首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian mitochondrial (mt) ribosome (mitoribosome) is a bacterial-type ribosome but has a highly protein-rich composition. Almost half of the rRNA contained in the bacterial ribosome is replaced with proteins in the mitoribosome. Escherichia coli elongation factor G (EF-G Ec) has no translocase activity on the mitoribosome but EF-G mt is functional on the E.coli ribosome. To investigate the functional equivalency of the mt and E.coli ribosomes, we prepared hybrid mt and E.coli ribosomes. The hybrid mitoribosome containing E.coli L7/12 (L7/12 Ec) instead of L7/12 mt clearly activated the GTPase of EF-G Ec and efficiently promoted its translocase activity in an in vitro translation system. Thus, the mitoribosome is functionally equivalent to the E.coli ribosome despite their distinct compositions. The mt EF-Tu-dependent translation activity of the E.coli ribosome was also clearly enhanced by replacing the C-terminal domain (CTD) of L7/12 Ec with the mt counterpart (the hybrid E.coli ribosome). This strongly indicates that the CTD of L7/12 is responsible for EF-Tu function. These results demonstrate that functional compatibility between elongation factors and the L7/12 protein in the ribosome governs its translational specificity.  相似文献   

2.
The mammalian mitochondrial ribosome (mitoribosome) has a highly protein-rich composition with a small sedimentation coefficient of 55 S, consisting of 39 S large and 28 S small subunits. In the previous study, we analyzed 39 S large subunit proteins from bovine mitoribosome (Suzuki, T., Terasaki, M., Takemoto-Hori, C., Hanada, T., Ueda, T., Wada, A., and Watanabe, K. (2001) J. Biol. Chem. 276, 21724-21736). The results suggested structural compensation for the rRNA deficit through proteins of increased molecular mass in the mitoribosome. We report here the identification of 28 S small subunit proteins. Each protein was separated by radical-free high-reducing two-dimensional polyacrylamide gel electrophoresis and analyzed by liquid chromatography/mass spectrometry/mass spectrometry using electrospray ionization/ion trap mass spectrometer to identify cDNA sequence by expressed sequence tag data base searches in silico. Twenty one proteins from the small subunit were identified, including 11 new proteins along with their complete cDNA sequences from human and mouse. In addition to these proteins, three new proteins were also identified in the 55 S mitoribosome. We have clearly identified a mitochondrial homologue of S12, which is a key regulatory protein of translation fidelity and a candidate for the autosomal dominant deafness gene, DFNA4. The apoptosis-related protein DAP3 was found to be a component of the small subunit, indicating a new function for the mitoribosome in programmed cell death. In summary, we have mapped a total of 55 proteins from the 55 S mitoribosome on the two-dimensional polyacrylamide gels.  相似文献   

3.
Protein translation is essential for all forms of life and is conducted by a macromolecular complex, the ribosome. Evolutionary changes in protein and RNA sequences can affect the 3D organization of structural features in ribosomes in different species. The most dramatic changes occur in animal mitochondria, whose genomes have been reduced and altered significantly. The RNA component of the mitochondrial ribosome (mitoribosome) is reduced in size, with a compensatory increase in protein content. Until recently, it was unclear how these changes affect the 3D structure of the mitoribosome. Here, we present a structural model of the large subunit of the mammalian mitoribosome developed by combining molecular modeling techniques with cryo-electron microscopic data at 12.1A resolution. The model contains 93% of the mitochondrial rRNA sequence and 16 mitochondrial ribosomal proteins in the large subunit of the mitoribosome. Despite the smaller mitochondrial rRNA, the spatial positions of RNA domains known to be involved directly in protein synthesis are essentially the same as in bacterial and archaeal ribosomes. However, the dramatic reduction in rRNA content necessitates evolution of unique structural features to maintain connectivity between RNA domains. The smaller rRNA sequence also limits the likelihood of tRNA binding at the E-site of the mitoribosome, and correlates with the reduced size of D-loops and T-loops in some animal mitochondrial tRNAs, suggesting co-evolution of mitochondrial rRNA and tRNA structures.  相似文献   

4.
In order to determine the sites of synthesis of the proteins of the mammalian mitochondrial ribosome (mitoribosome), bovine (MDBK) cells were labeled with [35S]methionine in the presence of inhibitors of mitochondrial and cytoplasmic protein synthesis. Labeling in the absence of cytoplasmic protein synthesis produced a "blank" fluorogram, indicating that there is no mitochondrial product. Additionally, incorporation of [35S]methionine into the enumerated mitoribosomal proteins continued in the absence of mitochondrial protein synthesis. Finally, it was demonstrated that mitoribosomal proteins can be both translated and assembled into complete mitoribosomes in the absence of mitochondrial protein synthesis. These results indicate that in mammals, as opposed to lower eukaryotes, all of the mitoribosomal proteins are products of cytoplasmic protein synthesis.  相似文献   

5.
Mammalian mitochondria have their own dedicated protein synthesis system, which produces 13 essential subunits of the oxidative phosphorylation complexes. We have reconstituted an in vitro translation system from mammalian mitochondria, utilizing purified recombinant mitochondrial translation factors, 55S ribosomes from pig liver mitochondria, and a tRNA mixture from either Escherichia coli or yeast. The system is capable of translating leaderless mRNAs encoding model proteins (DHFR and nanoLuciferase) or some mtDNA-encoded proteins. We show that a leaderless mRNA, encoding nanoLuciferase, is faithfully initiated without the need for any auxiliary factors other than IF-2mt and IF-3mt. We found that the ribosome-dependent GTPase activities of both the translocase EF-G1mt and the recycling factor EF-G2mt are insensitive to fusidic acid (FA), the translation inhibitor that targets bacterial EF-G homologs, and consequently the system is resistant to FA. Moreover, we demonstrate that a polyproline sequence in the protein causes 55S mitochondrial ribosome stalling, yielding ribosome nascent chain complexes. Analyses of the effects of the Mg concentration on the polyproline-mediated ribosome stalling suggested the unique regulation of peptide elongation by the mitoribosome. This system will be useful for analyzing the mechanism of translation initiation, and the interactions between the nascent peptide chain and the mitochondrial ribosome.  相似文献   

6.
The mitochondrial ribosome (mitoribosome) has highly evolved from its putative prokaryotic ancestor and varies considerably from one organism to another. To gain further insights into its structural and evolutionary characteristics, we have purified and identified individual mitochondrial ribosomal proteins of Neurospora crassa by mass spectrometry and compared them with those of the budding yeast Saccharomyces cerevisiae. Most of the mitochondrial ribosomal proteins of the two fungi are well conserved with each other, although the degree of conservation varies to a large extent. One of the N. crassa mitochondrial ribosomal proteins was found to be homologous to yeast Mhr1p that is involved in homologous DNA recombination and genome maintenance in yeast mitochondria.  相似文献   

7.
The mitochondrial ribosome (mitoribosome) is a multicomponent machine that has unique structural features. Biogenesis of the human mitoribosome includes correct maturation and folding of the mitochondria-encoded RNA components (12S and 16S mt-rRNAs, and mt-tRNAVal) and their assembly together with 82 nucleus-encoded mitoribosomal proteins. This complex process requires the coordinated action of multiple assembly factors. Recent advances in single-particle cryo-electron microscopy (cryo-EM) have provided detailed insights into the specific functions of several mitoribosome assembly factors and have defined their timing. In this review we summarize mitoribosomal small (mtSSU) and large subunit (mtLSU) biogenesis based on structural findings, and we discuss potential crosstalk between mtSSU and mtLSU assembly pathways as well as coordination between mitoribosome biogenesis and other processes involved in mitochondrial gene expression.  相似文献   

8.
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra (SN) of the brain. Despite decades of studies, the precise pathogenic mechanism of PD is still elusive. An unbiased proteomic analysis of PD patient’s brain allows the identification of critical proteins and molecular pathways that lead to dopamine cell death and α-synuclein deposition and the resulting devastating clinical symptoms. In this study, we conducted an in-depth proteome analysis of human SN tissues from 15 PD patients and 15 healthy control individuals combining Orbitrap mass spectrometry with the isobaric tandem mass tag–based multiplexing technology. We identified 10,040 proteins with 1140 differentially expressed proteins in the SN of PD patients. Pathway analysis showed that the ribosome pathway was the most enriched one, followed by gamma-aminobutyric acidergic synapse, retrograde endocannabinoid signaling, cell adhesion molecules, morphine addiction, Prion disease, and PD pathways. Strikingly, the majority of the proteins enriched in the ribosome pathway were mitochondrial ribosomal proteins (mitoribosomes). The subsequent protein–protein interaction analysis and the weighted gene coexpression network analysis confirmed that the mitoribosome is the most enriched protein cluster. Furthermore, the mitoribosome was also identified in our analysis of a replication set of ten PD and nine healthy control SN tissues. This study provides potential disease pathways involved in PD and paves the way to study further the pathogenic mechanism of PD.  相似文献   

9.
The 55 S mammalian mitochondrial ribosome (referred to hereafter as "mitoribosome") is protein-rich, containing nearly twice as much protein as the Escherichia coli ribosome. In order to produce soluble mitochondrial proteins and protein-deficient subribosomal particles for use in functional and structural studies, the proteins of bovine mitoribosomes were extracted by washing in a series of buffers containing increasing concentrations of LiCl as the only chaotropic agent. LiCl disruption is used in order to preserve the solubilized proteins in a substantially "native" configuration. The extraction mixtures were characterized by sucrose density gradient analysis and the compositions of the stripped protein and residual pellet fractions were determined by two-dimensional polyacrylamide gel electrophoresis. In order to analyze the behavior or individual proteins, the intensity of Coomassie blue stain for each protein was normalized against the intensity of stain for the same protein in a control sample. Buffers with 1, 2, and 4 M LiCl each extract a specific subset of mitoribosomal proteins, while another group of proteins remains in the residual pellet fraction. Although very few proteins are detected in only one condition, most proteins are specifically enriched in one fraction. This LiCl procedure, therefore, produces fractionated groups of mitoribosomal proteins which can be used directly as a source for those proteins in which they are enriched, or they can be used as a starting point in further purification procedures. In contrast to results with E. coli ribosomes, several mitoribosomal proteins remain core-associated, indicating a different structural organization in these ribosomes.  相似文献   

10.
Mitochondrial protein synthesis is essential for all mammals, being responsible for providing key components of the oxidative phosphorylation complexes. Although only thirteen different polypeptides are made, the molecular details of this deceptively simple process remain incomplete. Central to this process is a non-canonical ribosome, the mitoribosome, which has evolved to address its unique mandate. In this review, we integrate the current understanding of the molecular aspects of mitochondrial translation with recent advances in structural biology. We identify numerous key questions that we will need to answer if we are to increase our knowledge of the molecular mechanisms underlying mitochondrial protein synthesis.  相似文献   

11.
Proteins in the small subunit of the mammalian mitochondrial ribosome were separated by two-dimensional polyacrylamide gel electrophoresis. Four individual proteins were subjected to in-gel Endoprotease Lys-C digestion. The sequences of selected proteolytic peptides were obtained by electrospray tandem mass spectrometry. Peptide sequences obtained from in-gel digestion of individual spots were used to screen human, mouse, and rat expressed sequence tag databases, and complete consensus cDNAs for these species were deduced in silico. The corresponding protein sequences were characterized by comparison to known ribosomal proteins in protein databases. Four different classes of mammalian mitochondrial small subunit ribosomal proteins were identified. Only two of these proteins have significant sequence similarities to ribosomal proteins from prokaryotes. These proteins are homologs to Escherichia coli S9 and S5 proteins. The presence of these newly identified mitochondrial ribosomal proteins are also investigated in the Drosophila melanogaster, Caenorhabditis elegans, and in the genomes of several fungi.  相似文献   

12.
13.
Summary The proteins of cytoplasmic and mitochondrial ribosomes from the cow and the rat were analyzed by co-electrophoresis in two dimensional polyacrylamide gels to determine their relative evolutionary rates. In a pairwise comparison of individual ribosomal proteins (r-proteins) from the cow and the rat, over 85% of the cytoplasmic r-proteins have conserved electrophoretic properties in this system, while only 15% of the proteins of mitochondrial ribosomes from these animals fell into this category. These values predict that mammalian mitochondrial r-proteins are evolving about 13 times more rapidly than cytoplasmic r-proteins. Based on actual evolutionary rates for representative cytoplasmic r-proteins, this mitochondrial r-protein evolutionary rate corresponds to an amino acid substitution rate of 40×10–10 per site per year, placing mitochondrial r-proteins in the category of rapidly evolving proteins. The mitochondrial r-proteins are apparently evolving at a rate comparable to that of the mitochondrial rRNA, suggesting that functional constraints act more or less equally on both kinds of molecules in the ribosome. It is significant that mammalian mitochondrial r-proteins are evolving more rapidly than cytoplasmic r-proteins in the same cell, since both sets of r-proteins are encoded by nuclear genes. Such a difference in evolutionary rates implies that the functional constraints operating on ribosomes are somewhat relaxed for mitochondrial ribosomes.Presented at the FEBS Symposium on Genome Organization and Evolution, held in Crete, Greece, September 1–5, 1986  相似文献   

14.
15.
Four intragenic suppressors of a mitochondrial mutation in the 21S rRNA gene have been characterized in S. cerevisiae. The determination of the nature of the nucleotide changes in the suppressor strains showed that a T at position 1696 in the large rRNA gene is essential for correct function of the mitoribosome. The importance of this specific nucleotide and the fact that this mitochondrial mutation can also be suppressed by a mutation in a nuclear gene are in good agreement with a rRNA-r protein interaction in this part of domain IV, which functional importance is demonstrated in vivo by our results.  相似文献   

16.
The mitochondrial ribosome is responsible for the biosynthesis of protein components crucial to the generation of ATP in the eukaryotic cell. Because the protein:RNA ratio in the mitochondrial ribosome (approximately 69:approximately 31) is the inverse of that of its prokaryotic counterpart (approximately 33:approximately 67), it was thought that the additional and/or larger proteins of the mitochondrial ribosome must compensate for the shortened rRNAs. Here, we present a three-dimensional cryo-electron microscopic map of the mammalian mitochondrial 55S ribosome carrying a tRNA at its P site, and we find that instead, many of the proteins occupy new positions in the ribosome. Furthermore, unlike cytoplasmic ribosomes, the mitochondrial ribosome possesses intersubunit bridges composed largely of proteins; it has a gatelike structure at its mRNA entrance, perhaps involved in recruiting unique mitochondrial mRNAs; and it has a polypeptide exit tunnel that allows access to the solvent before the exit site, suggesting a unique nascent-polypeptide exit mechanism.  相似文献   

17.
Impairment of mitochondrial protein homeostasis disrupts mitochondrial function and causes human diseases and aging, but the molecular mechanisms of protein synthesis and quality control in mammalian mitochondria are not fully understood. Here we demonstrate in human cells that misincorporation of an arginine analog, canavanine, during mitochondrial protein synthesis, induced aberrant translation products and destabilized the mtDNA-encoded proteome, leading to loss of mitochondrial respiratory chain complexes. Furthermore, in the presence of a high concentration of canavanine, mitoribosome stalling could be demonstrated. The stalling did not, however, occur at arginine codons, but downstream of those codons. In particular, two adjacent arginines induced the most prominent downstream stalling effect, with the distance between the arginine codons and the stalling peak corresponding roughly to the length of the ribosomal exit tunnel. These results suggest that misincorporated canavanine disrupted the proper folding of the hydrophobic nascent polypeptides within the exit tunnel or while being inserted into the inner mitochondrial membrane. The canavanine treatment provides a model system for studying the consequences of mitoribosome stalling and the responses to misfolded proteins exiting the mitochondrial ribosome.  相似文献   

18.
1. The behaviour of the large ribosomal subunit from Rhodopseudomonas spheroides (45S) has been compared with the 50S ribosome from Escherichia coli M.R.E. 600 (and E. coli M.R.E. 162) during unfolding by removal of Mg(2+) and detachment of ribosomal proteins by high univalent cation concentrations. The extent to which these processes are reversible with these ribosomes has also been examined. 2. The R. spheroides 45S ribosome unfolds relatively slowly but then gives rise directly to two ribonucleoprotein particles (16.6S and 13.7S); the former contains the intact primary structure of the 16.25S rRNA species and the latter the 15.00S rRNA species of the original ribosome. No detectable protein loss occurs during unfolding. The E. coli ribosome unfolds via a series of discrete intermediates to a single, unfolded ribonucleoprotein unit (19.1S) containing the 23S rRNA and all the protein of the original ribosome. 3. The two unfolded R. spheroides ribonucleoproteins did not recombine when the original conditions were restored but each simply assumed a more compact configuration. Similar treatments reversed the unfolding of the E. coli 50S ribosomes; replacement of Mg(2+) caused the refolding of the initial products of unfolding and in the presence of Ni(2+) the completely unfolded species (19.1S) again sedimented at the same rate as the original ribosomes (44S). 4. Ribosomal proteins (25%) were dissociated from R. spheroides 45S ribosomes by dialysis against a solution with a Na(+)/Mg(2+) ratio of 250:1. During this process two core particles were formed (21.2S and 14.2S) and the primary structures of the two original rRNA species were conserved. This dissociation was not reversed. With E. coli 50S approximately 15% of the original ribosomal protein was dissociated, a single 37.6S core particle was formed, the 23S rRNA remained intact and the ribosomal proteins would reassociate with the core particle to give a 50S ribosome. 5. The ribonuclease activities in R. spheroides 45S and E. coli M.R.E. 600 and E. coli M.R.E. 162 50S ribosomes are compared. 6. The observations concerning unfolding and dissociation are consistent with previous reports showing the unusual rRNA complement of the mature R. spheroides 45S ribosome and show the dependence of these events upon the rRNA and the importance of protein-protein interactions in the structure of the R. spheroides ribosome.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号