首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We report here the molecular and cytological characterization of two proteins, ScoHET1 and ScoHET2 (for Sciara coprophila heterochromatin), which associate to constitutive heterochromatin in the dipteran S. coprophila. Both proteins, ScoHET1 of 37 kDa and ScoHET2 of 44 kDa, display two chromodomain motifs that contain the conserved residues essential for the recognition of methylated histone H3 at lysine 9. We raised antibodies to analyze the chromosomal location of ScoHET1 and ScoHET2 in somatic and germline cells. In S. coprophila polytene chromosomes, both proteins associate to the pericentromeric regions and to the heterochromatic subterminal bands of the chromosomes. In germinal nuclei, ScoHET1 and ScoHET2 proteins distribute to the heterochromatic regions of the regular chromosome complement and are abundantly present along the heterochromatic germline-limited “L” chromosomes. We investigated histone methylation modifications and found that all heterochromatic regions enriched in ScoHET1/ScoHET2 proteins exhibit high levels of di- and tri-methylated histone H3 at lysine 9. Taken together, our results support that the association of ScoHET1/ScoHET2 to heterochromatin is mediated by histone H3K9 methylation. Using 5-methylcytosine antibodies, we proved the cytological detection of DNA methylation in S. coprophila. From our observations in L germline chromosomes, heterochromatin in S. coprophila is highly enriched in DNA 5-methylcytosine residues. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Many species of grasshopper have an XX/XO sex chromosome system, including Tropidacris cristata grandis (23, XX/XO). The X chromosome behaves differently from the autosomes, but little is known about its origin and molecular composition. To better understand the genomic composition and evolutionary processes involved in the origin of the sex chromosomes, we undertook an analysis of its meiotic behavior, heterochromatin distribution and microdissection in T. c. grandis. Analysis of meiotic cells revealed a difference in the behavior of the X chromosome compared to the autosomes, with different patterns of condensation and cellular arrangement. Heterochromatic terminal blocks were predominant. The chromosome painting revealed a bright block in the centromeric/pericentromeric region of the X chromosome and slight markings in the other regions. In the autosomes, the X chromosome probe hybridized in the centromeric/pericentromeric region, and hybridization signals on terminal regions corresponding to the heterochromatic regions were also observed. The results showed that the X chromosome contains a significant amount of repetitive DNA. Based on the hybridization pattern, it is possible that the autosomes and sex chromosomes of T. c. grandis have a similar composition of repetitive DNAs, which could mean that the X chromosome has an autosomal origin.  相似文献   

3.
The organization of DNA in the mitotic metaphase and polytene chromosomes of the fungus gnat, Sciara coprophila, has been studied using base-specific DNA ligands, including anti-nucleoside antibodies. The DNA of metaphase and polytene chromosomes reacts with AT-specific probes (quinacrine, DAPI, Hoechst 33258 and anti-adenosine) and to a somewhat lesser extent with GC-specific probes (mithramycin, chromomycin A3 and anticytidine). In virtually every band of the polytene chromosomes chromomycin A3 fluorescence is almost totally quenched by counterstaining with the AT-specific ligand methyl green. This indicates that GC base pairs in most bands are closely interspersed with AT base pairs. The only exceptions are band IV-8A3 and the nucleolus organizer on the X. In contrast, quinacrine and DAPI fluorescence in every band is only slightly quenched by counterstaining with the GC-specific ligand actinomycin D. Thus, each band contains a moderate proportion of AT-rich DNA sequences with few interspersed GC base pairs. — The C-bands in mitotic and polytene chromosomes can be visualized by Giemsa staining after differential extraction of DNA and those in polytene chromosomes by the use of base-specific fluorochromes or antibodies without prior extraction of DNA. C-bands are located in the centromeric region of every chromosome, and the telomeric region of some. The C-bands in the polytene chromosomes contain AT-rich DNA sequences without closely interspered GC base pairs and lack relatively GC-rich sequences. However, one C-band in the centromeric region of chromosome IV contains relatively GC-rich sequences with closely interspersed AT base pairs. — C-bands make up less than 1% of polytene chromosomes compared to nearly 20% of mitotic metaphase chromosomes. The C-bands in polytene chromosomes are detectable with AT-specific or GC-specific probes while those in metaphase chromosomes are not. Thus, during polytenization there is selective replication of highly AT-rich and relatively GC-rich sequences and underreplication of the remainder of the DNA sequences in the constitutive heterochromatin.  相似文献   

4.
The euchromatic regions of chimpanzee (Pan troglodytes) genome share approximately 98% sequence similarity with the human (Homo sapiens), while the heterochromatic regions display considerable divergence. Positive heterochromatic regions revealed by the CBG-technique are confined to pericentromeric areas in humans, while in chimpanzees, these regions are pericentromeric, telomeric, and intercalary. When human chromosomes are digested with restriction endonuclease AluI and stained by Giemsa (AluI/Giemsa), positive heterochromatin is detected only in the pericentromeric regions, while in chimpanzee, telomeric, pericentromeric, and in some chromosomes both telomeric and centromeric, regions are positive. The DA/DAPI technique further revealed extensive cytochemical heterogeneity of heterochromatin in both species. Nevertheless, the fluorescence in situ hybridization technique (FISH) using a centromeric alpha satellite cocktail probe revealed that both primates share similar pericentromeric alpha satellite DNA sequences. Furthermore, cross-hybridization experiments using chromosomes of gorilla (Gorilla gorilla) and orangutan (Pongo pygmaeus) suggest that the alphoid repeats of human and great apes are highly conserved, implying that these repeat families were present in their common ancestor. Nevertheless, the orangutan's chromosome 9 did not cross-hybridize with human probe. The euchromatic regions of chimpanzee (Pan troglodytes) genome share approximately 98% sequence similarity with the human (Homo sapiens), while the heterochromatic regions display considerable divergence. Positive heterochromatic regions revealed by the CBG-technique are confined to pericentromeric areas in humans, while in chimpanzees, these regions are pericentromeric, telomeric, and intercalary. When human chromosomes are digested with restriction endonuclease AluI and stained by Giemsa (AluI/Giemsa), positive heterochromatin is detected only in the pericentromeric regions, while in chimpanzee, telomeric, pericentromeric, and in some chromosomes both telomeric and centromeric, regions are positive. The DA/DAPI technique further revealed extensive cytochemical heterogeneity of heterochromatin in both species. Nevertheless, the fluorescence in situ hybridization technique (FISH) using a centromeric alpha satellite cocktail probe revealed that both primates share similar pericentromeric alpha satellite DNA sequences. Furthermore, cross-hybridization experiments using chromosomes of gorilla (Gorilla gorilla) and orangutan (Pongo pygmaeus) suggest that the alphoid repeats of human and great apes are highly conserved, implying that these repeat families were present in their common ancestor. Nevertheless, the orangutan's chromosome 9 did not cross-hybridize with human probe. © 1995 Wiley-Liss, Inc.  相似文献   

5.
A striking characteristic of the centromeric heterochromatin of Drosophila melanogaster is that each chromosome carries different satellite DNA sequences. Here we show that while the major component of the 1.688 satellite DNA family expands across the centromere of the X chromosome the rest of the minor variants are located at pericentromeric positions in the large autosomes. Immunostaining of prometaphase chromosomes with the kinetocore-specific anti-BUB1 antibody reveals the transient presence of this centromeric protein in all the regions containing the 1.688 satellite.  相似文献   

6.
We conducted genome‐wide mapping of cytosine methylation using methylcytosine immunoprecipitation combined with Illumina sequencing. The chromosomal distribution pattern of methylated DNA is similar to the heterochromatin distribution pattern on rice chromosomes. The DNA methylation patterns of rice genes are similar to those in Arabidopsis thaliana, including distinct methylation patterns asssociated with gene bodies and promoters. The DNA sequences in the core domains of rice Cen4, Cen5 and Cen8 showed elevated methylation levels compared with sequences in the pericentromeric regions. In addition, elevated methylation levels were associated with the DNA sequences in the CENH3‐binding subdomains, compared with the sequences in the flanking H3 subdomains. In contrast, the centromeric domain of Cen11, which is composed exclusively of centromeric satellite DNA, is hypomethylated compared with the pericentromeric domains. Thus, the DNA sequences associated with functional centromeres can be either hypomethylated or hypermethylated. The methylation patterns of centromeric DNA appear to be correlated with the composition of the associated DNA sequences. We propose that both hypomethylation and hypermethylation of CENH3‐associated DNA sequences can serve as epigenetic marks to distinguish where CENH3 deposition will occur within the surrounding H3 chromatin.  相似文献   

7.
The possible origins and differentiation of a ZZ/ZW sex chromosome system in Semaprochilodus taeniurus, the only species of the family Prochilodontidae known to possess heteromorphic sex chromosomes, were examined by conventional (C-banding) and molecular (cross-species hybridization of W-specific WCP, Fluorescence in situ hybridization (FISH) with telomere (TTAGGG)n, and Rex1 probes) cytogenetic protocols. Several segments obtained by W-specific probe were cloned, and the sequences localized on the W chromosome were identified by DNA sequencing and search of nucleotide collections of the NCBI and GIRI using BLAST and CENSOR, respectively. Blocks of constitutive heterochromatin in chromosomes of S. taeniurus were observed in the centromere of all autosomal chromosomes and in the terminal, interstitial, and pericentromeric regions of the W chromosome, which did not demonstrate interstitial telomeric sites with FISH of the telomere probe. The Rex1 probe displayed a compartmentalized distribution pattern in some chromosomes and showed signs of invasion of the pericentromeric region in the W chromosome. Chromosomal painting with the W-specific WCP of S. taeniurus onto its own chromosomes showed complete staining of the W chromosome, centromeric sites, and the ends of the Z chromosome, as well as other autosomes. However, cross-species painting using this WCP on chromosomes of S. insignis, Prochilodus lineatus, and P. nigricans did not reveal a proto-W element, but instead demonstrated scattered positive signals of repetitive DNAs. Identification of the W-specific repetitive sequences showed high similarity to microsatellites and transposable elements. Classes of repetitive DNA identified in the W chromosome suggested that the genetic degeneration of this chromosome in S. taeniurus occurred through accumulation of these repetitive DNAs.  相似文献   

8.
Heterochromatin in the European field vole, Microtus agrestis, was studied using a special staining technique and DNA/RNA in situ hybridization. The heterochromatin composed the proximal 1/4 of the short arm and the entire long arm of the X chromosome, practically the entire Y chromosome and the centromeric areas of the autosomes. By using the DNA/RNA in situ hybridization technique, repeated nucleotide sequences are shown to be in the heterochromatin of the sex chromosomes.  相似文献   

9.
The satellite DNA Msat-160 has been previously characterized in several species of the genus Microtus. Here we present the characterization of Msat-160 from Chionomys nivalis, a species with a very primitive karyotype. As in other Microtus species analyzed, C. nivalis Msat-160 is AT rich, has a monomer length of 160 bp, is undermethylated and is mainly located in all the pericentromeric heterochromatin of all autosomes and the X chromosome, but is completely absent from the Y chromosome. Hence, our results support the hypothesis that Msat-160 was initially distributed in the pericentromeric heterochromatin of all autosomes and the X chromosome. The taxonomic status of the genus Chionomys in relation to the genus Microtus is a very interesting issue, so we constructed phylogenetic dendrograms using Msat-160 sequences from several Microtus species. Although the results were not informative about this issue, the presence of Msat-160 in C. nivalis and Microtus species suggested that both genera are closely related and that this satellite DNA was present in the common ancestor. Studies of Msat-160 in different arvicoline species could help to determine the origin of this satellite and, perhaps, to establish the phylogenetic relationships of some arvicoline groups.  相似文献   

10.
We have isolated two yeast artificial chromosome (YAC) clones from Drosophila melanogaster that contain a small amount of dodeca satellite (a satellite DNA located in the centromeric region of chromosome 3) and sequences homologous to the telomeric retrotransposon HeT-A. Using these YACs as probes for fluorescence in situ hybridization to mitotic chromosomes, we have localized these HeT-A elements to the centric heterochromatin of chromosome 3, at region h55. The possible origin of these telomeric elements in a centromeric position is discussed. Received: 30 July 1999 / Accepted: 19 September 1999  相似文献   

11.
The longitudinal differentiation of metaphase chromosomes of the Indian muntjac was studied by digestion with restriction enzymes, in situ hybridization with cloned DNA probes and distamycin A plus DAPI (4-6-diamidino-2-phenylindole) fluorescence staining. The centromeric regions of chromosomes 3 and 3 + X of a male Indian muntjac cell line were distinct from each other and different from those of other chromosomes. Digestion with a combination of EcoRI* and Sau3A revealed a pattern corresponding to that of C-banding. Digestion with AluI, EcoRII or RsaI yielded a band specific to the centromeric region only in chromosomes 3 and 3 + X. Furthermore, HinfI digestion yielded only a band at the centromeric region of chromosome 3, whereas DA-DAPI staining revealed a single band limited to the extreme end of the C-band heterochromatin of the short arm of 3 + X. These results suggest that centromeres of Indian muntjac chromosomes contain at least four different types of repetitive DNA. Such diversity in heterochromatin was also confirmed by in situ hybridization using specific DNA probes isolated and cloned from highly repetitive DNA families. Heterozygosity between chromosome homologs was revealed by restriction enzyme banding. Evidence is presented for the presence of nucleolus organizer regions (NORs) on the long arm of chromosome 1 as well as on the secondary constrictions of 3 and 3 + X.Abbreviations DA distamycin A - DAPI 4-6-diamidino-2-phenylindole - NOR(s) nucleolus organizer region(s) - PBS phosphate-buffered saline - PI propidium iodide  相似文献   

12.
Heterochromatin in the European field vole, Microtus agrestis, was studied using a special staining technique and DNA/RNA in situ hybridization. The heterochromatin composed the proximal 1/4 of the short arm and the entire long arm of the X chromosome, practically the entire Y chromosome and the centromeric areas of the autosomes. By using the DNA/RNA in situ hybridization technique, repeated nucleotide sequences are shown to be in the heterochromatin of the sex chromosomes.Supported in part by Research Grants DRG-1061 and 269 from the Damon Runyon Memorial Fund for Cancer Research, G-373 and G-267 from the Robert A. Welch Foundation.  相似文献   

13.
Microdissection of the chromocenter of D. virilis salivary gland polytene chromosomes has been carried out and the region-specific DNA library (DvirIII) has been obtained. FISH was used for DvirIII hybridization with salivary gland polytene chromosomes and ovarian nurse cells of D. virilis and D. kanekoi. Localization of DvirIII in the pericentromeric regions of chromosomes and in the telomeric region of chromosome 5 was observed in both species. Moreover, species specificity in the localization of DNA sequences of DvirIII in some chromosomal regions was detected. In order to study the three-dimensional organization of pericentromeric heterochromatin region of polytene chromosomes of ovarian nurse cells of D. virilis and D. kanekoi, 3S FISH DvirIII was performed with nurse cells of these species. As a result, species specificity in the distribution of DvirIII signals in the nuclear space was revealed. Namely, the signal was detected in the local chromocenter at one pole of the nucleus in D. virilis, while the signal from the telomeric region of chromosome 5 was detected on another pole. At the same time, DvirIII signals in D. kanekoi are localized in two separate areas in the nucleus: the first belongs to the pericentromeric region of chromosome 2 and another to pericentromeric regions of the remaining chromosomes.  相似文献   

14.
Prophase chromosomes of Drosophila hydei were stained with 0.5 g/ml Hoechst 33258 and examined under a fluorescence microscope. While autosomal and X chromosome heterochromatin are homogeneously fluorescent, the entirely heterochromatic Y chromosome exhibits an extremely fine longitudinal differentiation, being subdivided into 18 different regions defined by the degree of fluorescence and the presence of constrictions. Thus high resolution Hoechst banding of prophase chromosomes provides a tool comparable to polytene chromosomes for the cytogenetic analysis of the Y chromosome of D. hydei. — D. hydei heterochromatin was further characterized by Hoechst staining of chromosomes exposed to 5-bromodeoxyuridine for one round of DNA replication. After this treatment the pericentromeric autosomal heterochromatin, the X heterochromatin and the Y chromosome exhibit numerous regions of lateral asymmetry. Moreover, while the heterochromatic short arms of the major autosomes show simple lateral asymmetry, the X and the Y heterochromatin exhibit complex patterns of contralateral asymmetry. These observations, coupled with the data on the molecular content of D. hydei heterochromatin, give some insight into the chromosomal organization of highly and moderately repetitive heterochromatic DNA.  相似文献   

15.
16.
Cytological and biochemical experiments were undertaken in order to characterize the action of several restriction enzymes on fixed chromosomes of Tenebrio molitor (Coleoptera). EcoRI cuts the satellite DNA of this organism into suunit monomers of 142 bp in naked DNA and acts on fixed chromosomes cleaving and extracting these tandemly repeated sequences present in median centromeric heterochromatin. AluI, in contrast, is unable to attack the satellite sequences but does cut the main band DNA both in naked DNA and in fixed chromosomes. These enzymes therefore permit the in situ localization of satellite DNA or main band DNA in T. molitor. Other enzymes such HinfI or Sau3A do not produce longitudinal differentiation in chromosomes because of the extraction of DNA from satellite and main band DNA regions. In situ hybridization with a satellite DNA probe from T. molitor confirms that the DNA extracted from the chromosomes is the abundant and homogenous highly repeated DNA present in pericentromeric regions. These results plus the analysis of the DNA fractions retained on the slide and solubilized by the action of the restriction enzymes in situ provide evidence that: (a) as an exception to the rule EcoRI (6 bp cutter) is able to produce chromosome banding; (b) the size of the fragments produced by in situ digestion of satellite DNA with EcoRI is not a limiting factor in the extraction; (c) there is a remarkable accord between the action of EcoRI and AluI on naked DNA and on DNA in fixed chromosomes, and (d) the organization of specific chromosome regions seems to be very important in producing longitudinal differentiation on chromosomes.by E.R. Schmidt  相似文献   

17.
Arrangement of centromeres in mouse cells   总被引:17,自引:4,他引:17  
Applying a staining procedure which reveals constitutive heterochromatin to cytological preparations of the mouse (Mus musculus), one detects heterochromatin pieces at the centromeric areas of all chromosomes except the Y. The Y chromosome is somewhat heteropyenotic in general but possesses no intensely stained centromeric heterochromatin. The arrangement of the centromeric heterochromatin in interphase cells is apparently specific for a given cell type. In meiotic prophase, centromeric heterochromatin may form clusters among bivalents. From the location of the centromeric heterochromatin of the X chromosome in the sex bivalent, it is concluded that the association between the X and Y (common end) in meiosis is limited to the distal portions of the sex elements.  相似文献   

18.
The centromeric region of a telocentric field bean chromosome that resulted from centric fission of the metacentric satellite chromosome was microdissected. The DNA of this region was amplified and biotinylated by degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR)/linker-adapter PCR. After fluorescence in situ hybridization (FISH) the entire chromosome complement of Vicia faba was labelled by these probes except for the nucleolus organizing region (NOR) and the interstitial heterochromatin, the chromosomes of V. sativa and V. narbonensis were only slightly labelled by the same probes. Dense uniform labelling was also observed when a probe amplified from a clearly delimited microdissected centromeric region of a mutant of Tradescantia paludosa was hybridized to T. paludosa chromosomes. Even after six cycles of subtractive hybridization between DNA fragments amplified from centromeric and acentric regions no sequences specifically located at the field bean centromeres were found among the remaining DNA. A mouse antiserum was produced which detected nuclear proteins of 33 kDa and 68 kDa; these were predominantly located at V. faba kinetochores during mitotic metaphase. DNA amplified from the chromatin fraction adsorbed by this serum out of the sonicated total mitotic chromatin also did not cause specific labelling of primary constrictions. From these results we conclude: (1) either centromere-specific DNA sequences are not very conserved among higher plants and are — at least in species with large genomes — intermingled with complex dispersed repetitive sequences that prevent the purification of the former, or (2) (some of) the dispersed repeats themselves specify the primary constrictions by stereophysical parameters rather than by their base sequence.  相似文献   

19.
Chromosome structure and chromatin organisation of a two-chromosome model cereal Zingeria biebersteiniana (Claus) P. Smirnov were studied: nuclear DNA content was determined by microdensitometric analysis after Feulgen staining; Feulgen absorption at different thresholds of absorbance in interphase nuclei also provided evidence on the organisation of chromatin, allowing quantitative estimation of condensed chromatin within interphasic nucleus. The DNA methylation pattern of Z. biebersteiniana metaphase chromosomes was examined with a specific monoclonal antibody. 5-methyl-cytosine residues are present in several chromosome sites and differences may be present between corresponding regions of homologues. Chromosome banding pattern reveals large bands in the centromeric regions of each chromosome, showing constitutive heterochromatin; by fluorochromes staining pericentromeric blocks are evidenced. After the cold and 9-aminoacridine pre-treatments and after aceto-carmine and aceto-orceine staining, respectively, the metaphase chromosomes were analysed by image analysis system revealing a segmentation of the chromosome body that resembles Giemsa/Reverse banding in animal chromosomes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Evolutionary rearrangements of pericentromeric heterochromatin among Drosophila melanogaster subgroup species have been investigated. A region-specific DNA library from Drosophila orena ovarian nurse cell chromocenter was obtained by the microdissection of polythene chromosomes. The probe has been localized on chromosomes of ovarian nurse cells of Drosophila melanogaster subgroup species using fluorescent hybridization in situ. Sequences homologous to the sequences of the DNA probe were detected in the chromocenter and pericentromeric regions of D. orena polythene chromosomes, in all pericentromeric regions of other species with several exceptions. There was no labeling on one of the arms of the D. simulans chromosome 2; however, these sequences were present on the telomere of D. erecta chromosome 3 and in regions adjacent to the brightly DAPI-stained heterochromatin blocks of D. yakuba, D. santomea and D. teissieri chromosomes 2 and 3. At the S6 stage (secondary reticulate nucleus), labeled chromatin can be found mostly within a restricted territory in D. orena nucleus; no such chromatin can be detected throughout the rest of the nucleus. On the contrary, at this stage, in nuclei of other species, labeled DNA is spread diffusely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号