共查询到20条相似文献,搜索用时 0 毫秒
1.
Exposure of isolated chloroplasts of pea (Pisum sativum L.) to temperatures above 35° C leads to a stimulation of photosystem-I-mediated electron transport from dichlorophenolindophenol to methyl viologen. The threshold temperature for this stimulation coincides closely with that for heat-induced inhibition of photosystem-II activity in such chloroplasts. This coincidence is explained in terms of a rearrangement of the thylakoid membrane resulting in the exposure of a new set of donor sites for dichlorophenolindophenol within the cytochrome f/b
6 complex of the electron-transport chain linking the two photosystems.Abbreviations cyt
cytochrome
- DBMIB
2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone
- DCPIP (H2)
2,6-dichlorophenolindophenol
- EDAC
ethyldimethylaminopropyl-carbodiimide
- MV
methyl viologen
- PSI, II
photosystem I, II
- PCy
plastocyanin
- PQ(H2)
plastoquinone 相似文献
2.
Robert T. Furbank 《Planta》1988,176(4):433-440
The relationship between the redox state of the primary electron acceptor of photosystem II (QA) and the rate of O2 evolution in isolated mesophyll chloroplasts from Zea mays L. is examined using pulse-modulated chlorophyll a fluorescence techniques. A linear relationship between photochemical quenching of chlorophyll fluorescence (qQ) and the rate of O2 evolution is evident under most conditions with either glycerate 3-phosphate or oxaloacetate as substrates. There appears to be no effect of the transthylakoid pH gradient on the rate of electron transfer from photosystem II into QA in these chloroplasts. However, the proportion of electron transport occurring through cyclic-pseudocyclic pathways relative to the non-cyclic pathway appears to be regulated by metabolic demand for ATP. The majority of non-photochemical quenching in these chloroplasts at moderate irradiances appeared to be energy-dependent quenching.Abbreviations and symbols PSII
photosystem II
- Fm
maximum fluorescence obtained on application of a saturating light pulse
- Fo
basal fluorescence recorded in the absence of actinic light (i.e. all PSII traps are open)
- Fv
Fm-Fo
- qQ
photochemical quenching
- qNP
non-photochemical quenching
- qE
energy-dependent quenching of chlorophyll fluorescence 相似文献
3.
Pea (Pisum sativum L. cv. Feltham First) plants were germinated and grown under two temperature regimes, one chilling (6–8° C) and one non-chilling (16–18° C), which are referred to as cold-grown and warm-grown, respectively. It was found that: (1) At saturating light intensity and with excess CO2, cold-grown leaves exhibited faster rates of oxygen evolution than warm-grown leaves when measured below 15° C. However when measurements were carried out above this temperature, the reverse relationship was observed. (2) Full-chain electron-transport measurements on thylakoids showed that those isolated from cold-grown plants had greater light-saturated uncoupled rates than their warm-grown equivalents at all temperatures between 3 and 19° C. (3) This difference was apparently not due to a greater activity of photosystem I or II in the thylakoids from cold-grown plants, but rather to a more rapid turnover of a dark step within the electron-transport chain. These results are interpreted in terms of a previously reported apparent homeoviscous adaptation of the pea thylakoid membrane to growth temperature (J. Barber, R.C. Ford, R.A.C. Mitchell, P.A. Millner, 1984, Planta 161, 375–380).Abbreviations Chl
chlorophyll
- DCMU
3-(3,4-dichlorophenyl)-1,1-dimethylurea
- DCPIPH2
reduced 2,6-dichlorophenolindophenol
- DMBQ
2,6-dimethyl-1,4-benzoquinone
- MV
methyl viologen
- PSI(II)
photosystem I(II) 相似文献
4.
Electron transport of normal and photobleachedAnabaena cylindrica was studied using spectral and kinetic analyses of absorbance transients induced by single turnover flashes. Between 500 and 600 nm two positive bands (540 and 566 nm) and two negative bands (515 and 554 nm) were found. Absorbance changes at 515 and 540 nm were partly characterized. None of these absorbance changes represent an electrochromic shift. Absorbance changes at 554 and 566 nm correspond to the oxidation of cytochromef and the reduction of cytochromeb
563, respectively. We found a very slight 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (DCMU) sensitivity of cytochromef in normal cells, while DCMU was completely ineffective for cytochromef reduction in photobleached cells. The absorbance change of cytochromeb
563 increased, while the absorbance change of cytochromef was smaller than in normal cells. The increased O2 evolution in photobleached cells and the negligible electron transport via cytochromef suggest the participation of other electron acceptor(s) in the electron-transport chain of photobleachedAnabaena cylindrica. 相似文献
5.
The uptake of leucine into isolated, intact, pea chloroplasts was investigated using the silicone oil centrifugation technique. The internal: external ratio of leucine exceeded unity at low external leucine concentrations. Uptake of leucine at different external concentrations showed passive diffusion and carrier-mediated transport components. Competition for uptake was shown between leucine and isoleucine but not between leucine and glycine. Rates of diffusion of leucine were found to be low compared with glycine, however, fast carrier-mediated transport of leucine assumed more importance at physiological concentrations.Abbreviations SIS
Sucrose impermeable space
- TWS
Tritiated water space
- SPS
Sucrose permeable space
- PGA
3-phosphoglyceric acid
- TCA
Trichloroacetic acid
- TLC
Thin layer chromatography 相似文献
6.
7.
In epidermal cells of the leaves of the aquatic angiosperm Vallisneria gigantea Graebner, the chloroplasts accumulate in the outer periclinal layer of cytoplasm (P side) under light at low fluence rates. The nature of such intracellular orientation of chloroplasts was investigated in a semiquantitative manner. Time-lapse video microscopy revealed that, while irradiation with red light (650 nm, 0.41 W · m–2) rapidly accelerated the migration of chloroplasts, not only from the anticlinal layers of cytoplasm (A sides) to the P side but also from the P side to the A sides, the increased rate of migration in both directions returned to the control rate upon subsequent irradiation with far-red light (746nm, 0.14W · m–2). These effects of red and far-red light could be observed repeatedly, both in the presence and in the absence of inhibitors of photosynthesis, suggesting the involvement of phytochrome as the photoreceptor. After saturating irradiation with red light, the increased rate of migration of chloroplasts from the P side to the A sides declined more rapidly than the increased rate of migration in the opposite direction. This imbalance in the migration of chloroplasts between the two opposing directions resulted in the accumulation of chloroplasts on the P side. The more rapid decline in the rate of migration of chloroplasts from the P side to the A sides than in the opposite direction was not observed in the presence of an inhibitor of photosynthesis. It appears, therefore, that phytochrome and photosynthetic pigment cooperatively regulate the accumulation of chloroplasts on the P side through modulation of the nature of the movement of the chloroplasts.Abbreviations A side
cytoplasmic layer that faces the anticlinal wall
- DCMU
3-(3,4-dichlorophenyl)-1,1-dimethylurea
- Pfr
farred-light-absorbing form of phytochrome
- Pr
red-light-absorbing form of phytochrome
- P side
cytoplasmic layer that faces the outer periclinal wall
This work was supported in part by Grants-in-Aid from the Japanese Ministry of Education, Science and Culture to S.T. and R.N. The authors are indebted to the Osaka branch of Kashimura Inc. for their kind cooperation in preparing the GREEN software. 相似文献
8.
Nucleoside diphosphate kinase (NDPK; EC 2.7.4.6) was enriched 1900-fold from purified pea (Pisum sativum L. cv. Golf.) chloroplasts. The active enzyme preparation contained two polypeptides of apparent molecular weight 18.5 kDa and 17.4kDa. Both proteins were enzymatically active and were recognized by an antiserum raised against NDPK from spinach chloroplasts, suggesting the existence of two isoforms in pea chloroplasts. The N-terminal protein sequence data were obtained for both polypeptides and compared with the nucleotide sequence of a cDNA clone isolated from a pea cDNA library. The analysis revealed that the two NDPK forms are encoded for by one mRNA, indicating that the lower-molecular-weight form could represent a proteolytic breakdown product of the 18.5-kDa NDPK. The pea chloroplastic NDPK is made as a larger precursor protein which is imported into chloroplasts. The NDPK precursor is then processed by the stromal processing peptidase to yield the 18.5-kDa form.Abbreviations NDPK
nucleoside diphosphate kinase
- preNDPK
precursor NDPK
- ps-NDPK
cDNA coding for Pisum sativum NDPK II
We thank Dr. Schmidt, University Göttingen, Germany, for doing the protein sequencing. This work was supported in part by grants from the Deutsche Forschungsgemeinschaft. 相似文献
9.
Lars F. Olsen 《BBA》1982,682(3):482-490
The kinetics of redox changes of P-700, plastocyanin and cytochrome f in chloroplasts suspended in a fluid medium at sub-zero temperatures have been studied following excitation of the chloroplasts with either a single-turnover flash, a series of flashes or continuous light. The results show that: (1) The kinetics of reduction of P-700+ and those of oxidation of plastocyanin are consistent with a bimolecular reaction between these two components as previously suggested (Olsen, L.F., Cox, R.P. and Barber, J. (1980) FEBS Lett. 122, 13–16). (2) Cytochrome f shows heterogeneity with respect to its kinetics of oxidation by Photosystem I. (3) In contrast to the situation when plastoquinol is the electron donor, reduction of cytochrome f by electrons derived from diaminodurene occurs with sigmoidal kinetics that shows a good fit to an apparent equilibrium constant of 12 between the cytochrome and P-700. (4) The rate of electron transfer from plastoquinol to Photosystem I depends on the redox state of the plastoquinone pool. (5) In relation to current ideas about the lateral heterogeneity of Photosystem I and Photosystem II in the thylakoid membrane, the results are consistent with the function of plastocyanin as a mobile carrier of electrons in the intrathylakoid space. 相似文献
10.
Oxygen ist reduced by the electron transport chain of chloroplasts during CO2 reduction. The rate of electron flow to oxygen is low. Since antimycin A inhibited CO2-dependent oxygen evolution, it is concluded that cyclic photophosphorylation contributes ATP to photosynthesis in chloroplasts which cannot satisfy the ATP requirement of CO2 reduction by electron flow to NADP and to oxygen. Inhibition of photosynthesis by antimycin A was more significant at high than at low light intensities suggesting that cyclic photophosphorylation contributes to photosynthesis particularly at high intensities. Cyclic electron flow in intact chloroplasts is under the control of electron acceptors. At low light intensities or under far-red illumination it is decreased by substrates which accept electrons from photosystem I such as oxaloacetate, nitrite or oxygen. Obviously, the cyclic electron transport pathway is sensitive to electron drainage. In the absence of electron acceptors, cyclic electron flow is supported by far-red illumination and inhibited by red light. The inhibition by light exciting photosystem II demonstrated that the cyclic electron transport pathway is accessible to electrons from photosystem II. Inhibition can be relieved by oxygen which appears to prevent over-reduction of electron carriers of the cyclic pathway and thus has an important regulatory function. The data show that cyclic electron transport is under delicate redox control. Inhibition is caused both by excessive oxidation and by over-reduction of electron carriers of the pathway. 相似文献
11.
(1) Oxidant-induced reduction of cytochrome b6 is completely dependent on a reduced component within the isolated cytochrome b6-f complex. This component can be reduced by dithionite or by NADH/N-methylphenazonium methosulfate. It is a 2H+/2e− carrier with a midpoint potential of 100 mV at pH 7.0, which is very similar to the midpoint potential of the plastoquinone pool in chloroplasts. (2) Oxidant-induced reduction of cytochrome b6 is stimulated by plastoquinol-1 as well as by plastoquinol-9. The midpoint potential of the transient reduction of cytochrome b6, however, was not shifted by added plastoquinol. (3) Quinone analysis of the purified cytochrome b6-f complex revealed about one plastoquinone per cytochrome f. The endogenous quinone is heterogeneous, a form more polar than plastoquinone-A, probably plastoquinone-C, dominating, This is different from the thylakoid membrane where plastoquinone-A is the main quinone. (4) The endogenous quinone can be extracted from the lyophilized cytochrome b6-f complex by acetone, but not by hydrocarbon solvents. Oxidant-induced reduction of cytochrome b6 was observed in the lyophilized and hexane-extracted complex, but was lost in the acetone-extracted complex. Reconstitution was achieved either with plastoquinol-1 or plastoquinol-9, suggesting that a plastoquinol molecule is involved in oxidant-induced reduction of cytochrome b6. 相似文献
12.
Yuichiro Takahashi 《Journal of plant research》1998,111(1):101-111
The photosystem I, photosystem II, and cytochromeb
6
f complexes that are involved in electron transport of oxygenic photosynthesis consist of a number of subunits encoded by either
the chloroplast or nuclear genomes. In addition to the major subunits that carry redox components or photosynthetic pigments,
these complexes contain several to more than ten subunits with molecular masses of less than 10 kDa. Directed mutagenesis
has served as a powerful tool for investigation of the roles of these small subunits in the organization or function of the
complexes. Various chloroplast transformants of the green algaChlamydomonas reinhardtii and mutants of cyanobacteria in which a gene encoding a small subunit was deleted or altered have been constructed. Evidence
has accumulated suggesting that these small subunits function in the assembly, stabilization, or protection from photoinhibition
of the complexes or in the modulation or regulation of electron transport. This article presents an overview of the properties
and functions of the chloroplast-encoded small subunits of the three multiprotein complexes of photosynthetic electron transport
that have been mainly analyzed with chloroplast transformants ofC. reinhardtii and the corresponding cyanobacterial transformants.
Recipient of the Botanical Society Award for Young Scientists, 1995. 相似文献
13.
Arginine transport in suspension-cultured cells of Nicotiana tabacum L. cv. Wisconsin-38 was investigated. Cells that were preincubated in the presence of Ca2+ for 6 h prior to transport exhibited stimulated transport rates. After the preincubation treatment, initial rates of uptake were constant for at least 45 min. Arginine accumulated in the cells against a concentration gradient; this accumulation was not the result of exchange diffusion. Arginine uptake over a concentration range of 2.5 M to 1 mM was characterized by simple Michaelis-Menten kinetics with a Km of 0.1 mM and a Vmax of 9,000 nmol g-1 fresh weight h-1. Transport was inhibited by several compounds including carbonylcyanide-m-chlorophenylhydrazone, 2,4-dinitrophenol, N,N-dicyclohexylcarbodiimide, and N-ethylmaleimide. Inhibition by these compounds was not the result of increased efflux resulting from membrane damage. A variety of amino acids and analogs, with the exception of D-arginine, inhibited transport, indicating that arginine transport was mediated by a general L-aminoacid permease. Competition experiments indicated that arginine and lysine exhibited cross-competition for transport, with Ki values similar to respective Km values. Arginine transport and low-affinity lysine transport are probably mediated by the same system in these cells.Abbreviations BTP
Bis Tris Propane
- CCCP
Carbonylcyanide-m-chlorophenylhydrazone
- DCCD
N,N-dicyclohexylcarbodiimide
- DNP
2,4-dinitrophenol
- DTT
Dithiothreitol
- NEM
N-ethylmaleimide
- MES
2(N-morpholino)ethanesulfonic acid
- TCA
trichloroacetic acid
This paper is the third in a series on amino-acid transport into cultured tobacco cells. For parts I and II, see Harrington and Henke (1981) and Harrington et al. (1981) 相似文献
14.
15.
16.
Inhibition of photosynthetic reactions by light 总被引:8,自引:0,他引:8
Illumination of isolated intact chloroplasts of Spinacia oleracea L. for 10 min with 850 W m-2 red light in the absence of substrate levels of bicarbonate caused severe inhibition of subsequently measured photosynthetic activities. The capacity of CO2-dependent O2 evolution and of non-cyclic electron transport were impaired to similar degrees. This photoinactivation was prevented by addition of bicarbonate which allowed normal carbon metabolism to proceed during preillumination. Photoinhibition of electron transport was observed likewise upon illumination of intact or broken chloroplasts when efficient electron acceptors were absent. Addition of uncouplers did not influence the extent of inhibition. Studies of partial electron-transport reactions indicated that the activity of both photosystems was affected by light. In addition, the water-oxidation system or its connection to photosystem II seemed to be impaired. Preillumination did not cause uncoupling of photophosphorylation. Chlorophyll-fluorescence data obtained at room temperature and at 77 K are consistent with the view that photosystem-II reaction centers were altered. Addition of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6) or 1,4-diazabicyclo(2,2,2)octane to isolated thylakoids prior to preillumination substantially diminished photoinhibition. This result shows that reactive oxygen species were involved in the damage. It is concluded that bright light, which normally does not damage the photosynthetic apparatus, may exert the described destructive effects under conditions that restrict metabolic turnover of photosynthetic energy.Abbreviations Chl
chlorophyll
- DCMU
3-(3,4-dichlorophenyl)-1,1-dimethylurea
- PSI
photosystem I
- PSII
photosystem II 相似文献
17.
Carnitine-acetyltransferase (EC 2.3.1.7) and carnitine-palmitoyltransferase (EC 2.3.1.21) activities were shown to be present in chloroplasts of green pea leaves and possibly to occur in leaf mitochondrial and peroxisomal fractions. A role for the enzymes in the transfer of acyl groups across membranes is suggested. 相似文献
18.
Pyridazinone herbicides, SANDOZ 9785 (4-chloro-5-dimethylamino2-phenyl-3-(2H) pyridazinone), SANDOZ 9789 (4-chloro-5 (methylamino)-2-(α,
α, α-trifluoro-m-tolyl-3-(2H) pyridazinone) and SANDOZ 6706 (4-chloro-5-(methylamino)-2-(α, α, α-trifluoro-m-tolyl-3-(2H)
pyridazinone) inhibited photosystem II electron transport inChlorella protothecoides, when the herbicides were added to the assay medium. The inhibitory eficiency varied with the algal species and the nature
of substitution of pyridazinones. Using 3 algal systemsviz., Chlorella, Scenedesmus andAnacystis, the I50 value of for the inhibition of photosynthesis of 3 substituted pyridazinones (SANDOZ 9785, SANDOZ 6706 and SANDOZ 9789) were
determined. SANDOZ 9789 was found to be the weakest inhibitor of photosystem II electron transport (H2O→ benzoquinone) as compared to SANDOZ 9785 and SANDOZ 6706. In general, the order of inhibition could be given as SANDOZ
6706 >- SANDOZ 9785 > SANDOZ 9789. The I50 value of photosynthetic particles obtained fromChlorella cells was similar to that of whole cells, suggesting that the cell wall ofChlorella did not act as a barrier for the herbicide action. Studies on the light intensity dependence of SANDOZ 9785 inhibition of
electron transport (H2O→ benzoquinone) showed that the light-dependent portion of the curve was more sensitive than the light independent portion
of the curve. It is suggested that the site of action was on the reducing side of photosystem II. 相似文献
19.
Effects of water stress on photosynthetic electron transport,photophosphorylation, and metabolite levels of Xanthium strumarium mesophyll cells 总被引:1,自引:0,他引:1
Several component processes of photosynthesis were measured in osmotically stressed mesophyll cells of Xanthium strumarium L. The ribulose-1,5-bisphosphate regeneration capacity was reduced by water stress. Photophoshorylation was sensitive to water stress but photosynthetic electron transport was unaffected by water potentials down to-40 bar (-4 MPa). The concentrations of several intermediates of the photosynthetic carbon-reduction cycle remained relatively constant and did not indicate that ATP supply was limiting photosynthesis in the water-stressed cells.Abbreviations Hepes
4-(2-hydroxyethyl)-1-piperazinepropanesulfonic acid
- PGA
3-phosphoglyceric acid
- RuBP
ribulose-1,5-bisphosphate 相似文献
20.
Dibromothymoquinone has been shown to inhibit light-induced cytochrome b reduction, and oxidation of succinate and NADH by chromatophores of Rhodopseudomonas capsulata. The half-inhibitory concentration of light-induced reactions and NADH oxidation is 2.5 M, but of succinate oxidation is 16 M. Hexane extraction inhibited oxidation of NADH and succinate equally. The results are interpreted to suggest that ubiquinone is concerned in all three processes described, but that the pools associated with NADH and succinate oxidation are not equally accessible to dibromothymoquinone.Abbreviations DBMIB
Dibromothymoquinone
- NADH
Reduced nicotinamide adenine dinucleotide
- Bchl
Bacteriochlorophyll 相似文献