首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dizdaroglu M 《Mutation research》2003,531(1-2):109-126
Reactive oxygen-derived species such as free radicals are formed in living cells by normal metabolism and exogenous sources, and cause a variety of types of DNA damage such as base and sugar damage, strand breaks and DNA-protein cross-links. Living organisms possess repair systems that repair DNA damage. Oxidative DNA damage caused by free radicals and other oxidizing agents is mainly repaired by base-excision repair (BER), which involves DNA glycosylases in the first step of the repair process. These enzymes remove modified bases from DNA by hydrolyzing the glycosidic bond between the modified base and the sugar moiety, generating an apurinic/apyrimidinic (AP) site. Some also possess AP lyase activity that subsequently cleaves DNA at AP sites. Many DNA glycosylases have been discovered and isolated, and their reaction mechanisms and substrate specificities have been elucidated. Most of the known products of oxidative damage to DNA are substrates of DNA glycosylases with broad or narrow substrate specificities. Some possess cross-activity and remove both pyrimidine- and purine-derived lesions. Overlapping activities between enzymes also exist. Studies of substrate specificities have been performed using either oligodeoxynucleotides with a single modified base embedded at a specific position or damaged DNA substrates containing a multiplicity of pyrimidine- and purine-derived lesions. This paper reviews the substrate specificities and excision kinetics of DNA glycosylases that have been investigated with the use of gas chromatography/mass spectrometry and DNA substrates with multiple lesions.  相似文献   

2.
Cellular genomes suffer extensive damage from exogenous agents and reactive oxygen species formed during normal metabolism. The MutT homologs (MutT/MTH) remove oxidized nucleotide precursors so that they cannot be incorporated into DNA during replication. Among many repair pathways, the base excision repair (BER) pathway is the most important cellular protection mechanism responding to oxidative DNA damage. The 8-oxoG glycosylases (Fpg or MutM/OGG) and the MutY homologs (MutY/MYH) glycosylases along with MutT/MTH protect cells from the mutagenic effects of 8-oxoG, the most stable and deleterious product known caused by oxidative damage to DNA. The key enzymes in the BER process are DNA glycosylases, which remove different damaged bases by cleavage of the N-glycosylic bonds between the bases and the deoxyribose moieties of the nucleotide residues. Biochemical and structural studies have demonstrated the substrate recognition and reaction mechanism of BER enzymes. Cocrystal structures of strated the substrate recognition and reaction mechanism of BER enzymes. Cocrystal structures of several glycosylases show that the substrate base flips out of the sharply bent DNA helix and the minor groove is widened to be accessed by the glycosylases. To complete the repair after glycosylase action, the apurinic/apyrimidinic (AP) site is further processed by an incision step, DNA synthesis, an excision step, and DNA ligation through two alternative pathways. The short-patch BER (1-nucleotide patch size) and long-patch BER (2–6-nucleotide patch size) pathways need AP endonuclease to generate a 3′ hydroxyl group but require different sets of enzymes for DNA synthesis and ligation. Protein-protein interactions have been reported among the enzymes involved in BER. It is possible that the successive players in the repair pathway are assembled in a complex to perform concerted actions. The BER pathways are proposed to protect cells and organisms from mutagenesis and carcinogenesis.  相似文献   

3.
Base excision repair (BER) is an evolutionarily conserved process for maintaining genomic integrity by eliminating several dozen damaged (oxidized or aikylated) or inappropriate bases that are generated endogenously or induced by genotoxicants, predominantly, reactive oxygen species (ROS). BER involves 4-5 steps starting with base excision by a DNA glycosylase, followed by a common pathway usually involving an AP-endonuclease (APE) to generate 3' OH terminus at the damage site, followed by repair synthesis with a DNA polymerase and nick sealing by a DNA iigase. This pathway is also responsible for repairing DNA single-strand breaks with blocked termini directly generated by ROS. Nearly all glycosylases, far fewer than their substrate lesions particularly for oxidized bases, have broad and overlapping substrate range, and could serve as back-up enzymes in vivo. In contrast, mammalian cells encode only one APE, APEI, unlike two APEs in lower organisms. In spite of overall similarity, BER with distinct subpathways in the mammals is more complex than in E. coli. The glycosylases form complexes with downstream proteins to carry out efficient repair via distinct subpathways one of which, responsible for repair of strand breaks with 3' phosphate termini generated by the NEIL family glycosylases or by ROS, requires the phosphatase activity of polynucleotide kinase instead of APE1. Different complexes may utilize distinct DNA polymerases and iigases. Mammalian glycosylases have nonconserved extensions at one of the termini, dispensable for enzymatic activity but needed for interaction with other BER and non-BER proteins for complex formation and organeile targeting. The mammalian enzymes are sometimes covalently modified which may affect activity and complex formation. The focus of this review is on the early steps in mammalian BER for oxidized damage.  相似文献   

4.
Ulbert S  Eide L  Seeberg E  Borst P 《DNA Repair》2004,3(2):145-154
Base excision repair (BER) is an evolutionarily conserved system which removes altered bases from DNA. The initial step in BER is carried out by DNA glycosylases which recognize altered bases and cut the N-glycosylic bond between the base and the DNA backbone. In kinetoplastid flagellates, such as Trypanosoma brucei, the modified base beta-D-glucosyl-hydroxymethyluracil (J) replaces a small percentage of thymine residues, predominantly in repetitive telomeric sequences. Base J is synthesized at the DNA level via the precursor 5-hydroxymethyluracil (5-HmU). We have investigated whether J in DNA can be recognized by DNA glycosylases from non-kinetoplastid origin, and whether the presence of J and 5-HmU in DNA has required modifications of the trypanosome BER system. We tested the ability of 15 different DNA glycosylases from various origins to excise J or 5-HmU paired to A from duplex oligonucleotides. No excision of J was found, but 5-HmU was excised by AlkA and Mug from Escherichia coli and by human SMUG1 and TDG, confirming previous reports. In a combination of database searches and biochemical assays we identified several DNA glycosylases in T. brucei, but in trypanosome extracts we detected no excision activity towards 5-HmU or ethenocytosine, a product of oxidative DNA damage and a substrate for Mug, TDG and SMUG1. Our results indicate that trypanosomes have a BER system similar to that of other organisms, but might be unable to excise certain forms of oxidatively damaged bases. The presence of J in DNA does not require a specific modification of the BER system, as this base is not recognized by any known DNA glycosylase.  相似文献   

5.
The base excision repair (BER) pathway is mainly responsible for the repair of a vast number of non-bulky lesions produced by alkylation, oxidation or deamination of bases. DNA glycosylases are the key enzymes that recognize damaged bases and initiate BER by catalyzing the cleavage of the N-glycosylic bond between the base and the sugar. Many of the mammalian DNA glycosylases have been identified by a combination of biochemical and bioinformatics analysis. Thus, a mammalian family of three proteins (NEIL1, NEIL2 and NEIL3) that showed homology to the Escherichia coli Fpg/Nei DNA glycosylases was identified. Two of the proteins, NEIL1 and NEIL2 have been thoroughly characterized and shown to initiate BER of a diverse number of oxidized lesions. However, much less is known about NEIL3. The biochemical properties of NEIL3 have not been elucidated. This is mainly due to the difficulty in the expression and purification of NEIL3. Here, we describe the expression and partial purification of full-length human NEIL3 and the expression, purification and characterization of a truncated human core-NEIL3 (amino acids 1–301) that contains the complete E. coli Fpg/Nei-like domain but lacks the C-terminal region.  相似文献   

6.
Since the discovery in 1974 of uracil DNA glycosylase (UDG), the first member of the family of enzymes involved in base excision repair (BER), considerable progress has been made in the understanding of DNA glycosylases, the polypeptides that remove damaged or mispaired DNA bases from DNA. We also know the enzymes that act downstream of the glycosylases, in the processing of abasic sites, in gap filling and in DNA ligation. This article covers the most recent developments in our understanding of BER, with particular emphasis on the mechanistic aspects of this process, which have been made possible by the elucidation of the crystal structures of several glycosylases in complex with their respective substrates, substrate analogues and products. The biological importance of individual BER pathways is also being appreciated through the inactivation of key BER genes in knockout mouse models.  相似文献   

7.
The mechanisms by which various DNA glycosylases initiate the base excision repair pathways are discussed. Fundamental distinctions are made between "simple glycosylases," that do not form DNA single-strand breaks, and "glycosylases/abasic site lyases," that do form single-strand breaks. Several groupings of BER substrate sites are defined and some interactions between these groupings and glycosylase mechanisms discussed. Two characteristics are proposed to be common among all BER glycosylases: a nucleotide flipping step that serves to expose the scissile glycosyl bond to catalysis, and a glycosylase transition state characterized by substantial tetrahedral character at the base glycosyl atom.  相似文献   

8.
Liu X  Liu J 《DNA Repair》2005,4(11):1295-1305
Repair of damaged DNA is of great importance in maintaining genome integrity, and there are several pathways for repair of damaged DNA in almost all organisms. Base excision repair (BER) is a main process for repairing DNA carrying slightly damaged bases. Several proteins are required for BER; these include DNA glycosylases, AP endonuclease, DNA polymerase, and DNA ligase. In some bacteria the single-stranded specific exonuclease, RecJ, is also involved in BER. In this research, six Chlamydiophila pneumoniae (C. pneumoniae) genes, encoding uracil DNA glycosylase (CpUDG), endonuclease IV (CpEndoIV), DNA polymerase I (CpDNApolI), endonuclease III (CpEndoIII), single-stranded specific exonuclease RecJ (CpRecJ), and DNA ligase (CpDNALig), were inserted into the expression vector pET28a. All proteins, except for CpDNALig, were successfully expressed in E. coli, and purified proteins were characterized in vitro. C. pneumoniae BER was reconstituted in vitro with CpUDG, CpEndoIV, CpDNApolI and E. coli DNA ligase (EcDNALig). After uracil removal by CpUDG, the AP site could be repaired by two BER pathways that involved in the replacement of either one (short patch BER) or multiple nucleotides (long patch BER) at the lesion site. CpEndoIII promoted short patch BER via its 5'-deoxyribophosphodiesterase (5'-dRPase) activity, while CpRecJ had little effect on short patch BER. The flap structure generated during DNA extension could be removed by the 5'-exonuclease activity of CpDNApolI. Based on these observations, we propose a probable mechanism for BER in C. pneumoniae.  相似文献   

9.
For all living organisms, genome stability is important, but is also under constant threat because various environmental and endogenous damaging agents can modify the structural properties of DNA bases. As a defense, organisms have developed different DNA repair pathways. Base excision repair (BER) is the predominant pathway for coping with a broad range of small lesions resulting from oxidation, alkylation, and deamination, which modify individual bases without large effect on the double helix structure. As, in mammalian cells, this damage is estimated to account daily for 10(4) events per cell, the need for BER pathways is unquestionable. The damage-specific removal is carried out by a considerable group of enzymes, designated as DNA glycosylases. Each DNA glycosylase has its unique specificity and many of them are ubiquitous in microorganisms, mammals, and plants. Here, we review the importance of the BER pathway and we focus on the different roles of DNA glycosylases in various organisms.  相似文献   

10.
11.
Despite the importance of DNA repair in protecting the genome, the molecular basis for damage recognition and repair remains poorly understood. In the base excision repair pathway (BER), DNA glycosylases recognize and excise damaged bases from DNA. This review focuses on the recent development of chemical approaches that have been applied to the study of BER enzymes. Several distinctive classes of noncleavable substrate analogs that form stable complexes with DNA glycosylases have recently been designed and synthesized. These analogs have been used for biochemical and structural analyses of protein—DNA complexes involving DNA glycosylases, and for the isolation of a novel DNA glycosylase. An approach to trap covalently a DNA glycosylase-intermediate complex has also been used to elucidate the mechanism of DNA glycosylases.  相似文献   

12.
Abstract

Transient protein–protein complexes are of great importance for organizing multiple enzymatic reactions into productive reaction pathways. Base excision repair (BER), a process of critical importance for maintaining genome stability against a plethora of DNA-damaging factors, involves several enzymes, including DNA glycosylases, AP endonucleases, DNA polymerases, DNA ligases and accessory proteins acting sequentially on the same damaged site in DNA. Rather than being assembled into one stable multisubunit complex, these enzymes pass the repair intermediates between them in a highly coordinated manner. In this review, we discuss the nature and the role of transient complexes arising during BER as deduced from structural and kinetic data. Almost all of the transient complexes are DNA-mediated, although some may also exist in solution and strengthen under specific conditions. The best-studied example, the interactions between DNA glycosylases and AP endonucleases, is discussed in more detail to provide a framework for distinguishing between stable and transient complexes based on the kinetic data.

Communicated by Ramaswamy H. Sarma  相似文献   

13.
For all living organisms, genome stability is important, but is also under constant threat because various environmental and endogenous damaging agents can modify the structural properties of DNA bases. As a defense, organisms have developed different DNA repair pathways. Base excision repair (BER) is the predominant pathway for coping with a broad range of small lesions resulting from oxidation, alkylation, and deamination, which modify individual bases without large effect on the double helix structure. As, in mammalian cells, this damage is estimated to account daily for 104 events per cell, the need for BER pathways is unquestionable. The damage-specific removal is carried out by a considerable group of enzymes, designated as DNA glycosylases. Each DNA glycosylase has its unique specificity and many of them are ubiquitous in microorganisms, mammals, and plants. Here, we review the importance of the BER pathway and we focus on the different roles of DNA glycosylases in various organisms.  相似文献   

14.
Repair of chemically modified bases in DNA is accomplished through base excision repair (BER). This pathway is initiated by a specific DNA glycosylase that recognizes and excises the altered base to yield an abasic (AP) site. After cleavage of the AP site by APE1, repair proceeds through re-synthesis and ligation steps. In mammalian cells, the XRCC1 protein, essential for the maintenance of genomic stability, is involved in both base excision and single-strand break repair. XRCC1 participates in the first step of BER by interacting with the human DNA glycosylases hOGG1 and NEIL1. To analyze the possibility of a general mechanism involving the interaction of XRCC1 with DNA glycosylases we used XRCC1 to pull-down DNA glycosylases activities from human cell extracts. XRCC1 co-purifies with DNA glycosylase activities capable of excising hypoxanthine and dihydrothymine, in addition to 8-oxoguanine, but not uracil. Biochemical analyses with the purified proteins confirmed the interactions between XRCC1 and MPG, hNTH1 or hNEIL2. Furthermore, XRCC1 stimulates the activities of these enzymes. In vivo localization studies show that after genotoxic treatments these DNA glycosylases can be found associated with XRCC1 foci. Our results support a BER model in which XRCC1 is recruited to the repair of alkylated or oxidized bases by the enzyme recognizing the lesion. XRCC1 would then coordinate the subsequent enzymatic steps and modulate the activities of all the proteins involved.  相似文献   

15.
DNA base-damage recognition in the base excision repair (BER) is a process operating on a wide variety of alkylated, oxidized and degraded bases. DNA glycosylases are the key enzymes which initiate the BER pathway by recognizing and excising the base damages guiding the damaged DNA through repair synthesis. We report here biochemical and structural evidence for the irreversible entrapment of DNA glycosylases by 5-hydroxy-5-methylhydantoin, an oxidized thymine lesion. The first crystal structure of a suicide complex between DNA glycosylase and unrepaired DNA has been solved. In this structure, the formamidopyrimidine-(Fapy) DNA glycosylase from Lactococcus lactis (LlFpg/LlMutM) is covalently bound to the hydantoin carbanucleoside-containing DNA. Coupling a structural approach by solving also the crystal structure of the non-covalent complex with site directed mutagenesis, this atypical suicide reaction mechanism was elucidated. It results from the nucleophilic attack of the catalytic N-terminal proline of LlFpg on the C5-carbon of the base moiety of the hydantoin lesion. The biological significance of this finding is discussed.  相似文献   

16.
Enzymology of repair of etheno-adducts   总被引:2,自引:0,他引:2  
Etheno(epsilon)-adducts such as 1,N(6)-ethenoadenine (epsilon A), 3,N(4)-ethenocytosine (epsilon C), N(2),3-ethenoguanine (N(2),3-epsilon G), and 1,N(2)-ethenoguanine (1,N(2)-epsilon G) are produced in cellular DNA by two independent pathways: (i) by reaction with oxidised metabolites of vinyl chloride, 2-chloroacetaldehyde and 2-chloroethylene oxide; (ii) by endogenous processes through the interaction of lipid peroxidation (LPO)-derived aldehydes and hydroxyalkenals. They have been found in DNA isolated from human and rodent tissues. However, the levels of adducts were significantly increased by cancer risk factors contributing to lipid peroxidation and oxidative stress.The highly mutagenic and genotoxic properties of epsilon-adducts have been established in vitro by analysing steady-state kinetics of primer extension assays and in vivo by site-specific mutagenesis in mammalian cells. Therefore, the repair processes eliminating exocyclic adducts from DNA should play a crucial role in maintaining the stability of genetic information. The epsilon-adducts are eliminated by the base excision repair (BER) pathway, with DNA glycosylases being the key enzymes of this pathway. They remove epsilon-adducts from DNA by hydrolysing the N-glycosidic bond between the damaged base and deoxyribose, leaving an abasic site in DNA. The ethenobase-DNA glycosylases have been identified and their enzymatic properties described. They are specific for a given epsilon-base although they can also excise different types of modified bases, such as alkylated purines, hypoxanthine and uracil. The fact that ethenoadducts are recognised and excised with high efficiency by various DNA glycosylases in vitro suggests that these enzymes may be responsible for repair of these mutagenic lesions in vivo, and thus constitute important contributors to genetic stability.  相似文献   

17.
The base excision repair pathway removes damaged DNA bases and resynthesizes DNA to replace the damage. Human alkyladenine DNA glycosylase (AAG) is one of several damage-specific DNA glycosylases that recognizes and excises damaged DNA bases. AAG removes primarily damaged adenine residues. Human AP endonuclease 1 (APE1) recognizes AP sites produced by DNA glycosylases and incises the phophodiester bond 5' to the damaged site. The repair process is completed by a DNA polymerase and DNA ligase. If not tightly coordinated, base excision repair could generate intermediates that are more deleterious to the cell than the initial DNA damage. The kinetics of AAG-catalyzed excision of two damaged bases, hypoxanthine and 1,N6-ethenoadenine, were measured in the presence and absence of APE1 to investigate the mechanism by which the base excision activity of AAG is coordinated with the AP incision activity of APE1. 1,N6-ethenoadenine is excised significantly slower than hypoxanthine and the rate of excision is not affected by APE1. The excision of hypoxanthine is inhibited to a small degree by accumulated product, and APE1 stimulates multiple turnovers by alleviating product inhibition. These results show that APE1 does not significantly affect the kinetics of base excision by AAG. It is likely that slow excision by AAG limits the rate of AP site formation in vivo such that AP sites are not created faster than can be processed by APE1.  相似文献   

18.
The interacting pathways for prevention and repair of oxidative DNA damage   总被引:22,自引:0,他引:22  
  相似文献   

19.
DNA base excision repair (BER) is initiated by DNA glycosylases that recognize and remove damaged bases. The phosphate backbone adjacent to the resulting apurinic/apyrimidinic (AP) site is then cleaved by an AP endonuclease or glycosylase-associated AP lyase to invoke subsequent BER steps. We have used a genetic approach in Saccharomyces cerevisiae to address whether AP sites are blocks to DNA replication and the biological consequences if AP sites persist in the genome. We found that yeast cells deficient in the two AP endonucleases (apn1 apn2 double mutant) are extremely sensitive to killing by methyl methanesulfonate (MMS), a model DNA alkylating agent. Interestingly, this sensitivity can be reduced up to 2500-fold by deleting the MAG1 3-methyladenine DNA glycosylase gene, suggesting that Mag1 not only removes lethal base lesions, but also benign lesions and possibly normal bases, and that the resulting AP sites are highly toxic to the cells. This rescuing effect appears to be specific for DNA alkylation damage, since the mag1 mutation reduces killing effects of two other DNA alkylating agents, but does not alter the sensitivity of apn cells to killing by UV, gamma-ray or H(2)O(2). Our mutagenesis assays indicate that nearly half of spontaneous and almost all MMS-induced mutations in the AP endonuclease-deficient cells are due to Mag1 DNA glycosylase activity. Although the DNA replication apparatus appears to be incapable of replicating past AP sites, Polzeta-mediated translesion synthesis is able to bypass AP sites, and accounts for all spontaneous and MMS-induced mutagenesis in the AP endonuclease-deficient cells. These results allow us to delineate base lesion flow within the BER pathway and link AP sites to other DNA damage repair and tolerance pathways.  相似文献   

20.
The quality of germ cell DNA is critical for the fate of the offspring, yet there is limited knowledge of the DNA repair capabilities of such cells. One of the main DNA repair pathways is base excision repair (BER) which is initiated by DNA glycosylases that excise damaged bases, followed by incision of the generated abasic (AP) sites. We have studied human and rat methylpurine-DNA glycosylase (MPG), uracil-DNA glycosylase (UNG), and the major AP endonuclease (HAP1/APEX) in male germ cells. Enzymatic activities and western analyses indicate that these enzymes are present in human and rat male germ cells in amounts that are at least as high as in somatic cells. Minor differences were observed between different cellular stages of rat spermatogenesis and spermiogenesis. Repair of methylated DNA was also studied at the cellular level using the Comet assay. The repair was highly efficient in both human and rat male germ cells, in primary spermatocytes as well as round spermatids, compared to rat mononuclear blood cells or hepatocytes. This efficient BER removes frequently occurring DNA lesions that arise spontaneously or via environmental agents, thereby minimising the number of potential mutations transferred to the next generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号