首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple yop mutant strains of Yersinia pseudotuberculosis not expressing several virulence effector Yop proteins (YopH, M, E, K and YpkA) were engineered. When high-copy-number plasmids carrying the ypkA or the yopE gene with their endogenous promoters were introduced into the engineered strains, the corresponding Yop protein was secreted at high levels in vitro . These multiple yop mutant strains, when harbouring the yopE gene in trans , behaved as the wild-type strain with respect to YopB-dependent translocation of YopE through the HeLa cell plasma membrane. Using these multiple yop mutant strains, it was demonstrated that the YpkA Ser/Thr protein kinase mediates morphological alterations of infected cultured HeLa cells different from those mediated by YopE and YopH. Furthermore, YpkA is shown to be translocated by a YopB-dependent translocation mechanism from surface-located bacteria and subsequently targeted to the inner surface of the target-cell plasma membrane. The pattern of YpkA localization after infection suggests that this Yop effector is involved in interference with signal transduction.  相似文献   

2.
During infection of cultured epithelial cells, surface-located Yersinia pseudotuberculosis deliver Yop (Yersinia outer protein) virulence factors into the cytoplasm of the target cell. A non-polar yopB mutant strain displays a wild-type phenotype with respect to in vitro Yop regulation and secretion but fails to elicit a cytotoxic response in cultured HeLa cells and is unable to inhibit phagocytosis by macrophage-like J774 cells. Additionally, the yopB mutant strain was avirulent in the mouse model. No YopE or YopH protein were observed within HeLa cells infected with the yopB mutant strain, suggesting that the loss of virulence of the mutant strain was due to its inability to translocate Yop effector proteins through the target cell plasma membrane. Expression of YopB is necessary for Yersinia-induced lysis of sheep erythrocytes. Purified YopB was shown to have membrane disruptive activity in vitro. YopB-dependent haemolytic activity required cell contact between the bacteria and the erythrocytes and could be inhibited by high, but not low, molecular weight carbohydrates. Similarly, expression of YopE reduced haemolytic activity. Therefore, we propose that YopB is essential for the formation of a pore in the target cell membrane that is required for the cell-to-cell transfer of Yop effector proteins.  相似文献   

3.
Pathogenic Yersinia species employ type III machines to target effector Yops into the cytosol of eukaryotic cells. Yersinia tyeA mutants are thought to be defective in the targeting of YopE and YopH without affecting the injection of YopM, YopN, YopO, YopP, and YopT into the cytosol of eukaryotic cells. One model suggests that TyeA may form a tether between YopN (LcrE) and YopD on the bacterial surface, a structure that may translocate YopE and YopH across the plasma membrane of eukaryotic cells (M. Iriarte, M. P. Sory, A. Boland, A. P. Boyd, S. D. Mills, I. Lambermont, and G. R. Cornelis, EMBO J. 17:1907-1918, 1998). We have examined the injection of Yop proteins by tyeA mutant yersiniae with the digitonin fractionation technique. We find that tyeA mutant yersiniae not only secreted YopE, YopH, YopM, and YopN into the extracellular medium but also targeted these polypeptides into the cytosol of HeLa cells. Protease protection, cell fractionation, and affinity purification experiments suggest that TyeA is located intracellularly and binds to YopN or YopD. We propose a model whereby TyeA functions as a negative regulator of the type III targeting pathway in the cytoplasm of yersiniae, presumably by preventing the export of YopN.  相似文献   

4.
Pathogenic Yersiniae adhere to and kill macrophages by targeting some of their Yop proteins into the eukaryotic cytosol. There is debate about whether YopE targeting proceeds as a direct translocation of polypeptide between cells or in two distinct steps, each requiring specific signals for YopE secretion across the bacterial envelope and for translocation into the eukaryotic cytosol. Here, we used the selective solubilization of the eukaryotic plasma membrane with digitonin to measure Yop targeting during Yersinia infections of HeLa cells. YopE, YopH, YopM and YopN were found in the eukaryotic cytosol but not in the extracellular medium. When bound to SycE chaperone in the Yersinia cytoplasm, YopE residues 1–100 are necessary and sufficient for the targeting of hybrid neomycin phosphotransferase. Electron microscopic analysis failed to detect an extracellular intermediate of YopE targeting, suggesting a one-step translocation mechanism.  相似文献   

5.
Yersinia pseudotuberculosis YopB and YopD proteins are essential for translocation of Yop effector proteins into the target cell cytosol. YopB is suggested to mediate pore formation in the target cell plasma membrane, allowing translocation of Yop effector proteins, although the function of YopD is unclear. To investigate the role in translocation for YopD, a mutant strain in Y. pseudotuberculosis was constructed containing an in frame deletion of essentially the entire yopD gene. As shown recently for the Y. pestis YopD protein, we found that the in vitro low calcium response controlling virulence gene expression was negatively regulated by YopD. This yopD null mutant (YPIII/pIB621) was also non-cytotoxic towards HeLa cell monolayers, supporting the role for YopD in the translocation process. Although other constituents of the Yersinia translocase apparatus (YopB, YopK and YopN) are not translocated into the host cell cytosol, fractionation of infected HeLa cells allowed us to identify the cytosolic localization of YopD by the wild-type strain (YPIII/pIB102), but not by strains defective in either YopD or YopB. YopD was also identified by immunofluorescence in the cytoplasm of HeLa cell monolayers infected with a multiple yop mutant strain (YPIII/pIB29MEKA). These results demonstrate a dual function for YopD in negative regulation of Yop production and Yop effector translocation, including the YopD protein itself. To investigate whether an amphipathic domain near the C-terminus of YopD is involved in the translocation process, a mutant strain (YPIII/pIB155ΔD278–292) was constructed that is devoid of this region. Phenotypically, this small in frame ΔyopD278–292 deletion mutant was indistinguishable from the yopD null mutant. The truncated YopD protein and Yop effectors were not translocated into the cytosol of HeLa cell monolayers infected with this mutant. The comparable regulatory and translocation phenotypes displayed by the small in frame ΔyopD278–292 deletion and ΔyopD null mutants suggest that regulation of Yop synthesis and Yop translocation are intimately coupled. We present an intriguing scenario to the Yersinia infection process that highlights the need for polarized translocation of YopD to specifically establish translocation of Yop effectors. These observations are contrary to previous suggestions that members of the translocase apparatus were not translocated into the host cell cytosol.  相似文献   

6.
Virulent bacteria of the genera Yersinia, Shigella and Salmonella secrete a number of virulence determinants, Yops, Ipas and Sips respectively, by a type III secretion pathway. The IpaB protein of Shigella flexneri was expressed in Yersinia pseudotuberculosis and found to be secreted under the same conditions required for Yop secretion. Likewise, YopE was secreted by the wild-type strain LT2 of Salmonella typhimurium, but YopE was not secreted by the isogenic invA mutant. Secretion of both IpaB and YopE required their respective chaperones, IpgC and YerA. In addition, yopE-containing S. typhimurium expressed a YopE-mediated cytotoxicity on cultured HeLa cells. YopE was detected in the cytosol of the infected HeLa cells and the amount of translocated YopE correlated with the degree of cytotoxicity. Both translocation and cytotoxicity were prevented by the addition of gentamicin. Treatment of HeLa cells with cytochalasin D prior to infection prevented internalization of bacteria, but translocation of YopE was still observed. These results favour the hypothesis that YopE is translocated through the plasma membrane by surface-located bacteria. We propose that virulent Salmonella and Shigella deliver virulence effector molecules into the target cell through the utilization of a functionally conserved secretion/translocation machinery similar to that shown for Yersinia.  相似文献   

7.
YopH is a 468-amino acid protein-tyrosine phosphatase that is produced by pathogenic Yersinia species. YopH is translocated into host mammalian cells via a type III protein secretion system. Translocation of YopH into human epithelial cells results in dephosphorylation of p130(Cas) and paxillin, disruption of focal adhesions, and inhibition of integrin-mediated bacterial phagocytosis. Previous studies have shown that the N-terminal 129 amino acids of YopH comprise a bifunctional domain. This domain binds to the SycH chaperone in Yersinia to orchestrate translocation and to tyrosine-phosphorylated target proteins in host cells to mediate substrate recognition. We used random mutagenesis in combination with the yeast two-hybrid system to identify residues in the YopH N-terminal domain that are involved in substrate-binding activity. Four single codon changes (Q11R, V31G, A33D, and N34D) were identified that interfered with binding of the YopH N-terminal domain to tyrosine-phosphorylated p130(Cas) but not to SycH. These mutations did not impair YopH translocation into HeLa cells infected with Yersinia pseudotuberculosis. Introduction of the V31G substitution into catalytically inactive (substrate-trapping) forms of YopH interfered with the ability of these proteins to bind to p130(Cas) and to localize to focal adhesions in HeLa cells. In addition, the V31G substitution reduced the ability of catalytically active YopH to dephosphorylate target proteins in HeLa cells. These data indicate that the substrate- and SycH-binding activities of the YopH N-terminal domain can be separated and that the former activity is important for recognition and dephosphorylation of substrates by YopH in vivo.  相似文献   

8.
Type III secretion systems are used by several pathogens to translocate effector proteins into host cells. Yersinia pseudotuberculosis delivers several Yop effectors (e.g. YopH, YopE and YopJ) to counteract signalling responses during infection. YopB, YopD and LcrV are components of the translocation machinery. Here, we demonstrate that a type III translocation protein stimulates proinflammatory signalling in host cells, and that multiple effector Yops counteract this response. To examine proinflammatory signalling by the type III translocation machinery, HeLa cells infected with wild-type or Yop-Y. pseudotuberculosis strains were assayed for interleukin (IL)-8 production. HeLa cells infected with a YopEHJ- triple mutant released significantly more IL-8 than HeLa cells infected with isogenic wild-type, YopE-, YopH- or YopJ- bacteria. Complementation analysis demonstrated that YopE, YopH or YopJ are sufficient to counteract IL-8 production. IL-8 production required YopB, but did not require YopD, pore formation or invasin-mediated adhesion. In addition, YopB was required for activation of nuclear factor kappa B, the mitogen-activated protein kinases ERK and JNK and the small GTPase Ras in HeLa cells infected with the YopEHJ- mutant. We conclude that interaction of the Yersinia type III translocator factor YopB with the host cell triggers a proinflammatory signalling response that is counteracted by multiple effectors in host cells.  相似文献   

9.
Extracellular Yersinia spp. disarm the immune system by injecting the effector Yersinia outer proteins (Yops) into the target cell. Yop secretion is triggered by contact with eukaryotic cells or by Ca2+ chelation. Two proteins, YopN and LcrG, are known to be involved in Yop-secretion control. Here we describe TyeA, a third protein involved in the control of Yop release. Like YopN, TyeA is localized at the bacterial surface. A tyeA knock-out mutant secreted Yops in the presence of Ca2+ and in the absence of eukaryotic cells. Unlike a yopN null mutant, the tyeA mutant was defective for translocation of YopE and YopH, but not YopM, YopO and YopP, into eukaryotic cells. This is the first observation suggesting that Yop effectors can be divided into two sets for delivery into eukaryotic cells. TyeA was found to interact with the translocator YopD and with residues 242-293 of YopN. In contrast with a yopN null mutant, a yopNDelta248-272 mutant was also unable to translocate YopE and YopH. Our results suggest that TyeA forms part of the translocation-control apparatus together with YopD and YopN, and that the interaction of these proteins is required for selective translocation of Yops inside eukaryotic cells.  相似文献   

10.
Viboud GI  Bliska JB 《The EMBO journal》2001,20(19):5373-5382
The bacterial pathogen Yersinia pseudotuberculosis uses type III secretion machinery to translocate Yop effector proteins through host cell plasma membranes. A current model suggests that a type III translocation channel is inserted into the plasma membrane, and if Yops are not present to fill the channel, the channel will form a pore. We examined the possibility that Yops act within the host cell to prevent pore formation. Yop- mutants of Y.pseudotuberculosis were assayed for pore-forming activity in HeLa cells. A YopE- mutant exhibited high levels of pore-forming activity. The GTPase-downregulating function of YopE was required to prevent pore formation. YopE+ bacteria had increased pore-forming activity when HeLa cells expressed activated Rho GTPases. Pore formation by YopE- bacteria required actin polymerization. F-actin was concentrated at sites of contact between HeLa cells and YopE- bacteria. The data suggest that localized actin polymerization, triggered by the type III machinery, results in pore formation in cells infected with YopE- bacteria. Thus, translocated YopE inhibits actin polymerization to prevent membane damage to cells infected with wild-type bacteria.  相似文献   

11.
The protein tyrosine phosphatase YopH, produced by the pathogen Yersinia pseudotuberculosis, is an essential virulence determinant involved in antiphagocytosis. Upon infection, YopH is translocated into the target cell, where it recognizes focal complexes. Genetic analysis revealed that YopH harbours a region that is responsible for specific localization of this PTPase to focal complexes in HeLa cells and professional phagocytes. This region is a prerequisite for blocking an immediate-early Yersinia-induced signal within target cells. The region is also essential for antiphagocytosis and virulence, illustrating the biological significance of localization of YopH to focal complexes during Yersinia infection. These results also indicate that focal complexes play a role in the general phagocytic process.  相似文献   

12.
ExoS is a bifunctional Type III cytotoxin of Pseudomonas aeruginosa with N-terminal Rho GTPase-activating protein (RhoGAP) and C-terminal ADP-ribosyltransferase domains. Although the ExoS RhoGAP inactivates Cdc42, Rac, and RhoA in vivo, the relationship between ExoS RhoGAP and the eukaryotic regulators of Rho GTPases is not clear. The present study investigated the roles of Rho GTPase guanine nucleotide disassociation inhibitor (RhoGDI) in the reorganization of actin cytoskeleton mediated by ExoS RhoGAP. A green fluorescent protein-RhoGDI fusion protein was engineered and found to elicit actin reorganization through the inactivation of Rho GTPases. Green fluorescent protein-RhoGDI and ExoS RhoGAP cooperatively stimulated actin reorganization and translocation of Cdc42 from membrane to cytosol, and a RhoGDI mutant, RhoGDI(I177D), that is defective in extracting Rho GTPases off the membrane inhibited the actions of RhoGDI and ExoS RhoGAP on the translocation of Cdc42 from membrane to cytosol. A human RhoGDI small interfering RNA was transfected into HeLa cells to knock down 90% of the endogenous RhoGDI expression. HeLa cells with knockdown RhoGDI were resistant to the reorganization of the actin cytoskeleton elicited by type III-delivered ExoS RhoGAP. This indicates that ExoS RhoGAP and RhoGDI function in series to inactivate Rho GTPases, in which RhoGDI extracting GDP-bound Rho GTPases off the membrane and sequestering them in cytosol is the rate-limiting step in Rho GTPase inactivation. A eukaryotic GTPase-activating protein, p50RhoGAP, showed a similar cooperativity with RhoGDI on actin reorganization, suggesting that ExoS RhoGAP functions as a molecular mimic of eukaryotic RhoGAPs to inactivate Rho GTPases through RhoGDI.  相似文献   

13.
Diphtheria toxin B fragment is capable of forming cation-selective channels in the plasma membrane. Such channels may be involved in the translocation of the toxin A fragment to the cytosol. Seven negatively charged amino acids in the B fragment were replaced one by one by lysines, followed by studies of cytotoxicity and channel-forming ability of the different mutants. The mutant D392K showed a strong reduction in binding to cell surface receptors. Of the six mutants that showed wild-type binding affinity, the two mutants D295K and D318K were very inefficient in forming channels. These two mutants had the lowest ability to mediate A fragment translocation. The mutant E362K was able both to induce cation channel formation and to mediate A fragment translocation at a higher pH value than the wild-type B fragment. The results support the notion that formation of cation channels is of importance for the translocation of the A fragment across the plasma membrane, and they indicate that the pH requirement for translocation of the A fragment to the cytosol is partly determined by the B fragment.  相似文献   

14.
The Na+/Ca2+ exchanger (NCX) is a membrane antiporter that has been identified in the plasma membrane, the inner membrane of the nuclear envelope and in the membrane of the endoplasmic reticulum (ER). In humans, three genes have been identified, encoding unique NCX proteins. Although extensively studied, the NCX’s sub-cellular localization and mechanisms regulating the activity of different subtypes are still ambiguous. Here we investigated the subcellular localization of the NCX subtype 3 (NCX3) and its impact on the cell cycle. Two phenotypes, switching from one to the other during the cell cycle, were detected. One phenotype was NCX3 in the plasma membrane during S and M phase, and the other was NCX3 in the ER membrane during resting and interphase. Glycosylation of NCX3 at the N45 site was required for targeting the protein to the plasma membrane, and the N45 site functioned as an on-off switch for the translocation of NCX3 to either the plasma membrane or the membrane of the ER. Introduction of an N-glycosylation deficient NCX3 mutant led to an arrest of cells in the G0/G1 phase of the cell cycle. This was accompanied by accumulation of de-glycosylated NCX3 in the cytosol (that is in the ER), where it transported calcium ions (Ca2+) from the cytosol to the ER. These results, obtained in transfected HEK293T and HeLa and confirmed endogenously in SH-SY5Y cells, suggest that cells can use a dynamic Ca2+ signaling toolkit in which the NCX3 sub-cellular localization changes in synchrony with the cell cycle.  相似文献   

15.
The two exotoxins of Bacillus anthracis , the causative agent of anthrax, are the oedema toxin (PA–EF) and the lethal toxin (PA–LF). They exert their catalytic activities within the cytosol. The internalization process requires receptor-mediated endocytosis and passage through acidic vesicles. We investigated the translocation of EF and LF enzymatic moieties across the target cell membrane. By selective permeabilization of the plasma membrane with Clostridium perfringens delta-toxin, we observed free full-size lethal factor (LF) within the cytosol, resulting from specific translocation from early endosomes. In contrast, oedema factor (EF) remained associated with the membranes of vesicles.  相似文献   

16.
Virulent Yersinia species cause systemic infections in rodents, and Y. pestis is highly pathogenic for humans. Pseudomonas aeruginosa , on the other hand, is an opportunistic pathogen, which normally infects only compromised individuals. Surprisingly, these pathogens both encode highly related contact-dependent secretion systems for the targeting of toxins into eukaryotic cells. In Yersinia , YopB and YopD direct the translocation of the secreted Yop effectors across the target cell membrane. In this study, we have analysed the function of the YopB and YopD homologues, PopB and PopD, encoded by P. aeruginosa . Expression of the pcrGVHpopBD operon in defined translocation-deficient mutants ( yopB / yopD ) of Yersinia resulted in complete complementation of the cell contact-dependent, YopE-induced cytotoxicity of Y. pseudotuberculosis on HeLa cells. We demonstrated that the complementation fully restored the ability of Y. pseudotuberculosis to translocate the effector molecules YopE and YopH into the HeLa cells. Similar to YopB, PopB induced a lytic effect on infected erythrocytes. The lytic activity induced by PopB could be prevented if the erythrocytes were infected in the presence of sugars larger than 3 nm in diameter, indicating that PopB induced a pore of similar size compared with that induced by YopB. Our findings show that the contact-dependent toxin-targeting mechanisms of Y. pseudotuberculosis and P. aeruginosa are conserved at the molecular level and that the translocator proteins are functionally interchangeable. Based on these similarities, we suggest that the translocation of toxins such as ExoS, ExoT and ExoU by P. aeruginosa across the eukaryotic cell membrane occurs via a pore induced by PopB.  相似文献   

17.
Yersinia adhering at the surface of eukaryotic cells secrete a set of proteins called Yops. This secretion which occurs via a type III secretion pathway is immediately followed by the injection of some Yops into the cytosol of eukaryotic cells. Translocation of YopE and YopH across the eukaryotic cell membranes requires the presence of the translocators YopB and YopD. YopE and YopH are modular proteins composed of an N-terminal secretion signal, an internalization domain, and an effector domain. Secretion of YopE and YopH requires the presence of the specific cytosolic chaperones SycE and SycH, respectively. In this work, we have mapped the regions of YopE and YopH that are involved in binding of their cognate chaperone. There is only one Syc-binding domain in YopE (residues 15–50) and YopH (residues 20–70). This domain is localized immediately after the secretion signal and it corresponds to the internalization domain. Removal of this bifunctional domain did not affect secretion of YopE and YopH and even suppressed the need for the chaperone in the secretion process. Thus SycE and SycH are not secretion pilots. Instead, we propose that they prevent intrabacterial interaction of YopE and YopH with proteins involved in translocation of these Yops across eukaryotic cell membranes.  相似文献   

18.
Salmonella species translocate effector proteins into the host cell cytoplasm using a type III secretion system (TTSS). The translocation machinery probably contacts the eukaryotic cell plasma membrane to effect protein transfer. Data presented here demonstrate that both SspB and SspC, components of the translocation apparatus, are inserted into the epithelial cell plasma membrane 15 min after Salmonella typhimurium infection. In addition, a yeast two-hybrid interaction between SspC and an eukaryotic intermediate filament protein was identified. Three individual carboxyl-terminal point mutations within SspC that disrupt the yeast two-hybrid interaction were isolated. Strains expressing the mutant SspC alleles were defective for invasion, translocation of effector molecules and membrane localization of SspC. These data indicate that insertion of SspC into the plasma membrane of target cells is required for invasion and effector molecule translocation and that the carboxyl terminus of SspC is essential for these functions.  相似文献   

19.
Extracellular Yersinia disarm the immune system of their host by injecting effector Yop proteins into the cytosol of target cells. Five effectors have been described: YopE, YopH, YpkA/YopO, YopP and YopM. Delivery of these effectors by Yersinia adhering at the cell surface requires other Yops (translocators) including YopB. Effector and translocator Yops are secreted by the type III Ysc secretion apparatus, and some Yops also need a specific cytosolic chaperone, called Syc. In this paper, we describe a new Yop, which we have called YopT (35.5 kDa). Its secretion required an intact Ysc apparatus and SycT (15.0 kDa, pI 4.4), a new chaperone resembling SycE. Infection of macrophages with a Yersinia , producing a hybrid YopT–adenylate cyclase, led to the accumulation of intracellular cAMP, indicating that YopT is delivered into the cytosol of eukaryotic cells. Infection of HeLa cells with a mutant strain devoid of the five known Yop effectors (ΔHOPEM strain) but producing YopT resulted in the alteration of the cell cytoskeleton and the disruption of the actin filament structure. This cytotoxic effect was caused by YopT and dependent on YopB. YopT is thus a new effector Yop and a new bacterial toxin affecting the cytoskeleton of eukaryotic cells.  相似文献   

20.
Proteolytic activation of protein kinase C (PKC)-delta has been associated with cell death induced by the DNA damaging agent cisplatin. In the present study, we have examined if PKCdelta is affected when cells acquire resistance to cisplatin. The level of PKCdelta was elevated in cisplatin-resistant HeLa (HeLa/CP) cells compared to parental HeLa cells. Prolonged cellular exposure to the PKC activator phorbol-12,13-dibutyrate (PDBu), caused downregulation of PKCdelta in HeLa cells but not in HeLa/CP cells. Treatment of HeLa cells with PDBu resulted in the translocation of PKCdelta from the cytosol to the membrane but it failed to induce PKCdelta translocation in HeLa/CP cells. PDBu, however, induced translocation and downregulation of PKCalpha in both HeLa and HeLa/CP cells. The ability of PDBu to enhance cisplatin-induced cell death was attenuated in cisplatin-resistant HeLa cells. Thus, a deregulation in PKCdelta was associated with reduced cellular sensitivity to cisplatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号