首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The response of rapid light–response curves (RLCs) of variable fluorescence to changes in short- and long-term photoacclimation status was studied in an estuarine benthic diatom. The diatom Nitzschia palea was grown under low- (LL, 20 μmol m−2 s−1) and high-light (HL, 400 μmol m−2 s−1) conditions, with the purpose of characterising the effects of long-term photoacclimation on (i) steady-state light–response curves (LC) of relative electron transport rate, rETR, (ii) the response of RLCs to changes in ambient irradiance (E, the irradiance to which the sample is acclimated to immediately before the RLCs), (iii) the relationship of RLCs to LC parameters and non-photochemical quenching (NPQ). Photoacclimation to LL and HL conditions induced distinct light–response patterns of rETR and NPQ. Higher growth light resulted in rETR vs. E curves with lower initial slopes (α, 0.591 μmol−1 m2 s vs. 0.661 μmol−1 m2 s, for HL and LL, respectively) and markedly higher maximum rates (rETRm, 95.9 vs. 29.3), reached under higher E levels (higher light-saturation coefficient, Ek: 162.4 μmol m−2 s−1 vs. 44.3 μmol m−2 s−1). Acclimation to HL induced bi-phasic NPQ vs. E curves, with minimum values reached under low E levels (15–25 μmol m−2 s−1) and not on dark-acclimated samples. The response of RLCs to changes in ambient irradiance varied with the long-term photoacclimation status of the samples. The initial slope, αRLC, decreased monotonically with E in LL cultures, from 0.68 to 0.25 μmol−1 m2 s, while varied bi-phasically in HL-acclimated samples. Typically, αRLC of HL cultures increased under low E, reaching a maximum of 0.61 μmol−1 m2 s under 25–55 μmol m−2 s−1, and decreased gradually under higher E levels to 0.25 μmol−1 m2 s. RLC maximum rETR, rETRm,RLC, and saturation coefficient Ek,RLC, increased with E following a saturation-like pattern, with the HL cultures presenting markedly higher values for all the E range (maximum rETRm,RLC values were 108.6 and 33.4 for HL and LL cultures, respectively). An inverse relationship was consistently found between αRLC and NPQ, both on LL and HL cultures, causing strong correlations (P < 0.001 in all cases) between NPQ and the high light-induced decrease of αRLC, ΔαRLC. RLCs were confirmed to also provide information on the long-term photoacclimation status, as significant correlations (P < 0.001 both for HL and LL cultures) were verified between Ek and an index based on RLC parameters, Êk, both for LL and HL cultures. These results reinforce the usefulness of RLCs as a tool for inferring on the short- and long-term photoacclimation status of samples with different long-term light histories, through the estimation of LC parameters and the monitoring of NPQ levels.  相似文献   

3.
Susceptibility of a moss,Ceratodon purpureus (Hedw.) Brid., to photoinhibition and subsequent recovery of the photochemical efficiency of PSII was studied in the presence and absence of the chloroplast-encoded protein-synthesis inhibitor lincomycin.Ceratodon had a good capacity for repairing the damage to PSII centers induced by strong light. Tolerance against photoinhibition was associated with rapid turnover of the D1 protein, since blocking of D1 protein synthesis more than doubled the photoinhibition rate measured as the decline in the ratio of variable fluorescence to maximal fluorescence (Fv/Fmax). Under exposure to strong light in the absence of lincomycin a net loss of D1 protein occurred, indicating that the degradation of damaged D1 protein inCeratodon was rapid and independent of the resynthesis of the polypeptide. The result suggests that synthesis is the limiting factor in the turnover of D1 protein during photoinhibition of the mossCeratodon. The level of initial fluorescence (Fo) correlated with the production of inactive PSII centers depleted of D1 protein. The higher the Fo level, the more severe was the loss of D1 protein seen in the samples during photoinhibition. Restoration of Fv/Fmax at recovery light consisted of a fast and slow phase. The recovery of fluorescence yield in the presence of lincomycin, which was added at different times in the recovery, indicated that the chloroplast-encoded protein-synthesis-dependent repair of damaged PSII centers took place during the fast phase of recovery. Pulse-labelling experiments with [35S]methionine supported the conclusion drawn from fluorescence measurements, since the rate of D1 protein synthesis after photoinhibition exceeded that of the control plants during the first hours under recovery conditions.  相似文献   

4.
Recovery (at 20° C) of spinach (Spinacia oleracea L.) leaf sections from photoinhibition of photosynthesis was monitored by means of the fluorescence parameter FV/FM of intact leaf tissue and of PSII-driven electron-transport activity of isolated thylakoids. Different degrees of photoinactivation of PSII were obtained by preillumination in ambient air (at 4 or 20° C), CO2-free air or at low and high O2 levels (2 or 41 %) in N2. The kinetics of recovery exhibited two distinct phases. The first phase usually was completed within about 20-60 min and was most pronounced after preillumination in low O2. The slow phase proceeded for several hours leading to almost complete reactivation of PSII. Preincubation of the leaves with streptomycin (SM), which inhibits chloroplast-encoded protein synthesis, inhibited the slow recovery phase only, indicating the dependence of this phase on resynthesis of the reaction-centre protein, D1. The fast recovery phase remained largely unaffected by SM. Both phases were strongly but not totally dependent on irradiation of the leaf with low light. When SM was absent, net degradation of the D1 protein could neither be detected upon photoinhibitory irradiation nor during following incubation of the leaf sections in low light or darkness. In the presence of SM, net D1 degradation was seen and tended to increase with O2 concentration during photoinhibition treatment. Based on these data, we suggest that photoinactivation of PSII in vivo occurs in at least two steps. From the first step, reactivation appears possible in low light without D1 turnover (fast recovery phase). Action of oxygen then may lead to a second step, in which the D1 protein is affected and reactivation requires its removal and replacement (slow phase).Abbreviations Chl chlorophyll - F0, FM and FV initial, maximum total and maximum variable chlorophyll fluorescence yield, respectively - PFD photon flux density - SM streptomycin We thank Professor P. Böger (Department of Plant Physiology and Biochemistry, University of Konstanz, Germany) for a gift of D1-specific antibodies. The paper contains part of the thesis work of J.L. The study was supported by the Deutsche Forschungs-gemeinschaft (SFB 189).  相似文献   

5.
Biochemical and biophysical parameters, including D1-protein turnover, chlorophyll fluorescence, oxygen evolution activity and zeaxanthin formation were measured in the marine seagrassZostera capricorni (Aschers) in response to limiting (100 mol·m–2·–1), saturating (350 mol·m–2·s–1) or photoinhibitory (1100 mol·m–2·s–1) irradiances. Synthesis of D1 was maximal at 350 mol·m–2·s–1 which was also the irradiance at which the rate of photosynthetic O2 evolution was maximal. Degradation of D1 was saturated at 350 mol·m–2·s–1. The rate of D1 synthesis at 1100 mol·m–2·s–1 was very similar to that at 350 mol·m–2·s–1 for the first 90 min but then declined. At limiting or saturating irradiance little change was observed in the ratio of variable to maximal fluorescence (Fv/Fm) measured after dark adaptation of the leaves, while significant photoinhibition occurred at 1100 mol·m–2·s–1. The proportion of zeaxanthin in the total xanthophyll pool increased with increasing irradiance, indicative of the presence of a photoprotective xanthophyll cycle in this seagrass. These results are consistent with a high level of regulatory D1 turnover inZostera under non-photoinhibitory irradiance conditions, as has been found previously for terrestrial plants.We would like to thank Professor Peter Böger (Department of Plant Biochemistry, University of Konstanz, Germany) for the kind gift of D1 antibodies. This work was partly supported by a University of Queensland Enabling Grant to CC.  相似文献   

6.
Abstract In Synechococcus PCC 6301 ( Anacystis nidulans ) the imposition of nitrogen stress resulted in substantial losses of phycobiliproteins, lesser changes in chlorophyll-proteins and a dramatic change in carotenoid composition. In nitrogen-depleted cultures carotenoids continued to be synthesised, with the increase being accounted for by zeaxanthin with β-carotene content declining slightly. In these cultures zeaxanthin accounted for 75% of the carotenoid present compared to 43% in nitrogen-replete cells. Amounts of D1, a protein associated with the Photosystem II reaction centre, were similar in nitrogen-replete and nitrogen-starved cells; this retention was in accord with those of β-carotene and chlorophyll. On nitrate replenishment, zeaxanthin was not produced for 36 h, by which time β-carotene level had increased to restore the carotenoid composition characteristic of an exponential culture, and normal phycocyanin and chlorophyll levels had also been recovered. Throughout, the ratio of β-carotene to chlorophyll remained more-or-less constant.  相似文献   

7.
To determine the dependence of in vivo photosystem (PS) II function on photon exposure and to assign the relative importance of some photoprotective strategies of PSII against excess light, the maximal photochemical efficiency of PSII (Fv/Fm) and the content of functional PSII complexes (measured by repetitive flash yield of oxygen evolution) were determined in leaves of pea (Pisum satlvum L.) grown in moderate light. The modulation of PSII functionality in vivo was induced by varying either the duration (from 0 to 3 h) of light treatment (fixed at 1200 or 1800 mol photons · m-2 · s-1) or irradiance (from 0 to 3000 mol photons · m-2 · s-1) at a fixed duration (1 h) after infiltration of leaves with water (control), lincomycin (an inhibitor of chloroplast-encoded protein synthesis), nigericin (an uncoupler), or dithiothreitol (an inhibitor of the xanthophyll cycle) through the cut petioles of leaves of 22 to 24-day-old plants. We observed a reciprocity of irradiance and duration of illumination for PSII function, demonstrating that inactivation of functional PSII depends on the total number of photons absorbed, not on the rate of photon absorption. The Fv/Fm ratios from photoinhibitory light-treated leaves, with or without inhibitors, declined pseudo-linearly with photon exposure. The number of functional PSII complexes declined multiphasically with increasing photon exposure, in the following decreasing order of inhibitor effect: lincomycin > nigericin > DTT, indicating the central role of D1 protein turnover. While functional PSII and Fv/Fm ratio showed a linear relationship under high photon exposure conditions, in inhibitor-treated leaves the Fv/Fm ratio failed to reveal the loss of up to 25% of the total functional PSII under low photon exposure. The loss of this 25% of less-stable functional PSII was accompanied by a decrease of excitation-energy trapping capacity at the reaction centre of PSII (revealed by the fluorescence parameter, 1/Fo-1/Fm, where Fo and Fm stand for chlorophyll fluorescence when PSII reaction centres are open and closed, respectively), but not by a loss of excitation energy at the antenna (revealed by the fluorescence parameter, 1/Fm). We conclude that (i) PSII is an intrinsic photon counter under photoinhibitory conditions, (ii) PSII functionality is mainly regulated by D1 protein turnover, and to a lesser extent, by events mediated via the transthylakoid pH gradient, and (iii) peas exhibit PSII heterogeneity in terms of functional stability during photon exposure.Abbreviations D1 protein psbA gene product - DTT dithiothreitol - Fo chlorophyll fluorescence corresponding to open PSII reaction centres - Fv, Fm variable and maximum fluorescence after dark incubation, respectively - Fs, Fm steady-state and maximum fluorescence during illumination, respectively - P680 reactioncentre chlorophyll and primary electron donor of PSII - PS photosystem Financial support of this work by Department of Employment, Education and Training/Australian Research Council International Research Fellowships Program (Korea) is gratefully acknowledged.  相似文献   

8.
We investigated the effect of photosynthetic electron transport and of the photosystem II (PSII) chlorophyll (Chl) antenna size on the rate of PSII photoinhibitory damage. To modulate the rate of photosynthesis and the light-harvesting capacity in the unicellular chlorophyte Dunaliella salina Teod., we varied the amount of inorganic carbon in the culture medium. Cells were grown under high irradiance either with a limiting supply of inorganic carbon, provided by an initial concentration of 25 mM NaHCO3, or with supplemental CO2 bubbled in the form of 3% CO2 in air. The NaHCO3-grown cells displayed slow rates of photosynthesis and had a small PSII light-harvesting Chl antenna size (60 Chl molecules). The half-time of PSII photodamage was 40 min. When switched to supplemental CO2 conditions, the rate of photodamage was retarded to a t1/2 = 70 min. Conversely, CO2-supplemented cells displayed faster rates of photosynthesis and a larger PSII light-harvesting Chl antenna size (500 Chl molecules). They also showed a rate of photodamage with t1/2 = 40 min. When depleted of CO2, the rate of photodamage was accelerated (t1/2  = 20 min). These results indicate that the in-vivo susceptibility to photodamage is modulated by the rate of forward electron transport through PSII. Moreover, a large Chl antenna size enhances the rate of light absorption and photodamage and, therefore, counters the mitigating effect of forward electron transport. We propose that under steady-state photosynthesis, the rate of light absorption (determined by incident light intensity and PS Chl antenna size) and the rate of forward electron transport (determined by CO2 availability) modulate the oxidation/reduction state of the primary PSII acceptor QA, which in turn defines the low/high probability for photodamage in the PSII reaction center. Received: 14 August 1997 / Accepted: 26 September 1997  相似文献   

9.
The effects of light and elevated temperatures on the efficiency of energy conversion in PSII [?PSII = (Fm′−Fs)/Fm′], pigment composition and heat tolerance of shade-acclimated Alocasia macrorrhiza were investigated. Leaf discs were exposed for 3 h to high light (HL; 1600 μmol photons · m−2 · s−1) or low light (LL; 20 μmol photons · m−2 · s−1) and a series of constant temperatures ranging from 30 to 49 °C. All HL treatments led to rapid and severe decreases in ?PSII. During the 2-h recovery period (LL, 25 °C) following the HL treatments, fast and slow recovery phases could be distinguished. Leaf discs that had experienced HL and 30 °C recovered completely while no recovery of ?PSII was seen after a 3-h exposure to HL and 45 °C. A 3-h exposure to 45 °C at LL led to a less severe decrease in ?PSII and complete recovery was accomplished after less than 1 h. Under LL conditions a temperature of 49 °C was necessary to cause an irreversible decrease in ?PSII, followed by necrosis the next day. Streptomycin had no effect on the degree of reduction and recovery in ?PSII discs exposed to HL and 35–45 °C, but partially inhibited recovery in discs exposed to HL and 30 °C. Streptomycin led to a more severe decrease in ?PSII at LL and 49 °C and completely inhibited recovery. Streptomycin had no effect on the conversion of the xanthophyll-cycle pigments during the treatment or the recovery. The epoxidation state was roughly the same in all leaf discs after a 3-h HL treatment (0.270–0.346) irrespective of the exposure temperature. The back-conversion of zeaxanthin into violaxanthin after a 2-h recovery period was only seen in leaf discs that had been exposed to HL and 30 °C. The thermotolerance of shade A. macrorrhiza leaves of 49.0 ± 0.7 °C (determined by fluorescence) coincided with the temperature at which damage occurred in leaf discs exposed to LL. However, under HL the critical temperature under which necrosis occurred was much lower (42 °C). The thermotolerance of A. macrorrhiza shade leaves could be increased by a short exposure (<20 min) to slightly elevated temperatures. Received: 11 June 1997 / Accepted: 9 September 1997  相似文献   

10.
Pumpkin (Cucurbita pepo L.) leaves in which chloroplast protein synthesis was inhibited with lincomycin were exposed to strong photoinhibitory light, and changes in FO, FM, FV/FM and in the amount of functional Photosystem II (O2 evolution induced by saturating single-turnover flashes) were monitored during the high-light exposure and subsequent dark or low-light incubation. In the course of the photoinhibitory illumination, FM, FV/FM and the amount of functional PS II declined continuously whereas FO dropped rapidly to some extent and then slowly increased. If the experiments were done at room temperature, termination of the photoinhibitory illumination resulted in partial relaxation of the FV/FM ratio and in an increase in FO and FM. The relaxation was completed in 10–15 min after short-term (15 min) photoinhibitory treatment but continued 30–40 min if the exposure to high light was longer than 1 h. No changes in the amount of functional PS II accompanied the relaxation of FV/FM in darkness or in low light, in the presence of lincomycin. Transferring the leaves to low temperature (+4°C) after the room-temperature illumination (2 h) completely inhibited the relaxation of FV/FM. Low temperature did not suppress the relaxation if the photoinhibitory illumination had also been done at low temperature. The results indicate that illumination of lincomycin-poisoned pumpkin leaves at room temperature does not lead to accumulation of a reversibly photoinactivated intermediate.Abbreviations FO, FM chlorophyll fluorescence with all reaction centres open or closed, respectively - FV variable fluorescence (FV=FM–FO) - LHC Light-harvesting complex - PS II Photosystem II - QA, QB primary and secondary quinone electron acceptors of PS II, respectively - qNE, qNT, qNI non-photochemical quenching due to high-energy state, state transition or photoinhibition, respectively  相似文献   

11.
Generally there is a correlation between the amount of zeaxanthin accumulated within the chloroplast of oxygenic photosynthetic organisms and the degree of non-photochemical quenching (NPQ). Although constitutive accumulation of zeaxanthin can help protect plants from photo-oxidative stress, organisms with such a phenotype have been reported to have altered rates of NPQ induction. In this study, basic fluorescence principles and the routinely used NPQ analysis technique were employed to investigate excitation energy quenching in the unicellular green alga Dunaliella salina, in both wild type (WT) and a mutant, zea1, constitutively accumulating zeaxanthin under all growth conditions. The results showed that, in D. salina, NPQ is a multi-component process consisting of energy- or ΔpH-dependent quenching (qE), state-transition quenching (qT), and photoinhibition quenching (qI). Despite the vast difference in the amount of zeaxanthin in WT and the zea1 mutant grown under low light, the overall kinetics of NPQ induction were almost the same. Only a slight difference in the relative contribution of each quenching component could be detected. Of all the NPQ subcomponents, qE seemed to be the primary NPQ operating in this alga in response to short-term exposure to excessive irradiance. Whenever qE could not operate, i.e., in the presence of nigericin, or under conditions where the level of photon flux is beyond its quenching power, qT and/or qI could adequately compensate its photoprotective function.  相似文献   

12.
13.
Borya nitida Labill., a plant able to colonize rock outcrops and shallow sands in areas of high incident solar radiation in Western Australia, was examined for its tolerance to extremes of temperature, and to intense visible radiation. Stress injury to the leaves from heat, chilling or photoinhibitory light was followed by the decrease in in-vivo variable chlorophyll fluorescence. Heat injury was also ascertained by an increase in the constant fluorescence. Borya nitida leaves were extremely heat tolerant when heated at 1° C min-1. In-vivo variable chlorophyll fluorescence was detectable up to 55° C, several degrees higher than either maize or barley which are, respectively, adapted to warm and cool climates. An increase in constant fluorescence occurred above 50° C in B. nitida. This compares with values in the literature of 48–49° C for three desert plants from Death Valley, California, and 44–48° C for ten species of tropical plants. Unlike the Death-Valley plants, the high degree of heat tolerance found in B. nitida did not require prior acclimation by growth at high temperatures. Borya nitida was also tolerant of a chilling temperature of 0° C. Plants grown at a low photon fluence rate (120 mol m-2s-1) were irreversibly photoinhibited by light at 650 mol m-2s-1. Plants grown in sunlight resisted photoinhibition; however, the capacity to withstand photoinhibition was no greater than that of plants from less extreme environments.  相似文献   

14.
利用叶绿素荧光技术,对强光胁迫下以及叶黄素循环抑制剂-二硫苏糖醇(DTT)和D1蛋白合成抑制剂-硫酸链霉素(SM)处理后毛竹(Phyllostachys edulis (Carr.) Lehaie)的光抑制特征进行研究。结果显示:在夏季中午强光或人为强光胁迫下,毛竹叶片最大光化学效率Fv/Fm均显著降低;在下午光强减弱或黑暗、弱光条件下,Fv/Fm可有效恢复。DTT和SM均可抑制毛竹叶片非光化学淬灭(NPQ),且DTT效果明显优于SM。另外,在强光下,DTT和SM处理均能使毛竹叶片Fv/Fm、实际光化学效率Y(Ⅱ)和光化学淬灭qP等荧光参数下降幅度增大。研究结果表明毛竹叶片具有完善的光破坏防御机制,NPQ与叶黄素循环和D1蛋白周转紧密关联,在叶片光保护机制中具有重要作用。  相似文献   

15.
Temperature and nutrient supply are key factors that control phytoplankton ecophysiology, but their role is commonly investigated in isolation. Their combined effect on resource allocation, photosynthetic strategy, and metabolism remains poorly understood. To characterize the photosynthetic strategy and resource allocation under different conditions, we analyzed the responses of a marine cyanobacterium (Synechococcus PCC 7002) to multiple combinations of temperature and nutrient supply. We measured the abundance of proteins involved in the dark (RuBisCO, rbcL) and light (Photosystem II, psbA) photosynthetic reactions, the content of chlorophyll a, carbon and nitrogen, and the rates of photosynthesis, respiration, and growth. We found that rbcL and psbA abundance increased with nutrient supply, whereas a temperature-induced increase in psbA occurred only in nutrient-replete treatments. Low temperature and abundant nutrients caused increased RuBisCO abundance, a pattern we observed also in natural phytoplankton assemblages across a wide latitudinal range. Photosynthesis and respiration increased with temperature only under nutrient-sufficient conditions. These results suggest that nutrient supply exerts a stronger effect than temperature upon both photosynthetic protein abundance and metabolic rates in Synechococcus sp. and that the temperature effect on photosynthetic physiology and metabolism is nutrient dependent. The preferential resource allocation into the light instead of the dark reactions of photosynthesis as temperature rises is likely related to the different temperature dependence of dark-reaction enzymatic rates versus photochemistry. These findings contribute to our understanding of the strategies for photosynthetic energy allocation in phytoplankton inhabiting contrasting environments.  相似文献   

16.
Henrik Laasch 《Planta》1987,171(2):220-226
Non-photochemical quenching of chlorophyll a fluorescence after short-time light, heat and osmotic stress was investigated with intact chloroplasts from Spinacia oleracea L. The proportions of non-photochemical fluorescence quenching (q N ) which are related (q E ) and unrelated (q I ) to the transthylakoid proton gradient (pH) were determined. Light stress resulted in an increasing contribution of q Ito total q N.The linear dependence of q. Eand pH, as seen in controls, was maintained. The mechanisms underlying this type of quenching are obviously unaffected by photoin-hibition. In constrast, q Ewas severely affected by heat and osmotic stress. In low light, the response of q Eto changes in pH was enhanced, whereas it was reduced in high light. The data are discussed with reference to the hypothesis that q Eis related to thermal dissipation of excitation energy from photosystem II. It is shown that q Eis not only controlled by pH, but also by external factors.Abbreviations and symbols 9-AA 9-aminoacridine - F o basic chlorophyll fluorescence - F o variable chlorophyll fluorescence - L 2 saturating light pulse - PS photosystem - q E pH-dependent, non-photochemical quenching of fluorescence - q I pH-independent, non-photochemical quenching - q N entire non-photochemical quenching - q Q photochemical quenching  相似文献   

17.
The active site of the catalytic domain of stromelysin-1 (matrix metalloproteinase-3, MMP-3) was probed by fluorescence quenching, lifetime, and polarization of its three intrinsic tryptophans and by the environmentally sensitive fluorescent reporter molecule bisANS. Wavelength-dependent acrylamide quenching identified three distinct emitting tryptophan species, only one of which changes its emission and fluorescence lifetime upon binding of the competitive inhibitor Batimastat. Significant changes in the tryptophan fluorescence polarization occur upon binding by any of the three hydroxamate inhibitors Batimastat, CAS108383-58-0, and Celltech CT1418, all of which bind in the P2′-P3′ region of the active site. In contrast, the inhibitor CGS27023A, which is t hought to bind in the P1-P1′ region, does not induce any change in tryptophan fluorescence polarization. The use of the fluorescent probe bisANS revealed the existence of an auxiliary binding site extrinsic to the catalytic cleft. BisANS acts as a competitive inhibitor of stromelysin with a dissociation constant ofK i=22 μM. In addition to this binding to the active site, it also binds to the auxiliary site with a dissociation constant of 3.40±0.17 μM. The auxiliary site is open, hydrophobic, and near the fluorescing tryptophans. The binding of bisANS to the auxiliary site is greatly enhanced by Batimastat, but not by the other competitive inhibitors tested.  相似文献   

18.
The active site of the catalytic domain of stromelysin-1 (matrix metalloproteinase-3, MMP-3) was probed by fluorescence quenching, lifetime, and polarization of its three intrinsic tryptophans and by the environmentally sensitive fluorescent reporter molecule bisANS. Wavelength-dependent acrylamide quenching identified three distinct emitting tryptophan species, only one of which changes its emission and fluorescence lifetime upon binding of the competitive inhibitor Batimastat. Significant changes in the tryptophan fluorescence polarization occur upon binding by any of the three hydroxamate inhibitors Batimastat, CAS108383-58-0, and Celltech CT1418, all of which bind in the P2′-P3′ region of the active site. In contrast, the inhibitor CGS27023A, which is t hought to bind in the P1-P1′ region, does not induce any change in tryptophan fluorescence polarization. The use of the fluorescent probe bisANS revealed the existence of an auxiliary binding site extrinsic to the catalytic cleft. BisANS acts as a competitive inhibitor of stromelysin with a dissociation constant ofK i=22 μM. In addition to this binding to the active site, it also binds to the auxiliary site with a dissociation constant of 3.40±0.17 μM. The auxiliary site is open, hydrophobic, and near the fluorescing tryptophans. The binding of bisANS to the auxiliary site is greatly enhanced by Batimastat, but not by the other competitive inhibitors tested.  相似文献   

19.
Effects of foliar application of 100 mmol/L glycinebetaine (GB) on PS II photochemistry in wheat (Triticum aestivum) flag leaves under drought stress combined with high irradiance were investigated. The results show that GB-treated plants maintained a higher net photosynthetic rate during drought stress than non-GB treated plants. Exogenous GB can preserve the photochemical activity of PSII, for GB-treated plants maintain higher maximal photochemistry efficiency of PSII (F(v)/F(m)) and recover more rapidly from photoinhibition. In addition, GB-treated plants can maintain higher anti-oxidative enzyme activities and suffer less oxidative stress. Our data suggest that GB may protect the PSII complex from damage through accelerating D1 protein turnover and maintaining anti-oxidative enzyme activities at higher level to alleviate photodamage. Diethyldithiocarbamate as well as streptomycin treatment can impair the protective effect of GB on PSII. In summary, GB can enhance the photoinhibition tolerance of PSII.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号