presence of characteristic proportions of WGA and Con A binding sites over each fracture face is interpreted to indicate the operation of a stochastic process during freeze-fracture. This process appears modulated by the relative expression of each transmembrane protein at either surface as well as by their association to components of the erythrocyte membrane skeleton.  相似文献   

4.
The kinetics of the signal recognition particle(SRP)-mediated process of protein translocation across the endoplasmic reticulum membrane was studied by mathematical modeling and complementary experiments. The following results were obtained. (1) A model according to which SRP directs the ribosome, rather than the mRNA, to the membrane is supported by experiments designed to discriminate between the two alternatives. (2) This model describes both steady-state and synchronized translation experiments and makes a number of predictions. (3) The interaction between a nascent protein and SRP may be described by two parameters: (i) a binding constant which can be attributed to the structure of the signal peptide, and (ii) the size of the "SRP-window", i.e. the distance between the first and the last site on the polypeptide chain that can interact with SRP. For preprolactin a binding constant of 1 to 2.5 nmol-1l was estimated. Modeling of the synchronized synthesis of ovalbumin indicates that it has a much weaker binding constant than preprolactin (approximately 0.25 nmol-1l) although we cannot exclude the possibility that the SRP-window may be also smaller. (4) A better understanding of the molecular effects of SRP on translation and translocation through the rough endoplasmic reticulum membrane has been achieved. Inhibition of the steady-state rate of translation by SRP requires a stoichiometric interaction of SRP with ribosomes carrying nascent polypeptide chains and will occur only when ribosomes are piled up back to the initiation site. Translocation, on the other hand, requires only the catalytic action of SRP and is determined by the local concentration of protein-synthesizing ribosomes accumulated at the site(s) of SRP interaction. As a consequence, translational inhibition by SRP may sometimes fail to occur, depending either on the type of protein or on experimental conditions, such as a high mRNA concentration, even if translocation can be demonstrated. (5) A rough extrapolation to the conditions in vivo indicates that all synthesized polypeptide chains destined for translocation across or integration into the endoplasmic reticulum membrane are indeed quantitatively translocated and that no translational inhibition occurs.  相似文献   

5.
Posttranslational protein translocation across the membrane of the endoplasmic reticulum is mediated by the Sec complex. This complex includes a transmembrane channel formed by multiple copies of the Sec61 protein. Translocation of a polypeptide begins when the signal sequence binds at a specific site within the channel. Binding results in the insertion of the substrate into the channel, possibly as a loop with a small segment exposed to the lumen. While bound, the signal sequence is in contact with both protein components of the channel and the lipid of the membrane. Subsequent movement of the polypeptide through the channel occurs when BiP molecules interact transiently with a luminal domain of the Sec complex, hydrolyze ATP, and bind to the substrate. Bound BiP promotes translocation by preventing the substrate from diffusing backwards through the channel, and thus acts as a molecular ratchet.  相似文献   

6.
The signal recognition particle (SRP)-mediated elongation arrest of the synthesis of nascent secretory proteins can be released by salt- extracted rough microsomal membranes (Walter, P., and G. Blobel, 1981, J. Cell Biol, 91:557-561). Both the arrest-releasing activity and the signal peptidase activity were solubilized from rough microsomal membranes using the nonionic detergent Nikkol in conjunction with 250 mM KOAc. Chromatography of this extract on SRP-Sepharose separated the arrest-releasing activity from the signal peptidase activity. Further purification of the arrest-releasing activity using sucrose gradient centrifugation allowed the identification of a 72,000-dalton polypeptide as the protein responsible for the activity. Based upon its affinity for SRP, we refer to the 72,000-dalton protein as the SRP receptor. A 60,000-dalton protein fragment (Meyer, D. I., and B. Dobberstein, 1980, J. Cell Biol., 87:503-508) that had been shown previously to reconstitute the translocation activity of protease- digested membranes, was shown here by peptide mapping and immunological criteria to be derived from the SRP receptor. Findings that are in part similar, and in part different from these reported here and in our preceding paper were made independently (Meyer, D. I., E. Krause, and B. Dobberstein, 1982, Nature (Lond.). 297:647-650) and the term "docking protein" was proposed for the SRP receptor. A lower membrane content of both SRP and the SRP receptor than that of membrane bound ribosomes suggests that the SRP-SRP receptor interaction may exist transiently during the formation of a ribosome-membrane junction and during translocation.  相似文献   

7.
Cholesterol and related sterols are known to modulate the physical properties of biological membranes and can affect the activities of membrane-bound protein complexes. Here, we report that an early step in protein translocation across the endoplasmic reticulum (ER) membrane is reversibly inhibited by cholesterol levels significantly lower than those found in the plasma membrane. By UV-induced chemical cross-linking we further show that high cholesterol levels prevent cross-linking between ribosome-nascent chain complexes and components of the Sec61 translocon, but have no effect on cross-linking to the signal recognition particle. The inhibiting effect on translocation is different between different sterols. Our data suggest that the protein translocation machinery may be sensitive to changes in cholesterol levels in the ER membrane.  相似文献   

8.
Co-translational translocation of proteins across the membrane of rough endoplasmic reticulum (ER) is interrupted by particular amino acid sequences, which are functionally termed "stop-transfer sequence." We analyzed the structural requirements for the interruption of the peptide translocation. By the manipulation of the cDNA of interleukin 2 (IL2), which passes through ER membrane co-translationally, the middle portion of the IL2 molecule was replaced with systematically altered hydrophobic segments, leucine, alanine, or leucine/alanine mixed clusters. Furthermore, charged amino acid residues were introduced just downstream of the hydrophobic segments. These modified IL2 peptides were synthesized with wheat germ cell-free system in the presence of rough microsomes and the topology of the peptides in the microsomes was assessed by post-translational digestion with proteinase K. We obtained the following results. (i) Each modified protein was processed to the mature form but the extent of stop-translocation varied widely. The ratio of the stopped to the translocated products increased as the length and hydrophobicity of the inserted segment increased. (ii) Shorter hydrophobic segments than naturally occurring native transmembrane segment promoted stop-translocation. (iii) Proteins with hydrophobic segments followed by positive charges were more efficiently stop-translocated than those having negative charges. (iv) If the hydrophobicity of the segment was sufficiently high, the positive charges after the segment were not essential for stop-translocation. We also suggest that the stop-transfer process includes protein-protein interaction between the hydrophobic segment and translocation channel.  相似文献   

9.
SEC63 encodes a protein required for secretory protein translocation into the endoplasmic reticulum (ER) of Saccharomyces cerevisiae (J. A. Rothblatt, R. J. Deshaies, S. L. Sanders, G. Daum, and R. Schekman, J. Cell Biol. 109:2641-2652, 1989). Antibody directed against a recombinant form of the protein detects a 73-kDa polypeptide which, by immunofluorescence microscopy, is localized to the nuclear envelope-ER network. Cell fractionation and protease protection experiments confirm the prediction that Sec63p is an integral membrane protein. A series of SEC63-SUC2 fusion genes was created to assess the topology of Sec63p within the ER membrane. The largest hybrid proteins are unglycosylated, suggesting that the carboxyl terminus of Sec63p faces the cytosol. Invertase fusion to a loop in Sec63p that is flanked by two putative transmembrane domains produces an extensively glycosylated hybrid protein. This loop, which is homologous to the amino terminus of the Escherichia coli heat shock protein, DnaJ, is likely to face the ER lumen. By analogy to the interaction of the DnaJ and Hsp70-like DnaK proteins in E. coli, the DnaJ loop of Sec63p may recruit luminal Hsp70 (BiP/GRP78/Kar2p) to the translocation apparatus. Mutations in two highly conserved positions of the DnaJ loop and short deletions of the carboxyl terminus inactivate Sec63p activity. Sec63p associates with several other proteins, including Sec61p, a 31.5-kDa glycoprotein, and a 23-kDa protein, and together with these proteins may constitute part of the polypeptide translocation apparatus. A nonfunctional DnaJ domain mutant allele does not interfere with the formation of the Sec63p/Sec61p/gp31.5/p23 complex.  相似文献   

10.
Polypeptide translocation across the endoplasmic reticulum membrane.   总被引:6,自引:0,他引:6  
Many polypeptides have been postulated to play direct roles in secretory protein translocation based on genetic criteria, cross-linking, and antibody inhibition. Much of the excitement in the next few years will come from the resolution of current controversies. What is the nature of the ribosome receptor, and is it essential for translocation? Is BiP required for translocation in mammalian cells? Are all of the polypeptides of signal peptidase and oligosaccharyltransferase required for catalytic function, or do some of them mediate steps of protein translocation? One of the best ways to resolve these problems will be to determine the importance of each in reconstituted translocation reactions by fractionation or immunodepletion, or by analysis in a purified reaction. Another approach is to identify homologues of these molecules in S. cerevisiae and to assess their importance in in vivo translocation. Several mechanistic questions remain to be addressed as well. Does the protein translocation apparatus consist of protein, or lipid, or both? How are integral membrane proteins inserted? How is the translocon gated to admit only unfolded or partially folded secretory polypeptides and to exclude cytoplasmic molecules? The answers to these questions will illuminate a basic enigma in cell biology that has remained unanswered for many years.  相似文献   

11.
《The Journal of cell biology》1989,109(6):2653-2664
Yeast sec62 mutant cells are defective in the translocation of several secretory precursor proteins into the lumen of the endoplasmic reticulum (Rothblatt et al., 1989). The deficiency, which is most restrictive for alpha-factor precursor (pp alpha F) and preprocarboxypeptidase Y, has been reproduced in vitro. Membranes isolated from mutant cells display low and labile translocation activity with pp alpha F translated in a wild-type cytosol fraction. The defect is unique to the membrane fraction because cytosol from mutant cells supports translocation into membranes from wild-type yeast. Invertase assembly is only partly affected by the sec62 mutation in vivo and is nearly normal with mutant membranes in vitro. A potential membrane location for the SEC62 gene product is supported by evaluation of the molecular clone. DNA sequence analysis reveals a 32- kD protein with no obvious NH2-terminal signal sequence but with two domains of sufficient length and hydrophobicity to span a lipid bilayer. Sec62p is predicted to display significant NH2- and COOH- terminal hydrophilic domains on the cytoplasmic surface of the ER membrane. The last 30 amino acids of the COOH terminus may form an alpha-helix with 14 lysine and arginine residues arranged uniformly about the helix. This domain may allow Sec62p to interact with other proteins of the putative translocation complex.  相似文献   

12.
Proteins destined for secretion are translocated across or inserted into the endoplasmic reticulum membrane whereupon they fold and assemble to their native state before their subsequent transport to the Golgi apparatus. Proteins that fail to fold correctly are translocated back across the endoplasmic reticulum membrane to the cytosol where they become substrates for the cytosolic degradative machinery. Central to translocation is a protein pore in the membrane called the translocon that allows passage of proteins in and out of the endoplasmic reticulum. It is clear that the conformation of the polypeptide chain influences the translocation process and that there is a temporal relationship between modification of the chain, translocation and folding. This review will consider when and how the polypeptide chain folds, and how this might influence translocation into and out of the ER; and discuss how protein folding might affect post-translational modification of the polypeptide chain following translocation into the ER lumen.  相似文献   

13.
Yamamoto H  Fujita H  Kida Y  Sakaguchi M 《Biochemistry》2012,51(17):3596-3605
Various proteins are translocated through and inserted into the endoplasmic reticulum membrane via translocon channels. The hydrophobic segments of signal sequences initiate translocation, and those on translocating polypeptides interrupt translocation to be inserted into the membrane. Positive charges suppress translocation to regulate the orientation of the signal sequences. Here, we investigated the effect of membrane cholesterol on the translocational behavior of nascent chains in a cell-free system. We found that the three distinct translocation processes were sensitive to membrane cholesterol. Cholesterol inhibited the initiation of translocation by the signal sequence, and the extent of inhibition depended on the signal sequence. Even when initiation was not inhibited, cholesterol impeded the movement of the positively charged residues of the translocating polypeptide chain. In surprising contrast, cholesterol enhanced the translocation of hydrophobic sequences through the translocon. On the basis of these findings, we propose that membrane cholesterol greatly affects partitioning of hydrophobic segments into the membrane and impedes the movement of positive charges.  相似文献   

14.
Retinoid transport is well characterized in many vertebrates, while it is still largely unexplored in fish. To study the transport and utilization of vitamin A in these organisms, we have isolated from a carp liver cDNA library retinol-binding protein, its plasma carrier. The primary structure of carp retinol-binding protein is very conserved, but presents unique features compared to those of the correspondent proteins isolated and characterized so far in other species: it has an uncleavable signal peptide and two N-glycosylation sites in the NH(2)-terminal region of the protein that are glycosylated in vivo. In this paper, we have investigated the function of the carbohydrate chains, by constructing three mutants deprived of the first, the second or both carbohydrates. The results of transient transfection of wild type and mutant retinol-binding protein in Cos cells followed by Western blotting and immunofluorescence analysis have shown that the absence of both carbohydrate moieties blocks secretion, while the presence of one carbohydrate group leads to an inefficient secretion. Experiments of carp RBP mRNA in vitro translation in a reticulocyte cell-free system in the presence of microsomes have demonstrated that N-glycosylation is necessary for efficient translocation across the endoplasmic reticulum membranes. Moreover, when Cos cells were transiently transfected with wild type and mutant retinol-binding protein (aa 1-67)-green fluorescent protein fusion constructs and semi-permeabilized with streptolysin O, immunofluorescence analysis with anti-green fluorescent protein antibody revealed that the double mutant is exposed to the cytosol, thus confirming the importance of glycan moieties in the translocation process.  相似文献   

15.
Secretory proteins are translocated across the endoplasmic reticulum (ER) membrane through a channel formed by three proteins, namely Sec61p, Sbh1p, and Sss1p (Johnson, A. E., and van Waes, M. A. (1999) Annu. Rev. Cell Dev. Biol. 15, 799-842). Sec61p and Sss1p are essential for translocation (Esnault, Y., Blondel, M. O., Deshaies, R. J., Schekman, R., and Kepes, F. (1993) EMBO J. 12, 4083-4093). Sec61p is a polytopic membrane protein that lines the protein translocation channel. The role of Sss1p is unknown. During import into the ER through the Sec61p channel, many proteins are N-glycosylated before translocation is completed. In addition, both the Sec61 channel and oligosaccharyl transferase (OST) copurify with ribosomes from rough ER, suggesting that OST is located in close proximity to the Sec61 channel (Gorlich, D., Prehn, S., Hartmann, E., Kalies, K.-U., and Rapoport, T. A. (1992) Cell 71, 489-503 and Wang, L., and Dobberstein, B. (1999) FEBS Lett. 457, 316-322). Here, we demonstrate a direct interaction between Sss1p and a subunit of OST, Wbp1p, using the split-ubiquitin system and co-immunoprecipitation. We generated mutants in the cytoplasmic domain of Sss1p that disturb the interaction with OST and are viable but display a translocation defect specific for proteins with glycosylation acceptor sites. Our data suggest that Sss1p coordinates translocation across the ER membrane and N-linked glycosylation of secretory proteins.  相似文献   

16.
Several approaches are currently being taken to elucidate the mechanisms and the molecular components responsible for protein targeting to and translocation across the membrane of the endoplasmic reticulum. Two experimental systems dominate the field: a biochemical system derived from mammalian exocrine pancreas, and a combined genetic and biochemical system employing the yeast, Saccharomyces cerevisiae. Results obtained in each of these systems have contributed novel, mostly non-overlapping information. Recently, much effort in the field has been dedicated to identifying membrane proteins that comprise the translocon. Membrane proteins involved in translocation have been identified both in the mammalian system, using a combination of crosslinking and reconstitution approaches, and in S. cerevisiae, by selecting for mutants in the translocation pathway. None of the membrane proteins isolated, however, appears to be homologous between the two experimental systems. In the case of the signal recognition particle, the two systems have converged, which has led to a better understanding of how proteins are targeted to the endoplasmic reticulum membrane.  相似文献   

17.
We have addressed how ribosome-nascent chain complexes (RNCs), associated with the signal recognition particle (SRP), can be targeted to Sec61 translocation channels of the endoplasmic reticulum (ER) membrane when all binding sites are occupied by nontranslating ribosomes. These competing ribosomes are known to be bound with high affinity to tetramers of the Sec61 complex. We found that the membrane binding of RNC-SRP complexes does not require or cause the dissociation of prebound nontranslating ribosomes, a process that is extremely slow. SRP and its receptor target RNCs to a free population of Sec61 complex, which associates with nontranslating ribosomes only weakly and is conformationally different from the population of ribosome-bound Sec61 complex. Taking into account recent structural data, we propose a model in which SRP and its receptor target RNCs to a Sec61 subpopulation of monomeric or dimeric state. This could explain how RNC-SRP complexes can overcome the competition by nontranslating ribosomes.  相似文献   

18.
C-tail-anchored proteins are defined by an N-terminal cytosolic domain followed by a transmembrane anchor close to the C terminus. Their extreme C-terminal polar residues are translocated across membranes by poorly understood post-translational mechanism(s). Here we have used the yeast system to study translocation of the C terminus of a tagged form of mammalian cytochrome b(5), carrying an N-glycosylation site in its C-terminal domain (b(5)-Nglyc). Utilization of this site was adopted as a rigorous criterion for translocation across the ER membrane of yeast wild-type and mutant cells. The C terminus of b(5)-Nglyc was rapidly glycosylated in mutants where Sec61p was defective and incapable of translocating carboxypeptidase Y, a well known substrate for post-translational translocation. Likewise, inactivation of several other components of the translocon machinery had no effect on b(5)-Nglyc translocation. The kinetics of translocation were faster for b(5)-Nglyc than for a signal peptide-containing reporter. Depletion of the cellular ATP pool to a level that retarded Sec61p-dependent post-translational translocation still allowed translocation of b(5)-Nglyc. Similarly, only low ATP concentrations (below 1 microm), in addition to cytosolic protein(s), were required for in vitro translocation of b(5)-Nglyc into mammalian microsomes. Thus, translocation of tail-anchored b(5)-Nglyc proceeds by a mechanism different from that of signal peptide-driven post-translational translocation.  相似文献   

19.
Misfolded secretory proteins are transported across the endoplasmic reticulum (ER) membrane into the cytosol for degradation by proteasomes. A large fraction of proteasomes in a cell is associated with the ER membrane. We show here that binding of proteasomes to ER membranes is salt sensitive, ATP dependent, and mediated by the 19S regulatory particle. The base of the 19S particle, which contains six AAA-ATPases, binds to microsomal membranes with high affinity, whereas the 19S lid complex binds weakly. We demonstrate that ribosomes and proteasomes compete for binding to the ER membrane and have similar affinities for their receptor. Ribosomes bind to the protein conducting channel formed by the Sec61 complex in the ER membrane. We co-precipitated subunits of the Sec61 complex with ER-associated proteasome 19S particles, and found that proteoliposomes containing only the Sec61 complex retained proteasome binding activity. Collectively, our data suggest that the Sec61 channel is a principal proteasome receptor in the ER membrane.  相似文献   

20.
The translocation of prepromelittin (pPM) across mammalian endoplasmic reticulum was studied in both wheat germ and reticulocyte lysate. In the wheat germ system, signal recognition particle (SRP) caused a transient arrest in the synthesis of pPM. This was indicated by a slowdown in the rate of synthesis of pPM in the presence of SRP. The arrest was specific, dependent on the concentration of SRP, and more effective at early incubation time. In a tightly synchronized translation system, SRP had no apparent effect on the elongation of pPM, indicating that the effect of SRP on pPM chain synthesis might be at the final stages of chain elongation and release from the ribosome. This was reflected in a transient accumulation of pPM as peptidyl tRNA. Because pPM is composed of only 70 amino acids, arrest by SRP may be very close to chain termination. Arrest at this stage of chain synthesis seems to be unstable and the nascent chain gets terminated and released from the ribosome after a transient delay. The translocation of pPM was shown to be dependent on both SRP and docking protein. The difference in the translocation efficiency of pPM in reticulocyte and wheat germ lysates may reflect a difference in the targeting process in the two systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号