首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5-Halo-6-phenyl pyrimidinones, represented by 2-amino-5-bromo-6-phenyl-4(3H)-pyrimidinone (ABPP) and 2-amino-5-iodo-6-phenyl-4(3H)-pyrimidinone (AIPP), and 8-substituted guanosines, represented by 8-bromoguanosine (8-BrGuo) and 8-mercaptoguanosine (8-MGuo), are well-documented biological response modifiers. We have found that these substituted pyrimidinones and guanosines are very similar in their abilities to activate B cells. ABPP, AIPP, 8-BrGuo, and 8-MGuo induced murine B cells to polyclonally proliferate and differentiate in vitro. The maximal B-cell response levels and the kinetics of the responses elicited with both classes of compounds were comparable; however, ABPP and AIPP were approximately 10-fold more potent than 8-BrGuo and 8-MGuo. An additional similarity observed between the two classes was that polyclonal activation of B cells by ABPP, AIPP, 8-BrGuo, and 8-MGuo was limited to large B cells which had probably been activated previously in vivo. This is in contrast to lipopolysaccharide which is capable of inducing both large, activated B cells and small, resting B cells to proliferate and differentiate. Although substituted pyrimidinones and guanosines were not able to induce new DNA synthesis or antibody production in small B cells, both classes of compounds increased the expression of Ia antigens on the surface of both small and large B cells. These data, together with the recent observations that 8-BrGuo, like ABPP and AIPP, can stimulate NK and cytotoxic macrophage activity via the induction of interferon, strongly suggest that 5-halo-6-phenyl pyrimidinones and 8-substituted guanosines belong to the same structural class of biological response modifiers. Thus, the residues held in common by these two classes of stimulators may interact with the same cellular constituent in the target cells.  相似文献   

2.
Production of BSF-1 during an in vivo, T-dependent immune response   总被引:8,自引:0,他引:8  
BSF-1, a cytokine produced by some T lymphocyte tumors, has been shown to act with anti-Ig antibodies to stimulate B lymphocyte proliferation, to independently induce resting B lymphocytes to increase their expression of surface Ia antigen, and to induce some activated B lymphocytes to differentiate into IgG1- or IgE-secreting cells. To determine whether BSF-1 might be secreted by normal lymphoid cells in the course of a physiologic immune response, BALB/c mice were injected with an affinity-purified goat antibody to mouse IgD (GaM delta), which induces the generation of a large, polyclonal T-dependent IgG1 response; 4-hr culture supernatants of spleen cells from these mice were prepared, and these supernatants were assayed for BSF-1 activity by analyzing their ability to induce BALB/c nu/nu spleen cells to increase their expression of cell surface Ia in vitro. Culture supernatants of unfractionated spleen cells removed from mice 4 to 8 days after GaM delta antibody injection induced substantial increases in B lymphocyte surface Ia expression; these increases were blocked by a monoclonal anti-BSF-1 antibody. Culture supernatants of spleen cells from untreated BALB/c mice or from untreated or GaM delta antibody-treated BALB/c nu/nu mice induced small to moderate increases in B cell surface Ia expression, and GaM delta antibody itself induced large increases in B cell surface Ia expression; however, these increases were not significantly blocked by a monoclonal anti-BSF-1 antibody. A culture supernatant of T cell-enriched spleen cells from untreated mice induced small increases in B cell surface Ia expression that were inhibited by anti-BSF-1 antibody, as was the larger increase in B cell Ia expression induced by a culture supernatant of T cell-enriched spleen cells from mice sacrificed 3 days after GaM delta injection. On the other hand, T cell-depleted spleen cells from BALB/c mice injected with GaM delta antibody 7 days before sacrifice failed to generate culture supernatants with BSF-1 activity. Supernatants prepared from spleen cells taken from untreated mice or mice treated with GaM delta antibody 1 to 3 days before sacrifice did not block the ability of purified BSF-1 to induce an increase in B cell surface Ia expression, and thus did not contain inhibitors of BSF-1 activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
An antibody response against a thymic-dependent Ag requires cognate recognition of the Ag by B and T cells. Functional T-B cell (T-B) interaction involves binding of Ag by B cell surface Ig, internalization and processing of Ag, expression of an Ag fragment in the context of Ia, binding of Ag/Ia by the TCR and binding of T cell-derived lymphokines by B cell lymphokine receptors. It is becoming increasingly evident that B and T cell accessory molecules also are involved in T-B interactions. To determine the role of accessory molecules in T-B collaboration, we have designed a system in which T-B interaction was artificially induced in the absence of carrier protein. TNP-modified, turkey gamma-globulin-specific, Th cells were allowed to form conjugates with TNP-specific B cells in the absence of hapten-carrier complex. Both B and T cells were induced to proliferate and B cells partially differentiated into antibody-secreting cells when B cells were cultured with TNP-modified but not unmodified T cells. The activation of B cells by TNP-modified T cells was not MHC restricted but was blocked by anti-Ia antibodies, suggesting a role for Ia distinct from Ag presentation. Furthermore, B cell proliferation was also inhibited by antibodies to L3T4 and LFA-1, suggesting a functional accessory role for these molecules in induction of B cell proliferation/differentiation.  相似文献   

4.
Salmonella typhimurium mitogen (STM) is a polyclonal activator of rat B lymphocytes, triggering them to proliferate, but not differentiate, to antibody-secreting cells. When lymphokines in the form of a supernatant from Con A-stimulated splenocytes (CAS) are added to B cell cultures activated by STM, only a small number of cells are driven to differentiate. Only with the addition of a third signal provided by the polyanionic polysaccharide dextran sulfate (DXS) is significant rat B cell differentiation observed. In this study, we have shown that this requirement for DXS is not unique to the STM mitogen. LPS, Staphylococcus aureus Cowan I-fixed cells, and anti-Ig antibody all induced rat B cell proliferation with little differentiation, even in the presence of CAS. DXS was necessary to induce differentiation in all cultures costimulated with mitogen and CAS. The requirement for DXS for optimal B cell differentiation is also observed with other lymphokine preparations such as the supernatants from PMA-stimulated EL-4 cells and PHA-stimulated human T cells. Furthermore, this augmentative effect of DXS in rat B cell differentiation was not confined to polyclonal activation systems. Ag-specific IgG secretion was also increased when DXS was added to Ag and CAS costimulated cultures of B cells harvested from the draining lymph nodes of rats immunized with DNP-keyhole limpet hemocyanin. Within the polyclonal activation system, a method of staged additions of STM, DXS, and CAS to B cell cultures was used to investigate the role of DXS during B cell differentiation. Optimal differentiation occurred only when DXS was present in the B cell cultures in conjunction with CAS. The augmentation in differentiation seen with DXS did not appear to be due to the recruitment of an additional CAS-responsive B cell subset, because cycling, low density B cell blasts showed large increases in IgM secretion with subsequent exposure to DXS and CAS. These studies suggest tha DXS acts as a cofactor to various differentiation factors, augmenting polyclonal and Ag-specific rat B cell differentiation. The relevance of DXS to in vivo immune responses is discussed.  相似文献   

5.
A water-soluble, proteinaceous preparation derived from the cell walls of Salmonella typhimurium Re mutants has recently been tested in our laboratory for its ability to act as a mitogen for rat lymphocytes. We have found this preparation (STM) to be a potent stimulator of B lymphocyte proliferation, as measured both by 3H-TdR incorporation and by cell cycle analysis performed with flow cytofluorometry. STM stimulates approximately 50% of rat B cells to enter cycle. Previous investigations by others have shown that at least two sets of signals are required for B cell differentiation; a) proliferation signals that may consist of both a stimulator of B cell conversion from G0 to G1 and growth factors, and b) differentiation signals that probably include at least two B cell differentiation factors (BCDF). When STM was tested in a differentiation system it did not drive purified B cells to differentiate to PFC, either alone or when supplemented with a supernatant from concanavalin A-stimulated spleen cells (CAS). However, when both CAS and dextran sulfate (DXS) were supplied to the STM-stimulated cells, a large number of PFC resulted. DXS does not act by stimulating an additional, CAS-responsive B cell subset, since it has only a marginal effect upon 3H-TdR uptake and does not increase the number of B cells in cycle when used together with STM. We postulate that the two agents may be acting sequentially: STM stimulates the B cells to proliferate, and DXS drives the proliferating cells to become responsive to CAS. This suggests that the signals for B cell differentiation must consist of at least three activities: a trigger to stimulate the cells to proliferate, a factor to drive the cells to a BCDF-responsive state, and a BCDF that can drive the cells to secrete antibody.  相似文献   

6.
APC do not distinguish between self- and foreign proteins. Previous studies from our laboratory demonstrated that most endogenous host APC constitutively processed and presented the self-Ag, hemoglobin (Hb), as detected by the Hb-specific T cell hybridoma, YO1.6. We have now examined APC in organs known to be involved in RBC degradation (liver Kupffer cells and splenic small resting B cells) for the presence of Hb/Ia complexes and for the expression of the costimulation necessary to trigger proliferation of T cell clones. We detected Hb/Ia complexes not only on splenic small resting B cells, but also on liver Kupffer cells. Interestingly, complexes were not present on lymph node small resting B cells. Splenic small resting B cells expressed costimulatory activity and efficiently stimulated the Th2 clones only. The opposite pattern was observed with liver Kupffer cells, which expressed costimulatory activity for Th1 clones only. However, if costimulatory activity was provided for the Th2 clones (IL-1 beta) and Th1 clones (allogenic spleen cells), the clones did proliferate in response to Kupffer cells and small resting B cells, respectively. In this report we have demonstrated that 1) endogenously formed self Hb/Ia complexes are expressed on splenic small resting B cells and liver Kupffer cells but not on lymph node small resting B cells and 2) these APC are also able to limit the expression of costimulatory activity for Th2 and Th1 T cell clones. Thus, endogenous APC not only constitutively process and present the self-Ag Hb, but also limit expression of the costimulatory activity necessary to trigger T cell proliferation against a self-Ag. The constitutive processing and presentation of self-Ag, as well as the regulation of costimulatory activity on APC, is likely an important feature of the maintenance of self-tolerance.  相似文献   

7.
The identification of factors that regulate the proliferation and differentiation of double-positive (DP) into CD4(+) and CD8(+) single-positive (SP) thymocytes has proven difficult due to the inability of DP thymocytes to proliferate, expand, and differentiate into SP thymocytes in available cell culture media. Here we report on the ability of DP thymocytes to differentiate in a novel conditioned medium, termed XLCM, derived from the supernatant of mitogen activated human cord blood mononuclear cells. During a 5-day culture in XLCM in the absence of thymic stromal cells, DP thymocytes from normal mice and MHC double knockout mice (lack SP thymocytes) proliferate, expand, and differentiate into several (alphabetaTCR(+), NK1.1(+)alphabetaTCR(+), and gammadeltaTCR(+)) subsets of CD4(+) and predominantly CD8(+) SP thymocytes. These studies suggest that the use of XLCM may aid in the characterization of factors that regulate the differentiation of DP thymocytes into CD8(+) SP thymocytes.  相似文献   

8.
The mechanisms whereby interleukin 2 (IL 2), interferon-gamma (IFN-gamma), and B cell differentiation factor (BCDF) alone or in combination modulate human B cell differentiation are currently under intensive study. To dissect out the effects of individual lymphokines contained in mixed lymphocyte reaction-culture supernatants (MLR-CS) on B cell differentiation, we employed pure factors that possessed the same activity as factors contained in MLR-CS (IL 2: 50 U/ml, IFN-gamma: 7 U/ml, BCDF-Nal: 5 pM/ml, BCDF-YA2: 12.5% v/v) singly and in combination to human B cells. By activating purified human B cells with Staphylococcus aureus Cowan I (SAC) for 3 days, separating B blast cells by the Percoll centrifugation method, and then either using these B blast cells as B cells in the earlier stage after SAC-activation, or further culturing these B blast cells for 4 more days without any stimuli and using these B cells as B cells in the later stage after SAC-activation, we could define two different populations of cells. Disparity in the populations could be demonstrated by the observation that B cells in the earlier stage were 81.2% Tac-antigen+, 23.2% B2+, 68.9% transferrin receptor+, and 90.5% HLR-DR+, whereas B cells in the later stage were observed to be less positive for each surface antigen: 36.1% Tac-Ag+, 8.3% B2+, 45.3% transferrin receptor+, and 58.7% HLR-DR+. By adding each factor to both B cell fractions, we also demonstrated functional differences in the two populations. B cells in the earlier stage of activation only differentiated in response to IL 2 or IL 2 + IFN-gamma but not to BCDF, which was in contrast to B cells in the later stage that did not differentiate in response to IL 2 but did differentiate to BCDF. However, B cells in both stages proliferated in response to IL 2 but not to BCDF. Finally, we separated B cells in the later stage into two populations by the Percoll discontinuous gradient centrifugation. Lower density (larger) B cells were observed to proliferate but not to differentiate in response to IL 2, whereas higher density (smaller) B cells were observed to differentiate in response to BCDF. Therefore, we conclude that activated B cells initially become large and gain Tac-Ag and differentiate in response to IL 2 alone as well as the combination of IL 2 and IFN-gamma, whereas later in the more mature stage they become smaller again and differentiate into Ig-secreting cells only in response to BCDF.  相似文献   

9.
Early human pre-B cells were isolated from fetal bone marrow and induced to differentiate in vitro under the stimulus of phorbol myristic acid or leukocyte-conditioned medium during a 48-hr culture period. Tritiated thymidine culture experiments substantiated that changes in surface marker phenotypes were not the results of outgrowth of subsets responsive to these stimuli. Interestingly, the addition of monoclonal antibodies directed against CALLA resulted in neither proliferation nor differentiation of the fetal lymphoid progenitor cells. Distinct changes in cell surface phenotypes were observed without evidence of cellular enrichment or depletion. The number of CALLA- and TdT-positive cells decreased, whereas the number of B1- and sIgM-positive cells increased. Moreover, a small number of pre-B cells could be driven to a more mature phenotype with the appearance of B2 and sIgG. In contrast, the pan-B B4 antigen did not alter significantly. These changes were even more pronounced when both induction stimuli were present. These studies, and previous studies on the subsets and differentiation of non-T cell acute lymphoblastic leukemias, suggest an orderly acquisition of B cell antigens during the stages of pre-B cell differentiation in man.  相似文献   

10.
IL-21, the most recently described member of the common gamma-chain cytokine family, is produced by activated CD4 T cells, whereas CD8 T cells express the IL-21 receptor. To investigate a possible role for IL-21 in the priming of naive CD8 T cells, we examined responses of highly purified naive OT-I CD8 T cells to artificial APCs displaying Ag and B7-1 on their surface. We found that IL-21 enhanced OT-I clonal expansion and supported development of cytotoxic effector function. High levels of IL-2 did not support development of effector functions, but IL-2 was required for optimal responses in the presence of IL-21. IL-12 and IFN-alpha have previously been shown to support naive CD8 T cell differentiation and acquisition of effector functions through a STAT4-dependent mechanism. Here, we show that IL-21 does not require STAT4 to stimulate development of cytolytic activity. Furthermore, IL-21 fails to induce IFN-gamma or IL-4 production and can partially block IL-12 induction of IFN-gamma production. CD8 T cells that differentiate in response to IL-21 have a distinct surface marker expression pattern and are characterized as CD44(high), PD-1(low), CD25(low), CD134(low), and CD137(low). Thus, IL-21 can provide a signal required by naive CD8 T cells to differentiate in response to Ag and costimulation, and the resulting effector cells represent a unique effector phenotype with highly effective cytolytic activity, but deficient capacity to secrete IFN-gamma.  相似文献   

11.
Abstract A N-acetyl-D-galactosamine (GalNAc) specific bacterial lectin-like substance from Eikenella corrodens 1073 (EcLS) was found to have potent mitogenic activity when cultured with splenocytes from BALB/c mice. The results indicated that B lymphocytes are the major cell type responding to EcLS. The mitogenic activity of EcLS was dose-dependent, and the optimal concentration was around 5 μg/ml. The mitogenic activity did not appear to be due to a bacterial endotoxin, as GalNAc inhibited the mitogenic activity of EcLS, but did not inhibit the activity of lipopolysaccharide isolated from E. corrodens . EcLS stimulated murine B lymphocytes not only to proliferate, but also to differentiate into antibody-secreting cells, as demonstrated by the production of immunoglobulin by B lymphocytes stimulated with EcLS. These findings suggest that EcLS is a novel lectin that not only induces B lymphocyte proliferation, but also differentiation.  相似文献   

12.
Recent studies have shown that CD4(+) T cell help is required for the generation of memory CD8(+) T cells that can proliferate and differentiate into effector cells on Ag restimulation. The importance of help for primary CD8(+) T cell responses remains controversial. It has been suggested that help is not required for the initial proliferation and differentiation of CD8(+) T cells in vivo and that classical models of helper-dependent responses describe impaired secondary responses to Ag in vitro. We have measured primary CD8(+) T cell responses to peptide-pulsed dendritic cells in mice by cytokine ELISPOT and tetramer staining. No responses were detected in the absence of help, either when normal dendritic cells were injected into MHC II-deficient mice or when MHC II-deficient dendritic cells were injected into normal mice. Thus, the primary in vivo CD8(+) T cell response depends absolutely on help from CD4(+) T cells in our experimental system.  相似文献   

13.
The abilities of B cells from 24 young (mean 26 yr) and 24 elderly (mean 86 yr) humans to proliferate and differentiate into immunoglobulin-secreting cells (ISC) were investigated. Initial studies in young subjects demonstrated that a Staph protein A (SpA)-driven system could simultaneously assess the proliferative and differentiative capabilities of B cells resulting in IgM production. B cell proliferative responses were found to be partially T cell-dependent, whereas differentiation was absolutely T cell-dependent. Also, no significant differences could be detected in the abilities of nonproliferating allogeneic and autologous T cells to support B cell responsiveness. Although B cells from elderly subjects continuously exposed to SpA displayed proliferative responses equal to young subjects, the differentiation of B cells from elderly subjects into IgM ISC was markedly reduced as compared to young subjects. Analyses of results from co-culture experiments showed that the differentiation impairments of B cells from some elderly subjects could be partially corrected by allogeneic T cells from young subjects, whereas the impairments of others were more refractory. Moreover, T cells from elderly subjects were able to promote the differentiation of B cells from young subjects. Other experiments in elderly subjects showed that significant impairments of B and T cell functions rarely coexisted and that compensatory increases in B or T cell function were not evident. Thus, B cells from certain elderly humans have intrinsic impairments of differentiation required for optimal IgM production even though activation and proliferation remain normal in the presence of SpA. These impairments in differentiation are sometimes improved by T cells from young subjects, although in some elderly individuals, the differentiative impairments fail to be reversed.  相似文献   

14.
The use of anti-immunoglobulin (anti-Ig) antibodies to stimulate B cell proliferation (1-4), and to stimulate B cell differentiation in the presence of T cell derived-lymphokines (5-8), has simplified investigations into the mechanisms of B cell growth and maturation that are dependent on the cross-linking of surface Ig (sIg). It is only the ontogenetically late appearing Lyb-5+ murine splenic B cells, however, that proliferate in response to anti-Ig antibodies, whereas B cells of the Lyb-5- phenotype obtained from neonatal mice or from mice with the xid immune defect cannot be induced to proliferate in response to this stimulus (1, 9, 10). Thus, the analysis of B lymphocyte physiology of the Lyb-5- B cell population has been hampered by the unavailability of B cell stimulants that mimic an antigen-induced sIg cross-linking event that leads to B cell activation. The inability of soluble anti-Ig antibodies to induce the proliferation of Lyb-5- cells has been particularly difficult to explain because these cells can be induced to increase in size (11) and to show an increase in their expression of surface Ia (sIa) after exposure to anti-Ig (12). Apparently, therefore, these cells are not entirely refractory to this stimulus but are simply unable to progress to the latter stages of cell activation. In view of our observations that the cells of CBA/N mice cannot respond to soluble trinitrophenyl-(TNP) dextran or TNP-polyacrylamide (13) but can respond to insolubilized forms of these antigens, we evaluated their ability to respond to insolubilized anti-Ig. In this paper we report that B cells from CBA/N mice can be stimulated to proliferate in response to anti-Ig conjugated to Sepharose beads, but in contrast to normal B cells they need to be stimulated with beads expressing a high-epitope density of anti-Ig antibodies.  相似文献   

15.
In a primary MLR, predominant stimulators in spleen cells are adherent cells and not B cells, although B cells are one of the cell types expressing a large amount of Ia molecules. Our previous experiments showed that T cells treated with neuraminidase (Nase) responded to an allogeneic Ia on B cells. In our experiments, the relationship between the responsiveness to the allogeneic Ia molecules on B cells and Nase activity of T cells was examined. The results showed that T cells increased in Nase activity with the acquisition of the reactivity to Ia on B cells. T cells from normal mice increased in Nase activity after the incubation for 3 days or more in MLR, and these T cells responded to allogeneic Ia on B cells. However, T cells from mice genetically deficient in Nase responded poorly to the Ia on allogeneic B cells even after the incubation in MLR for 3 days. T cells incubated for 3 days in MLR decreased in electrophoretic mobility, indicating the decrease of net negative charge of the cells, and increased in their binding of peanut agglutinin which has been reported to bind to galactosyl residues exposed on T cell surface by removing sialic acids. These results suggest that Nase in T cells was activated by the cultivation in MLR for 3 days, and sialic acids of some molecules on T cell surface were removed by the enzyme and, in turn, T cells acquired the responsiveness to allogeneic B cells in a secondary MLR. Thus, Nase was suggested to play a regulatory role in the recognition of Ia molecules in T cells.  相似文献   

16.
B cell hybridomas with Ia and IgM molecules on the cell membrane were treated with either purified goat anti-mouse mu antibody (anti-mu) or monoclonal rat anti-mouse IgM antibody (anti-IgM). The spontaneous uptake of [3H] thymidine by these cells was markedly inhibited by both reagents. These hybrid cells could be induced to differentiate into IgM-secreting cells in the presence of these reagents at high frequency. Furthermore, the induction of IgM secretion by B cell hybridomas treated with these antibodies was completely T cell independent, and cell division was not required for the differentiative response to anti-mu. In addition, F(ab')2 fragments of anti-mu showed more effects on proliferation and differentiation of these cells than intact anti-mu. Interestingly, TH2.54, a subline of B cell hybridomas, could generate IgG2a production as well as IgM when incubated with anti-mu. These findings suggest very strongly that the interaction of either goat anti-mu or monoclonal rat anti-IgM with surface IgM molecules on the cell membrane of the B cell hybridomas inhibits in vitro spontaneous proliferation, and results in providing signals for differentiation into Ig-secreting cells without T cell factors.  相似文献   

17.
CD4 and CD8 T cells have been shown to proliferate and differentiate to different extents following antigenic stimulation. CD4 T cells form a heterogenous pool of effector cells in various stages of division and differentiation, while nearly all responding CD8 T cells divide and differentiate to the same extent. We examined CD4 and CD8 T cell responses during bacterial infection by adoptive transfer of CFSE-labeled monoclonal and polyclonal T cells. Monoclonal and polyclonal CD8 T cells both divided extensively, whereas monoclonal CD4 T cells underwent limited division in comparison with polyclonal CD4 T cells. Titration studies revealed that the limited proliferation of transferred monoclonal CD4 T cells was due to inhibition by a high precursor frequency of clonal T cells. This unusually high precursor frequency of clonal CD4 T cells also inhibited the differentiation of these cells. These results suggest that the adoptive transfer of TCR transgenic CD4 T cells significantly underestimates the extent of proliferation and differentiation of CD4 T cells following infection.  相似文献   

18.
Germinal center-B (GC-B) cells differentiate into memory B cells and plasma cells (PC) through interaction with T cells and follicular dendritic cells (FDC). Activated T cell and FDC play distinct roles in this process. The detailed kinetic experiments revealed that cytokines secreted by activated T cells determined the pathway of GC-B cell differentiation. IL-4 directs GC-B cells to differentiate into memory B cells, whereas IL-10 steers them into PC. FDC/HK cells do not direct either pathway, but provide signals for proliferation of GC-B cells. A novel FDC-signaling molecule 8D6 (FDC-SM-8D6) produced by FDC augments PC generation in the GC. FDC-SM-8D6-specific mAb blocked PC generation and IgG secretion but not memory B cell proliferation. COS cells expressing FDC-SM-8D6 enhanced GC-B cell proliferation and Ab secretion, which was blocked by mAb 8D6. In the cultures with B cell subsets, PC generation was inhibited by mAb 8D6 in the cultures with CD27(+) B cells but not in the culture with CD27(-) B cells, suggesting that CD27(+) PC precursor is the specific target of FDC-SM-8D6 stimulation.  相似文献   

19.
Rejection of ectopic heart transplants expressing OVA requires OVA-specific CD4 and CD8 T cells. In the absence of CD4 T cells, OVA-specific CD8 T cells proliferate and migrate to the graft, but fail to develop cytolytic functions. With CD4 T cells present, clonal expansion of the CD8 T cells is only marginally increased but the cells now develop effector functions and mediate rapid graft rejection. In the presence of CD4 T cells, Ag and B7 levels do not increase on dendritic cells but IL-12 production is up-regulated, and this requires CD154 expression on the CD4 T cells. OVA-specific CD8 T cells lacking the IL-12 receptor fail to differentiate or mediate graft rejection even when CD4 T cells are present. Thus, CD4 T cells condition dendritic cells by inducing the production of IL-12, which is needed as the "third signal" for CD8 T cell differentiation and avoidance of tolerance.  相似文献   

20.
Investigation of the activation of splenic B cells by anti-immunoglobulin (Ig) antibody has enabled us to characterize the anti-Ig-responsive B cell and to analyze the phenotypic changes which accompany proliferation and differentiation. The anti-Ig antibody-responsive B cell population was characterized by the expression of high levels of the B2 antigen and represented approximately 40% of splenic B cells. Brisk mitogenesis which peaked at 3 to 4 days was induced by anti-Ig antibody. The proliferative phase was characterized phenotypically by a dramatic decline in B2 antigen expression, with most cells showing no detectable B2 by 4 days post-activation. The other hallmark of this phase was de novo expression of a group of "activation antigens." These included the B cell-restricted antigens B-LAST 1, BB1, and B5, and the T cell-associated interleukin 2 receptor and T12 antigens. Concomitantly, B1, B4, and Ia expression increased, the increase being roughly proportional to the increase in cell size. After day 4, the mitogenic response progressively diminished, while Ig synthesis increased. During this differentiation phase, cell surface antigens again displayed a distinct sequence of changes. The five activation antigens and the B1, B4, and Ia antigens began to decrease. However, two markers, T10 and PCA-1, which are found on plasmacytomas, appeared and their level of expression steadily increased. These changes and the appearance of morphologically identifiable plasma cells required the presence of T cells in this system. T cell supernatants alone induced Ig secretion but did not induce expression of PCA-1 or the appearance of cells with plasma cell morphology. The culture system developed in this study has allowed us to analyze the antigenic changes following activation by anti-Ig antibody. This sequence of changes has not only permitted the identification of antigens which, by their appearance at distinct stages may have an important role in proliferation and differentiation of B cells, but also provides us with the means of studying the function of each antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号