首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production of planktonic rotifers was studied in eutrophic Lake Ormajärvi. Of the total annual production of rotifers (2.9 g org. C m–2 or 231 mg dry weight m–3) 49% was achieved during one month (July) and 88% during 3 months of summer. The most important producers were Keratella cochlearis (1.2 g C m–2), Asplanchna priodonta (0.8 g C m–2) and Conochilus unicornis (0.6 g C m–2). The P/B ratio for the total rotifer community during the growing season (7 months) was 25.0; monthly P/ B values varied between 0.3 and 5.2. The daily P/ B values were highest among species of Collotheca. The relationships of rotifers to some biotic and abiotic factors (invertebrate predators — Mesocyclops, Cladocera, planktonic Protozoa and temperature) are briefly discussed.  相似文献   

2.
Macrozoobenthos of the ultraoligotrophic Lake 95 (61°N, 46°W, 8 ha, zmax=18 m, ) is composed of about 14 taxa dominated by 12 Chironomidae species. Abundance, life cycle, biomass and production were estimated for the six dominant taxa. Abundance declined fromca. 4150 at 2.5 m depth toca. 1400 ind m–2 at 16 m depth and averagedca. 3200 ind m–2 on a lakewide basis. By numbers,Heterotrissocladius changi andH. oliveri dominated the average fauna.H. changi was common at the 2.5 m and 5 m depth stations, whereasH. oliveri dominated from 5 m depth downwards. Chironomids showed mainly a 1-yr life cycle, but apparently bothHeterotrissocladius species had two contemporary cohorts with emergence in midsummer and late autumn/early spring, respectively. Average annual ratio was 4.2 and 4.6 forH. oliveri andH. changi, respectively. Annual production varied from 0.3 g ash-free dry weight (AFDW) m–2 y–1 at 16 m depth to 1.6 g AFDW m–2 y–1 at 2.5 m depthH. changi contributed 45%, fiveMicropsectra spp. 17% andH. oliveri 15% to total average production, which on a lakewide basis wasca. 1.1 g AFDW or 25 kJ m–2 y–1. Lake 95 thus belongs at the very low end of measured lake zoobenthic productions, which range from 10 kJ m–2 y–1 in Arctic lakes toca. 1600 kJ m–2 y–1 in highly eutrophic shallow lakes.  相似文献   

3.
López  B.  Sabaté  S.  Gracia  C.A. 《Plant and Soil》2001,230(1):125-134
The biomass, production and mortality of fine roots (roots with diameter <2.5 mm) were studied in a typical Mediterranean holm oak (Quercus ilex L.) forest in NE Spain using the minirhizotron methodology. A total of 1212 roots were monitored between June of 1994 and March of 1997. Mean annual fine root biomass in the holm oak forest of Prades was 71±8 g m–2 yr–1. Mean annual production for the period analysed was 260+11 g m–2 yr–1. Mortality was similar to production, with a mean value of 253±3 g m–2 yr–1. Seasonal fine root biomass presented a cyclic behaviour, with higher values in autumn and winter and lower in spring and summer. Production was highest in winter, and mortality in spring. In summer, production and mortality values were the lowest for the year. Production values in autumn and spring were very similar. The vertical distribution of fine root biomass decreased with increasing depth except for the top 10–20 cm, where values were lower than immediately below. Production and mortality values were similar between 10 and 50 cm depth. In the 0–10 cm and the 50–60 cm depth intervals, both production and mortality were lower.  相似文献   

4.
D. lumholtzi in Lake Samsonvale, Queensland, Australia, is a small species (max. size approx. 7 µgC) that occurs in low abundance (max. abundance 6400 m–3), with an average daily biomass of 3.32 mgC m–3. Its annual rates of carbon assimilation, production and respiration, are 166, 110, and 56 mgC m–3 y–1 respectively. Annual biomass turnover (annual production/average daily biomass) is 33 and production efficiency is 50–66%. The population may consume 1.65–2.20 mgC m–3 daily, equivalent to about 1% of the average daily standing crop of phytoplankton. Clutch size is small, 2 eggs, but represents 30–80% of a female's weight. A female may only produce 8–10 offspring in a full lifespan, nevertheless egg production may account for 56% of total production. The population shows autumn and spring peaks in abundance, and is believed to oversummer (4 months) as ephippia.  相似文献   

5.
The drift of zooplankton (rotifers, cladocerans, cyclopoid copepods) and microscopical zoobenthos (mainly bdelloid rotifers and small chironomid larvae) was investigated by filtering samples of river water. The number of drifting benthic rotifers varied between 1 000 and 6 000 ind. m–3 in the lake inlet, and between 30 and 500 ind. m–3 in the lake outlet, without any seasonal trend. The number of drifting insect larvae was approx. equal in the lake inlet and outlet, with a maximum in summer (250–300 ind. m–3) and minimum in winter (ca. 10 ind. m–3). Increasing water flow resulted in an increasing number of drifting zoobenthos. Downstream from the lake, the number of drifting benthic rotifers was increasing from approx. 300 ind. m–3 in the outlet to 6 500 ind. m–3 3.4 km downstream, while the number of insect larvae was ca. 100 ind. m–3 in the outlet and leveled off at approx. 300 ind. m–3 after 200 m. The number of drifting zooplankton in the lake outlet varied between 20 and 2 000 ind. m–3 for crustaceans, and between 300 and 20 000 ind. m–3 for rotifers, both with a maximum in late summer/autumn and a minimum in winter. The number of drifting zooplankton decreased by some 45% in the first 200 m from the lake outlet, but some zooplankton was still found in the drift 3.4 km downstream. The largest species was removed first from the drift. The diurnal variation in the number of drifting zooplankton in lake outlets appear to be related to the vertical migration in the lake, i.e. the largest number drifting when most animals are in the upper water layers.Contribution from the Voss Project, University of OsloContribution from the Voss Project, University of Oslo  相似文献   

6.
The seasonal variation of phytoplankton photosynthesis was measured with 14C-method in a warmed ice-free pond in central Finland. Simultaneously with in situ measurements the photosynthesis was also measured in an incubator with different water temperatures and constant light (ca. 16 W m–2). The total annual photosynthesis was 57.2 C m–2 a–1. The portion of the winter and spring production of the annual photosynthesis was 18.4%, that of the autumn production ws 17.4%. Thus 64.3% of the total annual phytoplankton photosynthesis occurred in the three summer months. The range of the daily integrated photosynthesis per unit area was 1.9—563 mg C m–2d–1. The photosynthetic rate per unit chlorophyll a varied in situ from 0.94 to 33.1 mg C (mg chl. a)–1 d–1. The highest value was measured in the beginning of July and the lowest in mid-January. The photosynthetic rate increased in situ exponentially with increasing water temperature. In the incubator the highest photosynthetic rate values were also found in July and August (at+20 °C) when the phytoplankton population was increasing and the minimum values occurred after every diatom maximum both in spring and autumn. Light was a limiting factor for photosynthesis from September to Mid-January, low water temperature was a limiting factor from late January through May. The efficiency of the photosynthesis varied between 0.1 and 0.7% of P.A.R. According to the incubator experiments the Q10 values for the photosynthesis were 2.45 and 2.44 for the winter population between 1 and 10° C and for the summer population between 5 and 15° C, respectively, but the Q10 values decrease at the higher temperatures. The main effect of the warm effluents on the yearly photosynthesis was the increase of production in spring months due to the lack of ice cover. However, the increase of total annual phytoplankton photosynthesis was only ca. 10–15%, because the water temperature was during the spring months below 10° C.  相似文献   

7.
The paper summarizes the results of a ten-year (1981–1991) zooplankton research on the Lake Loosdrecht, a highly eutrophic lake. The main cause of the lake's eutrophication and deteriorating water quality was supply up to mid 1984 of water from the River Vecht. This supply was replaced by dephosphorized water from the Amsterdam-Rhine Canal in 1984. The effects of this and other restoration measures on the lake's ecosystem were studied. Despite a reduction in the external P-load from ca. 1.0 g P m–2 y–1 to ca. 0.35 g m–2 y–1 now, the filamentous prokaryotes, including cyanobacteria and Prochlorothrix, continue to dominate the phytoplankton.Among the crustacean plankton Bosmina spp, Chydorus sp. and three species of cyclopoid copepods and their nauplii are quite common. Though there was no major change in the composition of abundant species, Daphnia cucullata, which is the only daphnid in these lakes, became virtually extinct since 1989. Among about 20 genera and 40 species of rotifers the important ones are: Anuraeopsis fissa, Keratella cochlearis, Filinia longiseta and Polyarthra. The rotifers usually peak in mid-summer following the crustacean peak in spring. The mean annual densities of crustaceans decreased during 1988–1991. Whereas seston (< 150 µm) mean mass in the lake increased since 1983 by 20–60%, zooplankton (> 150 µm) mass decreased by 15–35%.The grazing by crustacean community, which was attributable mainly to Bosmina, had mean rates between 10 and 25% d–1. Between 42 and 47% of the food ingested was assimilated. In spring and early summer when both rotifers and crustaceans have their maximal densities the clearance rates of the rotifers were much higher. Based on C/P ratios, the zooplankton (> 150 µm) mass contained 2.5 times more phosphorus than seston (< 150 µm) mass so that the zooplankton comprised 12.5 % of the total-P in total particulate matter in the open water, compared with only 4.5% of the total particulate C. The mean excretion rates of P by zooplankton varied narrowly between 1.5 and 1.8 µg P 1 d–1, which equalled between 14 and 28% d–1 of the P needed for phytoplankton production.The lack of response to restoration measures cannot be ascribed to one single factor. Apparently, the external P-loading is still not low enough and internal P-loading, though low, may be still high enough to sustain high seston levels. Intensive predation by bream is perhaps more important than food quality (high concentrations of filamentous cyanobacteria) in depressing the development of large-bodied zooplankton grazers, e.g. Daphnia. This may also contribute to resistance of the lake's ecosystem to respond to rehabilitation measures.  相似文献   

8.
Summary The soil fauna of a mull beech forest on lime-stone in southern Lower Saxony (West Germany) was sampled quantitatively. Biomass estimates, trophic characteristics, and measurement and calculation of the energetic parameters of the constituent animal populations were used to construct an energy budget of the total heterotrophic subsystem of the forest. Mean annual zoomass amounted to about 15 g d wt m–2; earthworms (about 10 g d wt m–2) and other groups of the macrofauna were dominant. Protozoa constituted about 1.5 g d wt m–2. Relative distribution of zoomass among the trophic categories was 50% macrosaprophages, 30% microsaprophages, 12% microphytophages, and 4% zoophages. Total annual consumption rate of the saprophagous and microphytophagous soil fauna (6328 and 4096 kJ m–2 yr–1, respectively) was of the same order of magnitude as annual litter fall (canopy leaves 6124 kJ m–2 yr–1, flowers and fruits 944 kJ m–2 yr–1, herbs 1839 kJ m–2 yr–1, fine woody material 870 kJ m–2 yr–1, tree roots 3404 kJ m–2 yr–1, without coarse woody litter). Primary decomposers (macrosaprophages) were the key group for litter comminution and translocation onto and into the soil, thus contributing to the high decomposition rate (k=0.8) for leaf litter. Consumption rates of the other trophic groups were (values as kJ m–2 yr–1): bacteriophages 2954, micromycophages 416, zoophages 153. Grazing pressure of macrophytophages (including rhizophages) was low. Faeces input from the canopy layer was not significant. Grazing pressure on soil microflora almost equalled microbial biomass; hence, a large fraction of microbial production is channelled into the animal component. Predator pressure on soil animals is high, as a comparison between consumption rates by zoophages and production by potential prey — mainly microsaprophages, microphytophages and zoophages — demonstrated. Soil animals contributed only about 11% to heterotrophic respiration. However, there is evidence that animals are important driving variables for matter and energy transfer: key processes are the transformation of dead organic material and grazing on the microflora. It is hypothesized that the soil macrosaprophages are donor-limited.  相似文献   

9.
James  Charles M.  Rezeq  T. Abu 《Hydrobiologia》1989,186(1):423-430
Continuous production of the rotifer Brachionus plicatilis rotundiformis (S-type) in an intensive chemostat culture system has been investigated. The production dynamics of rotifers in relation to different flow rates and feed regimes show that the growth rate and production depends on the type of algal feed and flow rate utilized in the culture system. It was possible to achieve a mean production of up to 318.84 × 106 rotifers m–3 d–1 at a flow rate of 6 1 h–1 in 100 1 chemostats and up to 261.21 × 106 rotifers m–3 d–1 at a flow rate of 40 1 h –1 while using 1 m3 capacity rotifer chemostats as production units. The 3 fatty acid composition of rotifers while using Chlorella and Nannochloropsis in the culture system has been described. The results of this investigation show that the rotifer productivity in the continuous culture system is considerably higher than in any of the conventional culture systems described to date for aquacultural purposes.This research was financed by the Kuwait Foundation for the Advancement of Sciences (KFAS), Kuwait, under a contract research project code 86-04-02.  相似文献   

10.
Biomass and production of plankton communities were investigated in two Chinese integrated fish culture ponds in August, Dianshanhu Pond (with high density of planktivorous carp) and Pingwang Pond (with low density of planktivorous carp). The plankton communities were composed of rotifers, protozoans, phytoplankton (<40 µm) and bacteria. The large phytoplankton (>40 µm), cladocerans and copepods were rare because of grazing pressure by the carp. The density or biomass of bacteria (1.93 × 107 and 2.20 × 107 cells ml–1 on average in Dianshanhu and Pingwang Ponds, respectively), picophytoplankton (24.6 and 18.5 mg m–3 Chla on average) and rotifers (5372 and 20733 ind. 1–1 on average) exceeded the maximum values reported for natural waters.The average [3H]thymidine uptake rates were 694 and 904 pmoles 1–1 h–1 (13.4 and 20.6 µgC 1–1) and the bacterial production by the >2 µm fraction amounted 21–28% of total [3H] thymidine uptake rate in both ponds. The mean chlorophylla concentrations were 59.1 and 183 mg m–3 in Dianshanhu and Pingwang Ponds, respectively. 82.4% and 65.3% of the total Chla was contributed by the <10 µm nano- and picophytoplankton in each pond, respectively. In particular, the picophytoplankton contribution amounted 41.2% of thtal Chla in Dianshanhu Pond. Primary production was 2.5 and 3.4 gC m–2 d–1 in each pond, respectively, and >50% of production was contributed by picophytoplankton. The mean biomasses of protozoa were 168 µg 1–1 and 445 µg 1–1 and those of rotifers were 763 µg 1–1 and 1186 µg 1–1 in Dianshanhu and Pingwang Ponds, respectively. The ecological efficiencies expressed in terms of the ratios of primary production to zooplankton production were 0.22 and 0.31, for the two ponds.  相似文献   

11.
Monthly samples of Corophium orientale were collected during February 1998–February 1999 in both parts of Monolimni lagoon (0.3 < Sal. < 6 psu, 2 < Temp. < 28.5 °C). Corophium orientaleshowed a semiannual life cycle. In the southern part, breeding occurred from early spring to mid autumn having three peaks, in early spring, early summer and early autumn, and three cohorts were produced, a spring cohort, a summer cohort and an overwintering one. In the shallower innermost northern part of Monolimni lagoon, breeding peaked in mid-spring and, also, in early autumn, and two discrete cohorts, a spring and an overwintering one, were produced. A lack of large individuals, attributed to a temporary size – selective predation by migrating shorebirds, was observed during summer. That lack possibly contributed to the hiatus in reproduction. Photoperiod seemed to be a more important cue than temperature in the initiation of the reproductive cycle, while extremely low salinities (<1 psu) did not deter breeding. Females attained maturity at a smaller size in late spring and, especially, in summer than in early spring at lower temperatures. Brood size was a function of females body size. Females, matured during summer at high temperatures, showed the lowest brood size, body length ratio. Mean brood size was small (12–13 early embryos) and embryo loss during development high (54%), possibly due to a negative effect of low salinities. A 1:1 sex ratio existed in the small body length classes, but females preponderated in the large ones. The spring cohort in the southern part, which developed at moderate temperatures, showed the highest growth rate (40 m day–1). Secondary production of C. orientalecalculated by Hyness method gave a mean annual density of 4562.5 and 9327.6 ind. m–2, a mean annual crop (B) of 1.03 and 2.67 g DW m–2, an annual production (P) of 6.91 and 22.54 g DW m–2 and a P/B ratio of 6.7 and 8.4 in the northern and southern part of the lagoon, respectively.  相似文献   

12.
A seasonal carbon budget for a laminarian population in a Scottish sea-loch   总被引:1,自引:0,他引:1  
Employing in situ SCUBA methods a seasonal carbon budget has been established for aLaminaria saccharina population in a Scottish sea-loch. Concurrent studies of photosynthesis, secretion rates, reserve fluctuations and frond growth were undertaken. Net annual production is in excess of 120 g C m–2 yr–1. Over 13% of gross carbon input is released as extracellular secretions (over 30% in autumn) and 40–50% is lost by distal decay, entering detrital food chains. The large concentrations of laminarin, synthesised in summer months, are nearly all lost in autumn-winter distal tissue loss and therefore not available for early spring growth.  相似文献   

13.
Annual primary production in 1990 in the Marsdiep amounted to about 250 g C.m–2, which is lower than during the mid 1980s, but still higher than the about 150 g C.m–2a–1 measured during the 1960s and early 1970s. The annual curve shows a clear spring peak and a broad but lower summer peak. Chloropyll-a showed a similar annual curve, the maximum of 35 mg.m–3 during the spring peak, as well as the annual average of 6 mg.m–3 were lower than during the late 1970s and the 1980s. Organic carbon values for 1990 were similar to those observed in 1978 to 1984. Turbidity (at high tide) at our sampling station did not change over the period 1973 to 1990. The high winter temperature of 1989/90 did not influence the timing of the phytoplankton spring bloom. The diatom spring peak is better related to light. With more light in spring and clearer water, the peak occurs earlier. The trend of an increase of the period of occurrence ofPhaeocystis continued.Phaeocystis colonies and single cells were present almost the year round, however, the maximum cell numbers ofPhaeocystis (80,000 ml–1) was relatively low. Newly formed colonies on spines of diatoms (Chaetoceros sp.,Bacteriastrum hyalinum) were observed in autumn. Its life-cycle remains enigmatic.Rhizosolenia indica, a warm water species, was observed for the first time in net-plankton samples, it occurred from September to December 1990.  相似文献   

14.
Weekly observations ofNeomysis intermedia in Lake Kasumigaura showed two major peaks in abundance during spring and autumn (more than 104 individuals m–2) and minimum levels in summer and winter (less than 103 individuals m–2). Their increase in abundance followed a high egg ratio, suggesting that the increase in abundance was caused by a high reproductive rate. Major contributors to mysid population decreases include fish predation and commercial fisheries, and possible horizontal migration of the mysids. N. intermedia showed two types of life history in the lake. One type (overwintering generation) has a life span of about 6–7 months and produces about 27 eggs per brood. Another, appearing from spring to autumn, matures in 3–6 weeks at a smaller size, and produces 12 eggs per brood. The reproductive season ofN. intermedia was continuous from March through November.  相似文献   

15.
Larvae of the caddisTrichostegia minor (Curtis) were collected from four woodland pools in The Netherlands, three of which are temporary, from August 1986 till June 1987. Eggs and larvae of this species proved to be very well adapted to drought, freezing, strongly fluctuating pH and alkalinity levels and prolonged oxygen deficit. The life cycle ofT.minor in a small woodland marsh overgrown byCalla palustris took one year. Adult flight period started at the end of May. Oviposition took place independent of water. Hatching of the eggs started in September and was probably induced by immersion. During the larval stage from September until May, 5 instars could be distinguished by the size of the head capsule. Growth of instars I, II and III during autumn was moderate. Most larvae overwintered as instar III or IV. Possibly there was a larval diapause during winter. In spring rapid growth to instar V took place prior to pupation. Growth rate, expressed as the increase of mean individual dry weight was highest from March to April (2.05±0.75% DW.m–2.d–1). In extremely shallow water growth in spring was initially more rapid compared to growth in deeper water. During winter the growth rate decreased to 0.038±0.071% DW.m–2.d–1. Net annual production based on the changes of momentary biomass was 183.2±31.7 mg DW.m–2.y–1 or 177.2±31.3 mg AFDW.m–2.y–1. Production loss during the winter season was 75.1±10.8 mg DW.m–2.y–1 or 72.3±10.6 mg AFDW.m–2.y–1.  相似文献   

16.
Primary production of Lake Peipsi-Pihkva   总被引:1,自引:0,他引:1  
Primary production (PP) in Lake Peipsi-Pihkva, the tripartite border waterbody between Estonia and Russia, was first measured in 1965–1966. Since 1970 there exists a continuous timeseries of monthly PP measurements from May to October. Detailed investigations of the seasonal and daily dynamics as well as the vertical distribution of PP were carried out in 1985–1987. The long-term average values of integral PP (PPint) in Lakes Peipsi and Pihkva were equal (0.8 g C m–2 d–1), although the values per cubic metre (PPmax) differed more than twofold and characterized L. Pihkva as a eutrophic lake and L. Peipsi as a transition type between meso- and eutrophic lakes. The years from 1973 to 1980, 1987 and 1991 were of low productivity, while in 1971, 1983, 1988 and 1990 PP peaks occurred in both lakes. In the seasonal pattern PPint had peaks in May and July. In June, after the spring bloom, PP as well as the chlorophyll a (Chl) and ATP content were low. The high Chl peak in autumn was probably built up by the degradation products of chlorophyll, as neither PP nor ATP increased. Seasonal changes in integral PP in L. Peipsi could be well described (R 2 = 0.91) by an empirical model relating PPint to PPmax, Secchi depth (S) and total solar radiation (Q). In mixed conditions prevailing in both lakes, PP was inhibited in the surface layer and its maximum was located at a depth of 0.25...0.5 S. The threshold total solar radiation level for the onset of inhibition was between 1200 and 2000 kJ m–2 h–1 in May and July, and decreased to < 500 kJ m–2 h–1 in October. As a rule, inhibition started in the morning at a higher irradiance than necessary for keeping it up during evening hours. When compared with PPmax, photosynthesis in the surface layer at noon was suppressed by 56% in May, by 45% in July and by 40% in October.  相似文献   

17.
Japanese monkeys, Macaca fuscata, living in a cool temperate forest experienced energy crises in winter. We measured feeding times and feeding rates (mass of foods eaten per unit time of feeding) in six different-sized, age–sex classes (1.2–12.6 kg body mass) in autumn and winter. One-, 2- and 3~4-year-olds spent 34–35% and 44–46% of the day feeding in autumn and winter, respectively. Monkeys less than 0 years old spent less time feeding (16–28%) than average in winter and autumn; adult females spent less (41%) in winter; and adult males spent less (25%) in autumn. All age–sex classes ate mainly fruits in autumn and the heavier classes fed more on tree bark than buds in winter. The feeding rate for fruits (2.3–53.5 g min–1) was nine to 12 times faster than those for buds (1.0– 4.8 g min–1) and bark (0.5–4.4 g min–1), and energy content did not differ among fruits (22.1 kJ g–1 dry mass), buds (19.9 kJ g–1 dry mass) and bark (23.2 kJ g–1 dry mass). Energy base feeding rates increased with body mass where the body mass exponent for buds (0.29) was smaller than those for bark (0.64) and fruits (0.63), which might be attributable to the unit size of food items and mass dependency of masticatory apparatus. Our monkeys obtained two to five times more energy in autumn (1567–1150 kJ day–1) than in winter (604–3020 kJ day–1). Adult females obtained 60% of expected energy expenditure and other classes obtained 77–88% of that in winter.  相似文献   

18.
Ruth Laxhuber 《Hydrobiologia》1987,147(1):189-196
Rotifer community structure of the oligotrophic, alpine lake KGnigssee was investigated from October 1982 to October 1983. Twenty different species were found, including several cold-stenothermal and oligotrophic species. Polyarthra vulgaris/dolichoptera, Kellicottia longispina and Keratella cochlearis were the most abundant species throughout the year, comprising 90% of the total rotifer community (2.8 × 106 individuals m–2, maximum). The remainder of the rotifer community was represented by as many as eight species which occured for a short time in summer and autumn. The rotifer community was limited to the upper 50 m (85–100%) in which most (60–80%) of the rotifers preferred the trophogenic layer (0–20 m). Species-specific depth preferences were observed. Rotifer abundance and distribution are discussed in terms of the specific environmental conditions in Königssee. The rotifer community of Konigssee is compared to that of Lake Constance in its former oligotrophic state.  相似文献   

19.
de Jong  D. J.  Nienhuis  P. H.  Kater  B. J. 《Hydrobiologia》1994,(1):183-195
During the period 1981–1990 the functioning of microphytobenthos in the carbon cycle was studied in the Oosterschelde, a mesotidal, euhaline estuary (SW Netherlands), both before and after completion of a storm-surge barrier in the sea ward entrance of the estuary in 1986, which reduced the tidal range to 88% and current velocities to 70% of their former values on average.The annual biomass cycle has changed from small spring and autumn peaks into a much larger summer peak. The average biomass during summer has increased from 70 to 170 mg Chlorophyll-a m2. The average annual biomass has increased from 115 to 195 mg Chlorophyll-a m2. As a consequence the (calculated) primary production by microphytobenthos has increased also, from 150 to 242 gC m–2 y–1 (14 045 to 22 265 tonnes C y–1), and its share in the total primary production of the Oosterschelde has increased from 16 to 30%. These increases in biomass and primary production are mainly ascribed to a decrease in the dynamic forces (water current velocities) over the intertidal flats in most parts of the basin. Increased water transparency in parts of the estuary and increased import of inorganic carbon from the water column towards shoals may have contributed as well.The rate of reworking of the top layer of the soil (0–10 cm) has not changed significantly, as the decrease in Chlorophyll-a biomass with depth has hardly changed.  相似文献   

20.
Hydrologic regime is an important control of primary production in wetland ecosystems. I investigated the coupling of flooding, soil salinity and plant production in northern prairie marshes that experience shallow spring flooding. Field experiments compared whitetop (Scolochloa festucacea) marsh that was: (1) nonflooded, (2) flooded during spring with 25 cm water and (3) nonflooded but irrigated with 1 cm water · day–1. Pot culture experiments examined whitetop growth response to salinity treatments. The electrical conductivity of soil interstitial water (ECe) at 15 cm depth was 4 to 8 dS· m–1 lower in flooded marsh compared with nonflooded marsh during 2 years. Whitetop aboveground biomass in flooded marsh (937 g · m–2, year 1; 969 g · m–2, year 2) exceeded that of nonflooded marsh (117 g · m–2 year 1; 475 g · m–2, year 2). Irrigated plots had lower ECe and higher aboveground biomass than nonflooded marsh. In pot culture, ECe of 4.3 dS · m–1 (3 g · L–1 NaCl) reduced total whitetop biomass by 29 to 44% and ECe of 21.6 dS · m–1 (15 g · L–1 NaCl) reduced biomass by more than 75%. Large reductions of ECe and increases of whitetop growth with irrigation indicated that plants responded to changes in soil salinity and not other potential environmental changes caused by inundation. The results suggest that spring flooding controls whitetop production by decreasing soil salinity during spring and by buffering surface soils against large increases of soil salinity after mid-summer water level declines. This mechanism can explain higher marsh plant production under more reducing flooded soil conditions and may be an important link between intermittent flooding and primary production in other wetland ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号