首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the moss Physcomitrella patens, transforming DNA containing homologous sequences integrates predominantly by homologous recombination with its genomic target. A systematic investigation of the parameters that determine gene targeting efficiency shows a direct relationship between homology length and targeting frequency for replacement vectors (a selectable marker flanked by homologous DNA). Overall homology of only 1 kb is sufficient to achieve a 50% yield of targeted transformants. Targeting may occur through homologous recombination in one arm, accompanied by non-homologous end-joining by the other arm of the vector, or by allele replacement following two homologous recombination events. Allele replacement frequency depends on the symmetry of the targeting vector, being proportional to the length of the shorter arm. Allele replacement may involve insertion of multiple copies of the transforming DNA, accompanied by ectopic insertions at non-homologous sites. Single-copy and single insertions at targeted loci (targeted gene replacements, ‘TGR’) occur with a frequency of 7–20% of all transformants when the minimum requirements for allele replacement are met. Homologous recombination in Physcomitrella is substantially more efficient than in any multicellular eukaryote, recommending it as the outstanding model for the study of homologous recombination in plants.  相似文献   

2.
Summary The pepM gene coding for a methionine-specific aminopeptidase was cloned from Salmonella typhimurium and its nucleotide sequence determined. The gene encoded a 264 amino acid protein that was homologous to a similar protein from Escherichia coli. The sequence of an overproducer mutant allele, pepM100, contained a single base change in the likely –35 region of the pepM promoter that increased its homology to the consensus promoter sequence. A region downstream from the pepM coding sequence contained extensive inverted repeats and was homologous to sequences found elsewhere in both Salmonella and other bacterial species.  相似文献   

3.
The recA gene of Rhodobacter sphaeroides 2.4.1 has been isolated by complementation of a UV-sensitive RecA mutant of Pseudomonas aeruginosa. Its complete nucleotide sequence consists of 1032 bp, encoding a polypeptide of 343 amino acids. The deduced amino acid sequence displayed highest identity to the RecA proteins from Rhizobium mehloti, Rhizobium phaseoli, and Agrobacterium tumefaciens. An Escherichia coli-like SOS consensus region, which functions as a binding site for the LexA repressor molecule was not present in the 215 by upstream region of the R. sphaeroides recA gene. Nevertheless, by using a recA-lacZ fusion, we have shown that expression of the recA gene of R. sphaeroides is inducible by DNA damage. A recA-defective strain of R. sphaeroides was obtained by replacement of the active recA gene by a gene copy inactived in vitro. The resulting recA mutant exhibited increased sensitivity to UV irradiation, and was impaired in its ability to perform homologous recombination as well as to trigger DNA damage-mediated expression. This is the first recA gene from a Gram-negative bacterium that lacks an E. coli-like SOS box but whose expression has been shown to be DNA damage-inducible and auto-regulated.  相似文献   

4.
Summary A recombinant phage carrying the recA gene of Rhizobium phaseoli was isolated from a R. phaseoli genomic library by complementation of the Fec phenotype of the recombinant phage in Escherichia coli. When expressed in E. coli, the cloned recA gene was shown to restore resistance to both UV irradiation and the DNA alkylating agent methyl methanesulphonate (MMS). The R. phaseoli recA gene also promoted homologous recombination in E. coli. The cloned recA gene was only weakly inducible in E. coli recA strains by DNA damaging agents. The DNA sequence of the R. phaseoli recA gene was determined and compared with published recA sequences. No LexA-binding site was detected in the R. phaseoli recA upstream region.  相似文献   

5.
In gene replacement, a variant of gene targeting, transformed DNA integrates into the genome by homologous recombination (HR) to replace resident sequences. Gene replacement in the moss Physcomitrella patens is extremely efficient, but often large amounts of additional DNA are integrated at the target locus. A detailed analysis of recombination junctions of PpCOL2 gene knockout mutants shows that the integrated DNA can be highly rearranged. Our data suggest that the replaced sequences were excised by HR and became integrated back into the genome by non‐homologous end‐joining (NHEJ). RAD51‐mediated strand‐invasion and subsequent strand‐exchange is central to the two‐end invasion pathway, the major gene replacement pathway in yeast. In this pathway, integration is initiated by the free ends of a single replacement vector‐derived donor molecule which then integrates as an entity. Gene replacement in P. patens is entirely RAD51‐dependent suggesting the existence of a pathway mechanistically similar to two‐end invasion. However, invasion of the two ends does not seem to be stringently coordinated in P. patens. Actually, often only one fragment end became integrated by HR, or one‐sided integration of two independent donor fragments occurred simultaneously leading to a double‐strand break that is subsequently sealed by NHEJ and thus causes the observed rearrangements.  相似文献   

6.
Ustilago maydis, the causative agent of corn smut disease, is one of the most versatile model systems for the study of plant pathogenic fungi. With the availability of the complete genomic sequence there is an increasing need to improve techniques for the generation of deletion mutants in order to elucidate the functions of unknown genes. Here a method is presented which allows one to generate constructs for gene replacement without the need for cloning. The 5 and 3-regions of the target gene are first amplified by PCR, and subsequently ligated directionally to a marker cassette via two distinct Sfi I sites, providing the flanking homologies needed for homologous recombination in U. maydis. Then the ligation product is used as a template for the amplification of the deletion construct, which can be used directly for transformation of U. maydis. The use of the fragments generated by PCR drastically increases the frequency of homologous recombination when compared to the linearized plasmids routinely used for gene replacement in U. maydis.Communicated by G. Jürgens  相似文献   

7.
The capability to modify a genomic sequence into a designed sequence is a powerful tool for biologists and breeders to elucidate the function of an individual gene and its cis-acting elements of multigene families in the genome. Gene targeting refers to the alteration of a specific DNA sequence in an endogenous gene at its original locus in the genome. In higher plants, however, the overwhelming occurrence of the random integration of transgenes by non-homologous end-joining is the main obstacle to develop efficient gene targeting. Two approaches have been undertaken to modify a genomic sequence in higher plants– chimeric RNA/DNA oligonucleotide-directed gene targeting to generate a site-specific base conversion, and homologous recombination-dependent gene targeting to produce either a base change or a gene replacement in a sequence-specific manner. The successful and reproducible targeting of an endogenous gene by homologous recombination, independently of gene-specific selection by employing a strong positive-negative selection, has been demonstrated for the first time in rice, an important staple food and a model plant for other cereal species. This review addresses the current status of targeting of an endogenous natural gene in rice and other higher plants and discusses possible models for Agrobacterium- mediated gene targeting by homologous recombination using a strong positive–negative selection.  相似文献   

8.
A synthetic RBCSB gene cluster was transformed into Arabidopsis in order to simultaneously evaluate the frequency and character of somatic illegitimate recombination, homologous recombination, and targeted gene replacement events associated with T-DNA-mediated transformation. The most frequent type of recombination event observed was illegitimate integration of the T-DNA without activation of the silent ΔRBCS1B: LUC transgene. Sixteen luc+ (firefly luciferase positive) T1 plants were isolated. Six of these were due to illegitimate recombination events resulting in a gene trapping effect. Nine resulted from homologous recombination between paralogous RBCSB sequences associated with T-DNA integration. The frequency of somatic homologous recombination associated with T-DNA integration was almost 200 times higher than previously reported rates of meiotic homologous recombination with the same genes. The distribution of (somatic homologous) recombination resolution sites generally fits a fractional interval length model. However, a small region adjacent to an indel showed a significant over-representation of resolution sites, suggesting that DNA mismatch recognition may also play an important role in the positioning of somatic resolution sites. The frequency of somatic resolution within exon-2 was significantly different from that previously observed during meiotic recombination. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

9.
To characterize homologous recombination of transforming DNA in the filamentous fungusAlternaria alternata, we have compared the frequencies of gene targeting by circular and linear DNA fragments in the fungus. TheA. alternata BRM1 gene, which is an essential gene for melanin biosynthesis, was selected as a target locus.BRM1 targeting events are easily identified because loss of function leads to a change in mycelial color from black to light brown. We constructed targeting vectors by inserting 0.6 to 3.1 kb internalBRM1 segments into a plasmid containing the hygromycin B phosphotransferase gene. When circular plasmids were used, melanin-deficient (Me1) transformants accounted for 30 to 80% of hygromycin B-resistant (HyR) transformants, correlating closely with the size of theBRM1 segment in the transforming DNA. Restriction enzyme digestion within theBRM1 region greatly enhanced the frequency of gene targeting: integration of the linear plasmids was almost completely attributable to homologous recombination, regardless of the size of theBRM1 segments. Plasmids carrying bothBRM1 segments and rDNA segments were transformed into the fungus to examine the effect of the number of target copies on homologous recombination. Using the circular plasmids, Me1 transformants accounted for only 5% of HyR transformants. In contrast, when the linear plasmid produced by restriction enzyme digestion within theBRM1 segment was used, almost all transformants were Me1. These results indicate that homologous integration of circular molecules inA. alternata is sensitive to the length of homology and the number of targets, and that double-strand breaks in transforming DNA greatly enhance homologous recombination.  相似文献   

10.
A large-scale transformation procedure handling an adequate number of stable transformants with highly efficient positive-negative selection is a necessary prerequisite to successful gene targeting by homologous recombination, as the integration of a transgene by somatic homologous recombination in higher plants has been reported to be 10-3 to 10-5 compared with random integration by non-homologous end joining. We established an efficient and large-scale Agrobacterium-mediated rice transformation protocol that generated around 103 stable transformants routinely from 150 seeds and a strong positive-negative selection procedure that resulted in survivors at 10-2 using the gene for diphtheria toxin A fragment as a negative marker. The established transformation procedure provides a basis for efficient gene targeting in rice.Abbreviations AS: Acetosyringone - 5-FU: 5-Fluorouracil - FW: Fresh weight - GT: Gene targeting - HR: Homologous recombination - NHEJ: Non-homologous end joining Communicated by H. Ebinuma  相似文献   

11.
The model bryophyte Physcomitrella patens exhibits high frequencies of gene targeting when transformed with DNA constructs containing sequences homologous with genomic loci. ‘Targeted gene replacement’ (TGR) resulting from homologous recombination (HR) between each end of a targeting construct and the targeted locus occurs when either single or multiple targeting vectors are delivered. In the latter instance simultaneous, multiple, independent integration of different transgenes occurs at the targeted loci. In both single gene and ‘batch’ transformations, DNA can also be found to undergo ‘targeted insertion’ (TI), integrating at one end of the targeted locus by HR with one flanking sequence of the vector accompanied by an apparent non-homologous end-joining (NHEJ) event at the other. Untargeted integration at nonhomologous sites also occurs, but at a lower frequency. Molecular analysis of TI at a single locus shows that this occurs as a consequence of concatenation of the transforming DNA, in planta, prior to integration, followed by HR between a single site in the genomic target and two of its repeated homologues in the concatenated vector. This reinforces the view that HR is the major pathway by which transforming DNA is integrated in Physcomitrella.  相似文献   

12.
The hemibiotrophic ascomycete Colletotrichum higginsianum is the casual agent of anthracnose disease of cruciferous plants. High efficiency transformation by Agrobacterium tumefaciens-mediated gene transfer has been established for this fungus. However, targeted gene mutagenesis through homologous recombination rarely occurs in C. higginsianum. We have identified and disrupted the C. higginsianum homologue of the human Ku70 gene, ChKU70, which encodes a protein that plays a role in non-homologous end-joining for repair of DNA breaks. chku70 mutants showed a dramatic increase in the frequency of integration of introduced exogenous DNA fragments by homologous recombination without any detectable phenotypic defects. This result demonstrates that the chku70 mutant is an efficient recipient for targeted gene mutagenesis in C. higginsianum. We have also developed a novel approach [named direct repeat recombination-mediated gene targeting (DRGT)] for targeted gene disruption through Agrobacterium tumefaciens-mediated gene transfer. DRGT utilizes homologous recombination between repeated sequences on the T-DNA flanking a partial fragment of the target gene. Our results suggest that DRGT in the chku70 mutant background could be a useful tool for rapid isolation of targeted gene disruptants in C. higginsianum.  相似文献   

13.
Homologous recombination is required for AAV-mediated gene targeting   总被引:5,自引:0,他引:5  
High frequencies of gene targeting can be achieved by infection of mammalian cells with recombinant adeno-associated virus (rAAV) vectors [D. W. Russell and R. K. Hirata (1998) Nature Genet., 18, 325–330; D. W. Russell and R. K. Hirata (2000) J. Virol., 74, 4612–4620; R. Hirata et al. (2002) Nat. Biotechnol., 20, 735–738], but the mechanism of targeting is unclear and random integration often occurs in parallel. We assessed the role of specific DNA repair and recombination pathways in rAAV gene targeting by measuring correction of a mutated enhanced green fluorescent protein (EGFP) gene in cells where homologous recombination (HR) or non-homologous end-joining (NHEJ) had been suppressed by RNAi. EGFP-negative cells were transduced with rAAV vectors carrying a different inactivating deletion in the EGFP, and in parallel with rAAV vectors carrying red fluorescent protein (RFP). Expression of RFP accounted for viral transduction efficiency and long-term random integration. Approximately 0.02% of the infected GFP-negative cells were stably converted to GFP positive cells. Silencing of the essential NHEJ component DNA-PK had no significant effect on the frequency of targeting at any time point examined. Silencing of the SNF2/SWI2 family members RAD54L or RAD54B, which are important for HR, reduced the rate of stable rAAV gene targeting ~5-fold. Further, partial silencing of the Rad51 paralogue XRCC3 completely abolished stable long-term EGFP expression. These results show that rAAV gene targeting requires the Rad51/Rad54 pathway of HR.  相似文献   

14.
The frequency with which transforming DNA undergoes homologous recombination at a chromosomal site can be quite low in some fungal systems. In such cases, strategies for gene disruption or gene replacement must either select against ectopic integration events or provide easy screening to identify homologous site, double-crossover insertion events. A protocol is presented for efficient isolation of Neurospora crassa strains carrying a definitive null allele in a target gene. The protocol relies on the presence of a selectable marker flanking a disrupted plasmid-borne copy of the gene, and in the case presented led to a seven-fold enrichment for putative homologous site replacement events. In addition, a polymerase chain reaction assay is utilized for rapid identification of homologous recombinants among the remaining candidates. This protocol was used to identify 3 isolates, out of 129 primary transformants, which have a disruption in the Neurospora ccg-1 gene. The method should be applicable to a variety of fungal systems in which two selectable markers can be expressed, including those in which homologous recombination rates are too low to allow easy identification of homologous site insertions by the more traditional molecular method of Southern analysis. In addition to disrupting target genes for the purpose of generating null mutations, this method is useful for the targeting of reporter gene fusions to a native chromosomal site for the purpose of studying gene regulation.  相似文献   

15.
A complete sequence of the rice sucrose synthase-1 (RSs1) gene   总被引:5,自引:0,他引:5  
Using a fragment of the maize sucrose synthase gene Sh-1 as probe, the rice genome was shown to contain at least three genes encoding sucrose synthase. One of these genes was isolated from a genomic library, and its full sequence, including 1.7 kb of 5 flanking sequence and 0.9 kb of 3 flanking sequence, is reported. The new rice gene, designated RSs1, is highly homologous to maize Sh-1 (approx. 94% identity in derived amino acid sequence), and contains an identical intron-exon structure (16 exons and 15 introns). Both RSs1 and maize Sh-1 show similar sequence homologies to a second rice sucrose synthase gene described recently (designated RSs2, Yu et al. (1992) Plant Mol Biol 18: 139–142), although both the rice genes predict an extra 6 amino acids at the C-terminus of the protein when compared to the maize gene. The RSs1 5 flanking sequence contains a number of promoter-like sequences, including putative protein-binding regions similar to maize zein genes.  相似文献   

16.
根据几种丝状真菌Hog1 MAPK的保守氨基酸序列设计简并引物,从昆虫病原真菌球孢白僵菌中扩增出MAPK同源基因的部分片段,然后利用YADE法延伸该片段的上、下游邻接序列,获得MAPK编码基因的全长序列,命名为BbHog1。序列分析表明,该基因编码358个氨基酸的多肽,推测分子量为40.99kDa,等电点为5.49。BbHog1含有MAPK保守的蛋白激酶激活域(TGY),序列与粗糙脉孢霉os-2(AF297032)、烟曲霉OSM1(XM_747571)、隐球酵母HOG1(AF243531)和酿酒酵母Hog1(Z73285)等Hog1 MAPK高度同源,相似性分别为94%、89%、83%和80%。系统聚类结果表明,BbHog1与酵母Hog1 MAPK同源。Southern杂交表明,BbHog1在球孢白僵菌基因组中以单拷贝形式存在。Northern分析表明,BbHog1在高渗、亚高温和营养胁迫等条件下的表达明显升高。由此推测,BbHog1基因可能与球孢白僵菌对逆境胁迫的适应性调节密切相关。  相似文献   

17.
根据几种丝状真菌Hog1 MAPK的保守氨基酸序列设计简并引物,从昆虫病原真菌球孢白僵菌中扩增出MAPK同源基因的部分片段,然后利用YADE法延伸该片段的上、下游邻接序列,获得MAPK编码基因的全长序列,命名为BbHog1。序列分析表明,该基因编码358个氨基酸的多肽,推测分子量为40.99kDa,等电点为5.49。BbHog1含有MAPK保守的蛋白激酶激活域(TGY),序列与粗糙脉孢霉os-2(AF297032)、烟曲霉OSM1(XM_747571)、隐球酵母HOG1(AF243531)和酿酒酵母Hog1(Z73285)等Hog1 MAPK高度同源,相似性分别为94%、89%、83%和80%。系统聚类结果表明,BbHog1与酵母Hog1 MAPK同源。Southern杂交表明,BbHog1在球孢白僵菌基因组中以单拷贝形式存在。Northern分析表明,BbHog1在高渗、亚高温和营养胁迫等条件下的表达明显升高。由此推测,BbHog1基因可能与球孢白僵菌对逆境胁迫的适应性调节密切相关。  相似文献   

18.
AdultGlossina morsitans morsitans exposed to wet conidia ofBeauveria bassiana andMetarhizium anisopliae suffered high mortalities ranging from 90 to 100% by 2 weeks post-exposure. Infected ♂ ♂ maintained in the same cages with non-infected ♀♀ throughout the experimental period transmitted the fungal infection to the ♀♀ resulting in mortalities of 65% withB. bassiana and 55% withM. anisopliae. Likewise, infected ♀♀ maintained together with non-infected ♂♂ transmitted the infection to the ♂♂ resulting in mortalities of 75% withB. bassiana and 45% withM. anisopliae. Female tsetse flies infected withB. bassiana andM. anisopliae and maintained in the same cages with non-infected ♀♀ also transmitted infection to the non-infected tsetse resulting in mortalities of 62% and 48% withB. bassiana andM. anisopliae respectively. Infected tsetse exposed to non-infected tsetse of the opposite sex for only 30 min were also able to transmit the fungal infection. Pupae produced by female tsetse infected withB. bassiana andM. anisopliae exhibited higher pupal mortality than those produced by non-infected ♀♀. However, pupae exposed directly to dry spores ofB. bassiana andM. anisopliae had no increase in pupal mortality but adults emerging from theB. bassiana-exposed pupae had markedly reduced longevity.   相似文献   

19.
Summary The dedB gene of Escherichia coli has sequence similarity to the zfpA gene of the chloroplast chromosome. The functions of dedB and zfpA are unknown. We constructed derivatives of temperature-sensitive polA strains into whose chromosomes a plasmid containing the disrupted dedB gene was integrated by homologous recombination. These strains contained normal and disrupted dedB genes in their chromosomes. We then selected plasmid-segregated strains and found no cells containing the disrupted dedB gene, indicating that disruption of the dedB gene was lethal in polA strains of E. coli.  相似文献   

20.
Chen L  Yu H  Lu Y  Jiang W 《Biotechnology letters》2005,27(15):1129-1134
An ORF located immediately downstream of glnR gene was cloned from Amycolatopsis mediterranei U32 and was named lh3. Sequence analysis revealed that lh3 encodes a putative acetyltransferase, which shows high amino acid sequence similarities to the mycothiol synthase (MshD) from other actinomycetes. For functional analysis, mutation in lh3 gene was generated by gene replacement with an apramycin resistance gene through homologous recombination. Compared with the wild type strain, the resulting mutant was more sensitive to H2O2, apramycin and erythromycin by two- to three-fold. These results suggest that the lh3 gene plays an important role in the course of detoxification in A. mediterranei U32.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号