首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SJ Park  HJ Moon  BK Kang  M Hong  W Na  JK Kim  H Poo  BK Park  DS Song 《Journal of virology》2012,86(17):9548-9549
An avian-origin Korean H3N2 canine influenza virus (CIV) strain, designated A/canine/Korea/01/2007 (H3N2), was isolated from nasal swabs of pet dogs exhibiting severe respiratory syndrome in 2007. In the present study, we report the first complete genome sequence containing 3' and 5' noncoding regions (NCRs) of H3N2 CIV, which will provide important insights into the molecular basis of pathogenesis, transmission, and evolution of CIV.  相似文献   

2.
Chilo iridescent virus (CIV) is a large (∼ 1850 Å diameter) insect virus with an icosahedral, T = 147 capsid, a double-stranded DNA (dsDNA) genome, and an internal lipid membrane. The structure of CIV was determined to 13 Å resolution by means of cryoelectron microscopy (cryoEM) and three-dimensional image reconstruction. A homology model of P50, the CIV major capsid protein (MCP), was built based on its amino acid sequence and the structure of the homologous Paramecium bursaria chlorella virus 1 Vp54 MCP. This model was fitted into the cryoEM density for each of the 25 trimeric CIV capsomers per icosahedral asymmetric unit. A difference map, in which the fitted CIV MCP capsomers were subtracted from the CIV cryoEM reconstruction, showed that there are at least three different types of minor capsid proteins associated with the capsomers outside the lipid membrane. “Finger” proteins are situated at many, but not all, of the spaces between three adjacent capsomers within each trisymmetron, and “zip” proteins are situated between sets of three adjacent capsomers at the boundary between neighboring trisymmetrons and pentasymmetrons. Based on the results of segmentation and density correlations, there are at least eight finger proteins and three dimeric and two monomeric zip proteins in one asymmetric unit of the CIV capsid. These minor proteins appear to stabilize the virus by acting as intercapsomer cross-links. One transmembrane “anchor” protein per icosahedral asymmetric unit, which extends from beneath one of the capsomers in the pentasymmetron to the internal leaflet of the lipid membrane, may provide additional stabilization for the capsid. These results are consistent with the observations for other large, icosahedral dsDNA viruses that also utilize minor capsid proteins for stabilization and for determining their assembly.  相似文献   

3.
Mitochondrial DNA (mtDNA) sequence variation can influence the penetrance of complex diseases and climatic adaptation. While studies in geographically defined human populations suggest that mtDNA mutations become fixed when they have conferred metabolic capabilities optimally suited for a specific environment, it has been challenging to definitively assign adaptive functions to specific mtDNA sequence variants in mammals. We investigated whether mtDNA genome variation functionally influences Caenorhabditis elegans wild isolates of distinct mtDNA lineages and geographic origins. We found that, relative to N2 (England) wild-type nematodes, CB4856 wild isolates from a warmer native climate (Hawaii) had a unique p.A12S amino acid substitution in the mtDNA-encoded COX1 core catalytic subunit of mitochondrial complex IV (CIV). Relative to N2, CB4856 worms grown at 20 °C had significantly increased CIV enzyme activity, mitochondrial matrix oxidant burden, and sensitivity to oxidative stress but had significantly reduced lifespan and mitochondrial membrane potential. Interestingly, mitochondrial membrane potential was significantly increased in CB4856 grown at its native temperature of 25 °C. A transmitochondrial cybrid worm strain, chpIR (M, CB4856 > N2), was bred as homoplasmic for the CB4856 mtDNA genome in the N2 nuclear background. The cybrid strain also displayed significantly increased CIV activity, demonstrating that this difference results from the mtDNA-encoded p.A12S variant. However, chpIR (M, CB4856 > N2) worms had significantly reduced median and maximal lifespan relative to CB4856, which may relate to their nuclear–mtDNA genome mismatch. Overall, these data suggest that C. elegans wild isolates of varying geographic origins may adapt to environmental challenges through mtDNA variation to modulate critical aspects of mitochondrial energy metabolism.  相似文献   

4.
Assumed to rely on an axon reflex, the current-induced vasodilation (CIV) interferes with the microvascular response to iontophoretic drug delivery. Mechanisms resulting in CIV are likely different at the anode and at the cathode. While studies have been conducted to understand anodal CIV, little information is available on cathodal CIV. The present study investigates CIV observed following 0.1-mA cathodal applications on forearms of healthy volunteers and the possible mechanisms involved. Results are expressed in percentage of the cutaneous heat-induced maximal vascular conductance [%MVC (means +/- SE)]. 1) The amplitude of CIV was proportional to the duration of cathodal currents for periods of <1 min: r = 0.99. 2) Two current applications of 10 s, with 10-min interstimulation interval, induced a higher peak value of CIV (79.1 +/- 8.6% MVC) than the one obtained with all-at-once 20-s current application (39.5 +/- 4.3% MVC, P < 0.05). This amplified vascular response due to segmental application was observed for all tested interstimulation intervals (up to 40 min). 3) Two hours and 3 days following pretreatment with 1-g oral aspirin, the CIV observed following cathodal application, as well as the difference of cathodal CIV amplitude between all-at-once and segmented applications, were reduced. These findings suggest a role of prostaglandins, not only released from endothelial or smooth muscle cells, as direct vasodilator and/or as a sensitizer. Thus aspirin pretreatment could be used to decrease CIV resulting from all-at-once and repeated cathodal application and facilitate the study of the specific vascular effect induced by the drug delivered.  相似文献   

5.
Here we describe a one-step method to create precise modifications in the genome of Saccharomyces cerevisiae as a tool for synthetic biology, metabolic engineering, systems biology and genetic studies. Through homologous recombination, a mutagenesis cassette containing an inverted repeat of selection marker(s) is integrated into the genome. Due to its inherent instability in genomic DNA, the inverted repeat catalyzes spontaneous self-excision, resulting in precise genome modification. Since this excision occurs at very high frequencies, selection for the integration event can be followed immediately by counterselection, without the need for growth in permissive conditions. This is the first time a truly one-step method has been described for genome modification in any organism.  相似文献   

6.

Background

The ascovirus, DpAV4a (family Ascoviridae), is a symbiotic virus that markedly increases the fitness of its vector, the parasitic ichneumonid wasp, Diadromus puchellus, by increasing survival of wasp eggs and larvae in their lepidopteran host, Acrolepiopsis assectella. Previous phylogenetic studies have indicated that DpAV4a is related to the pathogenic ascoviruses, such as the Spodoptera frugiperda ascovirus 1a (SfAV1a) and the lepidopteran iridovirus (family Iridoviridae), Chilo iridescent virus (CIV), and is also likely related to the ancestral source of certain ichnoviruses (family Polydnaviridae).

Methodology/Principal Findings

To clarify the evolutionary relationships of these large double-stranded DNA viruses, we sequenced the genome of DpAV4a and undertook phylogenetic analyses of the above viruses and others, including iridoviruses pathogenic to vertebrates. The DpAV4a genome consisted of 119,343 bp and contained at least 119 open reading frames (ORFs), the analysis of which confirmed the relatedness of this virus to iridoviruses and other ascoviruses.

Conclusions

Analyses of core DpAV4a genes confirmed that ascoviruses and iridoviruses are evolutionary related. Nevertheless, our results suggested that the symbiotic DpAV4a had a separate origin in the iridoviruses from the pathogenic ascoviruses, and that these two types shared parallel evolutionary paths, which converged with respect to virion structure (icosahedral to bacilliform), genome configuration (linear to circular), and cytopathology (plasmalemma blebbing to virion-containing vesicles). Our analyses also revealed that DpAV4a shared more core genes with CIV than with other ascoviruses and iridoviruses, providing additional evidence that DpAV4a represents a separate lineage. Given the differences in the biology of the various iridoviruses and ascoviruses studied, these results provide an interesting model for how viruses of different families evolved from one another.  相似文献   

7.
Praxelis (Eupatorium catarium Veldkamp) is a new hazardous invasive plant species that has caused serious economic losses and environmental damage in the Northern hemisphere tropical and subtropical regions. Although previous studies focused on detecting the biological characteristics of this plant to prevent its expansion, little effort has been made to understand the impact of Praxelis on the ecosystem in an evolutionary process. The genetic information of Praxelis is required for further phylogenetic identification and evolutionary studies. Here, we report the complete Praxelis chloroplast (cp) genome sequence. The Praxelis chloroplast genome is 151,410 bp in length including a small single-copy region (18,547 bp) and a large single-copy region (85,311 bp) separated by a pair of inverted repeats (IRs; 23,776 bp). The genome contains 85 unique and 18 duplicated genes in the IR region. The gene content and organization are similar to other Asteraceae tribe cp genomes. We also analyzed the whole cp genome sequence, repeat structure, codon usage, contraction of the IR and gene structure/organization features between native and invasive Asteraceae plants, in order to understand the evolution of organelle genomes between native and invasive Asteraceae. Comparative analysis identified the 14 markers containing greater than 2% parsimony-informative characters, indicating that they are potential informative markers for barcoding and phylogenetic analysis. Moreover, a sister relationship between Praxelis and seven other species in Asteraceae was found based on phylogenetic analysis of 28 protein-coding sequences. Complete cp genome information is useful for plant phylogenetic and evolutionary studies within this invasive species and also within the Asteraceae family.  相似文献   

8.
Defects in mitochondrial respiratory chain complex IV (CIV) frequently cause encephalocardiomyopathies. Human CIV assembly involves 14 subunits of dual genetic origin and multiple nucleus‐encoded ancillary factors. Biogenesis of the mitochondrion‐encoded copper/heme‐containing COX1 subunit initiates the CIV assembly process. Here, we show that the intermembrane space twin CX9C protein CMC1 forms an early CIV assembly intermediate with COX1 and two assembly factors, the cardiomyopathy proteins COA3 and COX14. A TALEN‐mediated CMC1 knockout HEK293T cell line displayed normal COX1 synthesis but decreased CIV activity owing to the instability of newly synthetized COX1. We demonstrate that CMC1 stabilizes a COX1‐COA3‐COX14 complex before the incorporation of COX4 and COX5a subunits. Additionally, we show that CMC1 acts independently of CIV assembly factors relevant to COX1 metallation (COX10, COX11, and SURF1) or late stability (MITRAC7). Furthermore, whereas human COX14 and COA3 have been proposed to affect COX1 mRNA translation, our data indicate that CMC1 regulates turnover of newly synthesized COX1 prior to and during COX1 maturation, without affecting the rate of COX1 synthesis.  相似文献   

9.
《BBA》2022,1863(7):148591
In mitochondria, complex IV (CIV) can be found as a monomer, a dimer or in association with other respiratory complexes. The atomic structure of the yeast S. cerevisiae CIV in a supercomplex (SC) with complex III (CIII) pointed to a region of significant conformational changes compared to the homologous mammalian CIV structures. These changes involved the matrix side domain of Cox5A at the CIII-CIV interface, and it was suggested that it could be required for SC formation. To investigate this, we solved the structure of the isolated monomeric CIV from S. cerevisiae stabilised in amphipol A8–35 at 3.9 Å using cryo-electron microscopy. Only a minor change in flexibility was seen in this Cox5A region, ruling out large CIV conformational shift for interaction with CIII and confirming the different fold of the yeast Cox5A subunit compared to mammalian homologues. Other differences in structure were the absence of two canonical subunits, Cox12 and Cox13, as well as Cox26, which is unique to the yeast CIV. Their absence is most likely due to the protein purification protocol used to isolate CIV from the III-IV SC.  相似文献   

10.
We have found that mycoplasma virus L172 is an enveloped globular virion containing circular, single-stranded DNA of 14.0 kilobases. L172 has been reported by other workers to have a double-stranded DNA genome of 13 to 17 kilobase pairs and has been classified as a plasmavirus, a group for which mycoplasma virus L2 is the type member. Mycoplasma viruses L172 and L2 differ in genome size and structure, DNA base composition, and protein composition, and they have no detectable DNA homology. As the only reported enveloped virion containing single-stranded DNA, L172 represents a new group of viruses.  相似文献   

11.
We have investigated cellular Ca2+ regulation during A2058 human melanoma cell chemotaxis to type IV collagen (CIV). We have identified alpha2beta1-integrin as the primary mediator of A2058 cell response to CIV in vitro. Integrin ligation initiated a characteristic intracellular Ca2+ concentration ([Ca2+]i) response consisting of an internal release and a receptor-mediated Ca2+ entry. Thapsigargin (TG) pretreatment drained overlapping and CIV-inducible internal Ca2+ stores while initiating a store-operated Ca2+ release (SOCR). CIV-mediated Ca2+ entry was additive to TG-SOCR, suggesting an independent signaling mechanism. Similarly, ionophore application in a basal medium containing Ca2+ initiated a sustained influx. Elevated [Ca2+]i from TG-SOCR or ionophore significantly attenuated cell migration to CIV by recruiting the Ca2+/calcineurin-mediated signaling pathway. Furthermore, low [Ca2+]i induced by EGTA application in the presence of ionophore fully restored cell motility to CIV. Together, these results suggest that [Ca2+]i signaling accompanying A2058 cell response to alpha2beta1-integrin ligation is neither necessary nor sufficient and that elevated [Ca2+]i downregulates cell motility via a calcineurin-mediated mechanism in A2058 cell chemotaxis to CIV.  相似文献   

12.
Canine influenza virus (CIV) emerged around 2000 when an equine influenza virus (EIV) was transmitted to dogs in Florida. After 2003, the canine virus was carried by infected greyhounds to various parts of the United States and then became established in several large animal shelters, where it has continued to circulate. To better understand the evolution of CIV since its emergence, and particularly its microevolution in spatially restricted populations, we examined multiple gene segments of CIV from dogs resident in two large animal shelters in New York City during the period 2006 to 2009. In particular, we focused on viruses circulating in the two shelters in 2008 and 2009, which we found shared a common ancestor. While viruses in each shelter were generally monophyletic, we observed some gene flow between them. These shelter sequences were compared to earlier CIV isolates. The shelter viruses differed in 1 to 6 amino acids in each gene segment compared to viruses isolated in Florida between 2003 and 2005 and in Colorado in 2006 and 2008. A comparison of the sequences of equine and canine viruses revealed amino acid replacements that distinguished the viruses from the two hosts, but no clear evidence of positive selection indicative of host adaptation was detected, suggesting that any host range adaptation in CIV occurred early in the emergence of this virus or even before it transferred to dogs.  相似文献   

13.
Pomegranate (Punica granatum L.) is one of the oldest known edible fruits. It has grown in popularity and is a profitable fruit crop due to its attractive features including a bright red appearance and its biological activities. Scientific exploration of the genetics and evolution of these beneficial traits has been hampered by limited genomic information. In this study, we sequenced the complete chloroplast (cp) genome of the native P. granatum (cultivar Helow) cultivated in the mountains of Jabal Al-Akhdar, Oman. The results revealed a P. granatum cp genome length of 158,630 bp, characterized by a relatively conserved structure containing 2 inverted repeat regions of 25,466 bp, an 18,686 bp small single copy regions, and an 89,015 bp large single copy region. The 86 protein-coding genes included 37 transfer RNA genes and 8 ribosomal RNA genes. Comparison of the P. granatum whole cp genome with seven Lagerstroemia species revealed an overall high degree of sequence similarity with divergence among intergenic spacers. The location, distribution, and divergence of repeat sequences and shared genes of the Punica and Lagerstroemia species were highly similar. Analyses of nucleotide substitution, insertion/deletions, and highly variable regions in these cp genomes identified potential plastid markers for taxonomic and phylogenetic studies in Myrtales. A phylogenetic study of the cp genomes and 76 shared coding regions generated similar cladograms. The complete cp genome of P. granatum will aid in taxonomical studies of the family Lythraceae.  相似文献   

14.
A clone containing a middle repetitive element next to satellite DNA has been isolated from a germ line genomic library of the chromatin eliminating nematode Ascaris lumbricoides var. suum. The structure of this element has been elucidated by comparison of several clones containing the element in different environments. It is flanked by 256-bp-long terminal repeats (LTRs) and has an internal region of approximately 7 kb. The nucleotide sequences of both the 5' and the 3' LTRs have been determined. The element has a strong structural similarity with retroviral proviruses and related mobile elements. It was therefore named 'Tas', for transposon-like element of Ascaris. Approximately 50 Tas copies are dispersed over approximately 20 different chromosomal sites. Their genomic distribution varies between individuals, indicating that Tas elements are mobile in the Ascaris genome. Two variant forms, Tas-1 and Tas-2, present in a ratio of approximately 2 to 1 in the germ line genome, have been characterized. They differ not only in their restriction pattern, but also in their elimination behaviour. While only about one-fourth of the Tas-1 elements are expelled from the somatic cell lineage, all Tas-2 copies are specifically eliminated and are thus confined to the germ line cells. We have demonstrated that a cloned representative of Tas-1 elements is expelled concomitantly with its flanking DNA sequences during the chromatin elimination process.  相似文献   

15.
A canine influenza virus (CIV) strain of avian origin designated A/Canine/Jiangsu/06/2010 (H3N2) was isolated from dogs exhibiting severe respiratory disease in Jiangsu, China. We announce the complete genome sequence of this viral strain and report major findings from the genomic analysis. This sequence will help us understand the molecular characteristics and evolutionary of H3N2 CIV in China.  相似文献   

16.
A new project to map the genome of the pathogenic fungus,Candida albicans,has been started. The entire genome was cloned as 5088 cosmids, stored in individual microtiter plate wells. DNA was prepared and fingerprinted using restriction digestion, fluorescent labeling, and analysis on an ABI sequencer. These data are being used to construct contigs of the genome. Simultaneously, a DNA pooling system has been set up, suitable for PCR-based isolation of cosmids containing any known gene. Ultimately, these approaches will lead to the creation of a physically based map of theC. albicansgenome, providing the means to localize precisely all the genes, act as a substrate for genome sequencing projects, and provide probes for future studies of genome rearrangement and comparative genomics.  相似文献   

17.
Clustered regularly interspaced short palindromic repeats‐associated protein 9 (CRISPR‐Cas9) is a revolutionary technology that enables efficient genomic modification in many organisms. Currently, the wide use of Streptococcus pyogenes Cas9 (SpCas9) primarily recognizes sites harbouring a canonical NGG protospacer adjacent motif (PAM). The newly developed VQR (D1135V/R1335Q/T1337R) variant of Cas9 has been shown to cleave sites containing NGA PAM in rice, which greatly expanded the range of genome editing. However, the low editing efficiency of the VQR variant remains, which limits its wide application in genome editing. In this study, by modifying the single guide RNA (sgRNA) structure and strong endogenous promoters, we significantly increased the editing efficiency of the VQR variant. The modified CRISPR‐Cas9‐VQR system provides a robust toolbox for multiplex genome editing at sites containing noncanonical NGA PAM.  相似文献   

18.
DNA glycosylase recognition and catalysis   总被引:5,自引:0,他引:5  
DNA glycosylases are the enzymes responsible for recognizing base lesions in the genome and initiating base excision DNA repair. Recent structural and biochemical results have provided novel insights into DNA damage recognition and repair. The basis of the recognition of the oxidative lesion 8-oxoguanine by two structurally unrelated DNA glycosylases is now understood and has been revealed to involve surprisingly similar strategies. Work on MutM (Fpg) has produced structures representing three discrete reaction steps. The NMR structure of 3-methyladenine glycosylase I revealed its place among the structural families of DNA glycosylases and the X-ray structure of SMUG1 likewise confirmed that this protein is a member of the uracil DNA glycosylase superfamily. A novel disulfide cross-linking strategy was used to obtain the long-anticipated structure of MutY bound to DNA containing an A*oxoG mispair.  相似文献   

19.
NDUFA4 Is a Subunit of Complex IV of the Mammalian Electron Transport Chain   总被引:1,自引:0,他引:1  
The oxidative phosphorylation system is one of the best-characterized metabolic pathways. In mammals, the protein components and X-ray structures are defined for all complexes except complex I. Here, we show that NDUFA4, formerly considered?a constituent of NADH Dehydrogenase (CI), is instead a component of the cytochrome c oxidase (CIV). Deletion of NDUFA4 does not perturb CI. Rather, proteomic, genetic, evolutionary, and biochemical analyses reveal that NDUFA4 plays a role in CIV function and biogenesis. The change in the attribution of the NDUFA4 protein requires renaming of the gene and reconsideration of the structure of CIV. Furthermore, NDUFA4 should be considered a candidate gene for CIV rather than CI deficiencies in humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号