首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sensitivity and accuracy of molecular diagnosis of Salmonella from meat and poultry products using polymerase chain reaction (PCR) was compared with conventional microbiological methods. A total of 212 samples representing the most frequently used fresh and frozen meat and poultry products (whole, cut, ground, and processed) were collected from different locations within the city of Irbid. DNA was extracted directly from each food sample and amplified using Salmonella-specific primers. Samples were also analysed using conventional microbiological methods for the presence of Salmonella spp. Results showed that Salmonella was detected in 185 samples out of 212 (87%) by PCR technique, while 172 (81%) samples were detected Salmonella positive by conventional microbiological methods. On the other hand, 27 (12.7%) samples were negative by PCR and 40 (18.8%) samples were negative by conventional microbiological methods. PCR assay proved to be an effective method for Salmonella detection in meat and poultry products with high specificity and sensitivity and more importantly a less time-consuming procedure. Using PCR, Salmonella spp. detection could be achieved within 24–36 h compared to 3–8 days for the conventional microbiological methods.  相似文献   

2.
Loop-mediated isothermal amplification (LAMP) assay was effective in detecting Salmonella enterica in naturally contaminated liquid egg samples. Salmonella was detected in 110 samples taken from four egg-breaking plants. The egg samples were pre-enriched in buffered peptone water (BPW) at 37°C for 20 h. The selective enrichment was done in Rappaport-Vassiliadis or tetrathionate broth and plated onto xylose lysine deoxycholate agar and brilliant green agar, modified. In addition, the PCR assay was used to detect Salmonella after pre-enrichment in BPW at 37°C for 20 h. The culture method and PCR assay were compared to the LAMP assay, which was also performed after pre-enrichment in BPW. PCR failed to detect Salmonella in 10% of 110 samples, whereas the culture method and LAMP assay successfully identified Salmonella in all samples. However, the LAMP assay was found to be much more rapid than the culture method and as sensitive in detecting Salmonella from liquid eggs. In all of the egg-breaking plants studied, Salmonella was isolated on most tested days. The positive samples showed that more than 75% of the Salmonella strains had identical genetic patterns when analyzed by pulsed-field gel electrophoresis. This suggests that the same Salmonella strains having survived long periods of time in the plants were contaminating the production line. The LAMP assay is rapid, specific, and sensitive for Salmonella detection in liquid eggs and is able to monitor Salmonella contamination in egg-handling plants more reliably.  相似文献   

3.
A rapid, sensitive and cost-effective method was developed for detection of foodborne pathogens, particularly Salmonella species. The method utilizes single stranded DNA (ssDNA) probes and non-functionalized gold nanoparticles to provide a colorimetric assay for the detection of PCR amplified DNA. Different food samples were tested with the PCR-based colorimetric assay parallel with the conventional culture method. The sensitivity and specificity of colorimetric assay was 89.15 and 99.04% respectively with reference to conventional culture method. The total time required to detect the Salmonella spp. present in food samples by the developed method is less than 8 h, including 6 h incubation. It was observed that the colorimetric assay was 10 times more sensitive than gel-based detection with the same concentration of DNA used for analysis.  相似文献   

4.
Organisms of the genus Salmonella are detected in eggs and egg products within 24 hr in the presence of Pseudomonadaceae and other Enterobacteriaceae by combining selective cultural methods with fluorescent-antibody techniques. These techniques are specific for Salmonella when H antibodies are used. Absorption techniques are necessary before the O antibodies give specific reactions for Salmonella. No cross-reactions appear when H antiserum is used. Absorption and interference techniques indicate the test is specific for Salmonella.  相似文献   

5.
The performance of two new (1-day) culture methods, Salmonella Enrichment Broth (SEB) and Revive, and an alternative pre-enrichment broth, designated Universal pre-enrichment broth (UB), was compared to the internationally accepted buffered peptone water (BPW). The study was directed towards detection of Salmonella in 100 faecal samples from porcine and 100 neck-skin samples from poultry. The sensitivity (number of positive cases per method among all the positive cases) of the conventional pre-enrichment in BPW was found to be 0.77 for swine and 0.66 for poultry samples, while a combination of the BPW method with parallel pre-enrichment of the same sample in UB resulted in high sensitivity for swine (0.92) and poultry (0.95) samples. A 2-h pre-enrichment in the non-selective Revive, followed by overnight enrichment in selective broth, resulted in a low sensitivity, particularly for the neck-skin samples (0.16, P=0.001). The SEB method in the porcine samples resulted in a sensitivity (0.71) comparable to the standard method (P=0.31). In conclusion, additional pre-enrichment of samples in UB may substantially increase the culture sensitivity. During routine screening of large numbers of samples, it may be advantageous to use SEB rather than standard culturing.  相似文献   

6.
The aim of this study was to compare a real-time PCR assay, with a conventional culture/PCR method, to detect S. aureus, mecA and Panton-Valentine Leukocidin (PVL) genes in animals and retail meat, using a two-step selective enrichment protocol. A total of 234 samples were examined (77 animal nasal swabs, 112 retail raw meat, and 45 deli meat). The multiplex real-time PCR targeted the genes: nuc (identification of S. aureus), mecA (associated with methicillin resistance) and PVL (virulence factor), and the primary and secondary enrichment samples were assessed. The conventional culture/PCR method included the two-step selective enrichment, selective plating, biochemical testing, and multiplex PCR for confirmation. The conventional culture/PCR method recovered 95/234 positive S. aureus samples. Application of real-time PCR on samples following primary and secondary enrichment detected S. aureus in 111/234 and 120/234 samples respectively. For detection of S. aureus, the kappa statistic was 0.68–0.88 (from substantial to almost perfect agreement) and 0.29–0.77 (from fair to substantial agreement) for primary and secondary enrichments, using real-time PCR. For detection of mecA gene, the kappa statistic was 0–0.49 (from no agreement beyond that expected by chance to moderate agreement) for primary and secondary enrichment samples. Two pork samples were mecA gene positive by all methods. The real-time PCR assay detected the mecA gene in samples that were negative for S. aureus, but positive for Staphylococcus spp. The PVL gene was not detected in any sample by the conventional culture/PCR method or the real-time PCR assay. Among S. aureus isolated by conventional culture/PCR method, the sequence type ST398, and multi-drug resistant strains were found in animals and raw meat samples. The real-time PCR assay may be recommended as a rapid method for detection of S. aureus and the mecA gene, with further confirmation of methicillin-resistant S. aureus (MRSA) using the standard culture method.  相似文献   

7.
Contamination of retail poultry by Campylobacter spp. and Salmonella enterica is a significant source of human diarrheal disease. Isolation and identification of these microorganisms require a series of biochemical and serological tests. In this study, Campylobacter ceuE and Salmonella invA genes were used to design probes in PCR-enzyme-linked immunosorbent assay (ELISA), as an alternative to conventional bacteriological methodology, for the rapid detection of Campylobacter jejuni, Campylobacter coli, and S. enterica from poultry samples. With PCR-ELISA (40 cycles), the detection limits for Salmonella and Campylobacter were 2 × 102 and 4 × 101 CFU/ml, respectively. ELISA increased the sensitivity of the conventional PCR method by 100- to 1,000-fold. DNA was extracted from carcass rinses and tetrathionate enrichments and used in PCR-ELISA for the detection of Campylobacter and S. enterica, respectively. With PCR-ELISA, Salmonella was detected in 20 of 120 (17%) chicken carcass rinses examined, without the inclusion of an enrichment step. Significant correlation was observed between PCR-ELISA and cultural methods (kappa = 0.83; chi-square test, P < 0.001) with only one false negative (1.67%) and four false positives (6.67%) when PCR-ELISA was used to screen 60 tetrathionate enrichment cultures for Salmonella. With PCR-ELISA, we observed a positive correlation between the ELISA absorbance (optical density at 405 nm) and the campylobacter cell number in carcass rinse, as determined by standard culture methods. Overall, PCR-ELISA is a rapid and cost-effective approach for the detection and enumeration of Salmonella and Campylobacter bacteria on poultry.  相似文献   

8.
The recovery of salmonellae from egg products was studied, by use of three different enrichment procedures: (i) selenite broth, (ii) selenite broth containing 10% sterile feces, and (iii) the lactose pre-enrichment procedure. Brilliant Green Agar was used throughout as the recovery medium. Although the lactose pre-enrichment methodology promoted Salmonella recovery from samples containing small numbers of dormant organisms, the efficiency of this enrichment method is adversely affected by unfavorable coliform-Salmonella ratios. Under such conditions, early subculture of lactose broth into selenite broth is indicated. Selenite broth containing 10% sterile feces was more efficient than the lactose pre-enrichment methodology in promoting the growth of “dormant” salmonellae. Albumen adversely affected recovery of salmonellae from selenite broth, whereas whole egg and egg yolk enhanced Salmonella recovery from this medium. The selenite-feces medium presents a solution to the major problems encountered in the detection of salmonellae in egg products and offers an approach to a single medium in which food-borne salmonellae will manifest themselves with a minimum of laboratory manipulation.  相似文献   

9.
Diagnostic Real-Time PCR for Detection of Salmonella in Food   总被引:5,自引:0,他引:5       下载免费PDF全文
A robust 5′ nuclease (TaqMan) real-time PCR was developed and validated in-house for the specific detection of Salmonella in food. The assay used specifically designed primers and a probe target within the ttrRSBCA locus, which is located near the Salmonella pathogenicity island 2 at centisome 30.5. It is required for tetrathionate respiration in Salmonella. The assay correctly identified all 110 Salmonella strains and 87 non-Salmonella strains tested. An internal amplification control, which is coamplified with the same primers as the Salmonella DNA, was also included in the assay. The detection probabilities were 70% when a Salmonella cell suspension containing 103 CFU/ml was used as a template in the PCR (5 CFU per reaction) and 100% when a suspension of 104 CFU/ml was used. A pre-PCR sample preparation protocol including a preenrichment step in buffered peptone water followed by DNA extraction-purification was applied when 110 various food samples (chicken rinses, minced meat, fish, and raw milk) were investigated for Salmonella. The diagnostic accuracy was shown to be 100% compared to the traditional culture method. The overall analysis time of the PCR method was approximately 24 h, in contrast to 4 to 5 days of analysis time for the traditional culture method. This methodology can contribute to meeting the increasing demand of quality assurance laboratories for standard diagnostic methods. Studies are planned to assess the interlaboratory performance of this diagnostic PCR method.  相似文献   

10.
In Europe, alternative methods for the detection of food-borne pathogens can be used instead of the standard ISO/CEN reference protocol, if validated according to the protocol outlined in ISO 16140, 2003. In this study, the performance of two novel methods for the detection of Salmonella sp. using real-time PCR technology in tandem with an adapted two-step enrichment protocol were assessed and validated against a reference culture method, ISO 6579, 2004. The DNA and RNA real-time PCR assays amplified a 270 bp region of the hilA gene of Salmonella enterica serovars, and incorporated an internal amplification control (IAC) which was co-amplified with the hilA gene to monitor potential PCR inhibitors and ensure successful amplification. The inclusivity and exclusivity of the hilA primer set was examined for both the DNA and RNA methods and detected the 30 S. enterica serovars but not the 30 non-salmonellae strains. The inoculation of meat carcass swabs with five different S. enterica serovars at five different inocula, indicated both PCR methods were able to detect between 1 and 10 CFU per carcass swab. The real-time DNA PCR assay performed as well as the traditional cultural method in detecting Salmonella sp. in artificially contaminated salad, chocolate, fish and cheese samples. The relative accuracy, relative sensitivity and relative specificity of the DNA PCR real-time method were determined to be 98.5, 98.1 and 100%, respectively. The DNA method was further validated in a collaborative inter-laboratory trial according to ISO 16140, 2003. The validated methods provide an accurate means for the rapid detection and tracking of S. enterica serovars giving equivalent results to the standard method within three days, thus providing an alternative testing method to the reference microbiological method. The real-time PCR methodology not only offers significant time-saving advantages compared to traditional methods, it can also be applied to a wide range of samples types.  相似文献   

11.
A PCR procedure has been developed for routine analysis of viable Salmonella spp. in feed samples. The objective was to develop a simple PCR-compatible enrichment procedure to enable DNA amplification without any sample pretreatment such as DNA extraction or cell lysis. PCR inhibition by 14 different feed samples and natural background flora was circumvented by the use of the DNA polymerase Tth. This DNA polymerase was found to exhibit a high level of resistance to PCR inhibitors present in these feed samples compared to DyNAzyme II, FastStart Taq, Platinum Taq, Pwo, rTth, Taq, and Tfl. The specificity of the Tth assay was confirmed by testing 101 Salmonella and 43 non-Salmonella strains isolated from feed and food samples. A sample preparation method based on culture enrichment in buffered peptone water and DNA amplification with Tth DNA polymerase was developed. The probability of detecting small numbers of salmonellae in feed, in the presence of natural background flora, was accurately determined and found to follow a logistic regression model. From this model, the probability of detecting 1 CFU per 25 g of feed in artificially contaminated soy samples was calculated and found to be 0.81. The PCR protocol was evaluated on 155 naturally contaminated feed samples and compared to an established culture-based method, NMKL-71. Eight percent of the samples were positive by PCR, compared with 3% with the conventional method. The reasons for the differences in sensitivity are discussed. Use of this method in the routine analysis of animal feed samples would improve safety in the food chain.  相似文献   

12.
A DNA macroarray was developed to provide the ability to detect multiple foodborne pathogens in fresh chicken meat. Probes targeted to the 16S rRNA and genus- and species-specific genes, including fimY, ipaH, prfA, and uspA, were selected for the specific detection of Salmonella spp., Shigella spp., Listeria monocytogenes, and Escherichia coli, respectively. The combination of target gene amplification by PCR and a DNA macroarray in our system was able to distinguish all target bacteria from pure cultures with a detection sensitivity of 105 c.f.u. ml?1. The DNA macroarray was also applied to 10 fresh chicken meat samples. The assay validation demonstrated that by combining the enrichment steps for the target bacteria and the DNA macroarray, all 4 target bacteria could be detected simultaneously from the fresh chicken samples. The sensitivity of L. monocytogenes and Shigella boydii detection in the fresh chicken samples was at least 10 and 3 c.f.u. of the initial contamination in 25 g samples, respectively. The advantages of our developed protocol are high accuracy and time reduction when compared to conventional culture. The macroarray developed in our investigation was cost effective compared to modern oligonucleotide microarray techniques because there was no expensive equipment required for the detection of multiple foodborne pathogens.  相似文献   

13.
Rapid Fluorescent-Antibody Staining Technique   总被引:4,自引:3,他引:1       下载免费PDF全文
The rapid fluorescent-antibody staining technique described by Kellogg and Deacon for staining Neisseria gonorrhoeae and Treponema pallidum was applied to fluorescent-antibody tests for group A streptococci and enteropathogenic Escherichia coli. Results obtained with this staining technique were compared with results using the conventional staining procedure; excellent correlation was obtained. Considerable time and materials were saved by using the rapid method; it was also found completely satisfactory.  相似文献   

14.
We have detected PCR products from Salmonella spp. and Influenza A virus using Zn finger protein Zif268 and Sp1, respectively. Previously, we demonstrated a novel method of rapid and specific detection of PCR products from Legionella pneumophila genome using Zn finger protein Sp1. In principle, this methodology might be applied to the detection of most bacteria and viruses using various Zn finger proteins. Here, to demonstrate the wider applicability of our method, we detected PCR products from Salmonella spp. and the Influenza A virus. BLAST data indicated the Zif268 and Sp1 recognition sequence were located on the gyrB gene of Salmonella spp. and the nucleoprotein gene of Influenza A virus, respectively. The PCR products from the oligonucleotide corresponding to the gyrB gene of Salmonella spp. or the nucleoprotein gene of the Influenza A virus could be specifically detected by ELISA or fluorescence depolarization measurement using Zif268 or Sp1. These results indicate the wide applicability of our novel methodology.  相似文献   

15.
Aims: The study evaluated the efficiency of culture, enzyme‐linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) assays for the detection of Salmonella in naturally contaminated seafood. Methods and Results: In this study, 215 seafood samples comprising fish, shrimp, crab, clam, mussel, oyster, squid, cuttlefish and octopus from fish market of Cochin (India), were compared by culture, ELISA and PCR methods. Bacteriological Analytical Manual (BAM), U.S. Food and Drug Administration (USFDA) method was followed for culture assay, and Salmonella Tek, a commercial sandwich ELISA kit, was used for ELISA assay. Salmonella‐specific PCR assay was developed for 284 bp Salmonella‐specific invA gene amplicon. PCR assay exhibited 31·6% seafood positive for Salmonella followed by ELISA (23·7%) and culture method (21·3%). There was fair to excellent agreement between culture, ELISA and PCR assays (kappa coefficient values ranging from 0·385 to 1·0) for different seafood samples. Conclusion: The investigation revealed the greater concordance between culture and ELISA methods for seafood. Among the three methods, PCR assay was most sensitive. Lower detection rate with culture and ELISA assays could be attributed to greater sensitivity of the PCR method in the detection of Salmonella in seafood. Significance and Impact of the Study: We propose the incorporation of dual tests based on different principle and procedure for the routine analysis of Salmonella in seafood.  相似文献   

16.
A prospective cohort study was performed to evaluate the prevalences and loads of Salmonella and Campylobacter spp. in farm and processing plant samples collected from 55 commercial broiler chicken flocks. Environmental samples were collected from broiler houses within 48 h before slaughter, and carcass rinses were performed on birds from the same flocks at 4 different stages of processing. Salmonella was detected in farm samples of 50 (90.9%) flocks and in processing samples of 52 (94.5%) flocks. Campylobacter was detected in farm samples of 35 (63.6%) flocks and in processing samples of 48 (87.3%) flocks. There was a significant positive relationship between environmental farm samples and processing plant carcass rinses with respect to both Salmonella and Campylobacter prevalences and loads. Campylobacter loads were significantly higher than Salmonella loads, and the correlations between samples collected from the same flocks were higher for Campylobacter than they were for Salmonella. Boot socks were the most sensitive sample type for detection of Salmonella on the farm, whereas litter samples had the strongest association with Salmonella loads in pre- and postchill carcass rinses. Boot socks, drag swabs, and fecal samples all had similar sensitivities for detecting Campylobacter on the farm, and all were more strongly associated with Campylobacter loads in carcass rinses than were litter samples. Farm samples explained a greater proportion of the variability in carcass rinse prevalences and loads for Campylobacter than they did for Salmonella. Salmonella and Campylobacter prevalences and loads both decreased significantly as birds progressed through the processing plant.  相似文献   

17.
A fluorescence in situ hybridization (FISH) method for the rapid detection of Salmonella spp. using a novel peptide nucleic acid (PNA) probe was developed. The probe theoretical specificity and sensitivity were both 100%. The PNA-FISH method was optimized, and laboratory testing on representative strains from the Salmonella genus subspecies and several related bacterial species confirmed the predicted theoretical values of specificity and sensitivity. The PNA-FISH method has been successfully adapted to detect cells in suspension and is hence able to be employed for the detection of this bacterium in blood, feces, water, and powdered infant formula (PIF). The blood and PIF samples were artificially contaminated with decreasing pathogen concentrations. After the use of an enrichment step, the PNA-FISH method was able to detect 1 CFU per 10 ml of blood (5 × 109 ± 5 × 108 CFU/ml after an overnight enrichment step) and also 1 CFU per 10 g of PIF (2 × 107 ± 5 × 106 CFU/ml after an 8-h enrichment step). The feces and water samples were also enriched according to the corresponding International Organization for Standardization methods, and results showed that the PNA-FISH method was able to detect Salmonella immediately after the first enrichment step was conducted. Moreover, the probe was able to discriminate the bacterium in a mixed microbial population in feces and water by counter-staining with 4′,6-diamidino-2-phenylindole (DAPI). This new method is applicable to a broad spectrum of samples and takes less than 20 h to obtain a diagnosis, except for PIF samples, where the analysis takes less than 12 h. This procedure may be used for food processing and municipal water control and also in clinical settings, representing an improved alternative to culture-based techniques and to the existing Salmonella PNA probe, Sal23S10, which presents a lower specificity.Salmonella spp. are enteropathogenic bacteria that cause diseases that range from a mild gastroenteritis to systemic infections (5, 18) The disease severity is determined by the virulence characteristics of the Salmonella strain, host species, and host health condition. Phylogenetic analysis has demonstrated that the genus Salmonella includes two species: Salmonella bongori and Salmonella enterica. Salmonella strains are conventionally identified and classified according to the Kauffmann-White serotyping scheme, which is based on antigenic variation in the outer membrane (23). To date, more than 2,500 Salmonella serovars have been identified, and most of them are capable of infecting a wide variety of animal species and humans (33). Salmonella can be transmitted directly by person to person via the fecal-oral route or by contact with external reservoirs if fecal contamination of soil, water, and foods occurs. It is therefore necessary to develop robust detection methods for all of these sample types.The diagnostic method currently used for Salmonella detection is bacterial culture (International Organization for Standardization [ISO] method 6579:2002), a time-consuming and laborious process (40). A rapid and reliable tool to assist disease control management should aim to reduce salmonellosis in both people and animals. For this purpose a number of assays, such as the enzyme-linked immunosorbent assay (ELISA), PCR, and fluorescence in situ hybridization (FISH), have been developed to decrease the time required to identify Salmonella in food, feces, water, and other clinical samples (8, 10, 14, 15, 25, 26, 31, 41).Several authors have compared some of these approaches, especially culture-based, ELISA, and PCR methods, for Salmonella detection. Some authors found that PCR and ELISA-based methods failed to detect some samples that were positive by culture method (12, 13, 36, 39, 40). Even so, PCR-based methods have proved to be more accurate. Other work showed that when a selective enrichment step was performed before PCR, all Salmonella samples recovered by the culture method were detected. Moreover, the presence of Salmonella that was not recovered by the culture method could be detected by PCR (13, 35). These studies revealed that the enrichment step could increase the molecular assay sensitivity by eliminating problems such as the low numbers of bacteria and the presence of inhibitory substances in certain types of samples, such as food and fecal matter (11, 28, 36). However, PCR-based methods usually require a DNA extraction step, and none of the methods referred to above allows a direct, in situ visualization of the bacterium within the sample.FISH is a molecular assay widely applied for bacterial identification and localization within samples (2, 3). The method is usually based on the specific binding of nucleic acid probes to particular RNAs, due to their higher numbers of copies in the cells. There are already some studies reporting Salmonella detection by FISH using DNA probes (21, 29). A recently developed synthetic DNA analogue, named peptide nucleic acid (PNA), capable of hybridizing to complementary nucleic acid targets, has made FISH procedures easier and more efficient (38, 42). PNA-FISH methods have been successfully applied to the detection of several pathogenic microorganisms (6, 16, 17, 19, 22, 30, 34, 37, 42). For Salmonella, a PNA probe, designated Sal23S10, that targets the 23S rRNA of both Salmonella species has been already developed (31). However, the probe is also complementary to Actinobacillus actinomycetemcomitans, Buchnera aphidicola, and Haemophilus influenzae 23S rRNAs.In this paper, we identify and describe the design of a new fluorescently labeled PNA probe for the specific identification of the Salmonella genus. A novel, rapid, and reliable PNA-FISH method that can be easily applied to a great variety of sample types, either clinical or environmental, has consequently been developed and optimized.  相似文献   

18.
Background: We developed a novel method of methylation-specific PCR (MSP) using immunoprecipitation with anti-histone antibody (IP-MSP) to efficiently detect serum methylated DNA tightly bound to de-acetylated histones. Materials and methods: The detection limit of IP-MSP for p16 methylation was determined with a standard made by cell line (SKCO-1) lysate. p16 methylation of tumor and/or serum of 51 colorectal cancers and 10 adenoma patients, and 10 healthy volunteers was detected with conventional MSP or IP-MSP. Results: IP-MSP detected p16 methylation from 0.5 pg/μl of the cell lysate. The sensitivity of IP-MSP for detecting serum p16 methylation in 27 patients with tumors characterized by p16 methylation was significantly higher than that with conventional method (81% versus 59%), particularly in Stage II patients (91% versus 45%). IP-MSP detected no p16 hypermethylation in sera of adenoma patients and volunteers. Conclusions: IP-MSP is thus considered to be a promising procedure to detect serum methylated DNA in colorectal cancer patients.  相似文献   

19.
AIMS: The aim of this study was to compare the real-time iQ-Check Salmonella kit (Bio-Rad) with the immunocapture assay RapidCheck Salmonella method, and a conventional culture method (FSIS, USDA) in detecting Salmonella in naturally contaminated turkey meat products. This study was also designed to determine if a selective enrichment step might improve the real-time detection of Salmonella. METHODS AND RESULTS: Using the culture method, Salmonella was recovered from 49 out of 99 retail turkey meat samples collected. RapidCheck failed to detect 11 Salmonella samples that were positive by the culture method. The iQ-Check real-time PCR also failed to detect three samples that were positive by the culture method. However, when carried out after a selective enrichment step, the iQ-Check real-time PCR detected all 49 Salmonella samples recovered by the culture method. The iQ-Check real-time PCR detected the presence of Salmonella in some samples that were not recovered by the culture method. CONCLUSIONS: Adding a selective enrichment step to the iQ-Check real-time PCR improves the detection of Salmonella in naturally contaminated turkey meat samples. SIGNIFICANCE AND IMPACT OF THE STUDY: The iQ-Check Salmonella real-time PCR can be used as a rapid method to monitor Salmonella in turkey meat, together with conventional culture methodology.  相似文献   

20.
A sensitive and specific method has been developed to enumerate viable L. pneumophila and other Legionella spp. in water by epifluorescence microscopy in a short period of time (a few hours). This method allows the quantification of L. pneumophila or other Legionella spp. as well as the discrimination between viable and nonviable Legionella. It simultaneously combines the specific detection of Legionella cells using antibodies and a bacterial viability marker (ChemChrome V6), the enumeration being achieved by epifluorescence microscopy. The performance of this immunological double-staining (IDS) method was investigated in 38 natural filterable water samples from different aquatic sources, and the viable Legionella counts were compared with those obtained by the standard culture method. The recovery rate of the IDS method is similar to, or higher than, that of the conventional culture method. Under our experimental conditions, the limit of detection of the IDS method was <176 Legionella cells per liter. The examination of several samples in duplicates for the presence of L. pneumophila and other Legionella spp. indicated that the IDS method exhibits an excellent intralaboratory reproducibility, better than that of the standard culture method. This immunological approach allows rapid measurements in emergency situations, such as monitoring the efficacy of disinfection shock treatments. Although its field of application is as yet limited to filterable waters, the double-staining method may be an interesting alternative (not equivalent) to the conventional standard culture methods for enumerating viable Legionella when rapid detection is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号