首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mesophyll resistance to photosynthetic carboxylation (r'm) wasused as a criterion for leaf integrity. It was measured, at25 °C, in the light, before and after periods of high temperature(3 h at 38 °C) in the dark. During the high temperatureperiods, respiration (RD) of attached leaves of Xanthium strumariumwas suppressed from 27%-36% by either low [O2] (1.04% or 0.21%v.v.) or high [CO2] (840 µl 1–1) in the ambientair. Neither treatment affected rates of RD or photo-respirationduring the second period at 25 °C. There was no significant increase of r'm when RD was not suppressedduring the high temperature treatment. When RD was suppressedat high temperatures, r'm increased from about 3s cm–1before, to about 26 s cm–1 after the high temperaturetreatment. The increase depended upon the degree of suppression. It is concluded that increased RD at high temperature in Xanthiumleaves is partly the result of an increase of energy demandingmaintenance. The subsequent rate of carbon dioxide fixationis reduced when this increase of maintenance-induced respirationis inhibited.  相似文献   

2.
When leaf discs of Xanthium strumarium L. a C3 plant, or Zeamays L. a C4 plant, are incubated in 1-aminocyclopropane-l-carboxylicacid (ACC) in closed flasks, ethylene is released. The rateof ethylene release appears to be dependent on the levels oflight and CO2 available for photosynthesis in the tissues. In Xanthium the rate of ethylene release is lower in the lightthan in the dark regardless of the presence or absence of addedbicarbonate as a source of CO2. The inhibition of ethylene releaseis most apparent in the absence of added bicarbonate (i.e. atthe CO2 compensation point), and at light intensities sufficientto saturate photosynthesis (had the CO2 level in the test flaskbeen maintained). In contrast, light dramatically promotes therate of ethylene release from Zea leaf tissue when the CO2 levelis maintained above the CO2 compensation point. The rate ofethylene release from either Xanthium or Zea, incubated withor without added bicarbonate, does not appear to be alteredby further increasing the light intensity above the minimallevels sufficient to saturate photosynthesis. In the closed system used in these studies and at a light intensitysufficient to saturate photosynthesis, Xanthium and Zea leaftissue both appear to release comparable amounts of ethylenefrom ACC when the data is expressed on a chlorophyll basis.However, in Xanthium the rate of ethylene release is similarin light and dark, while in Zea the rate in the light is muchgreater than in the dark when the data is expressed either ona leaf area or on a chlorophyll basis. It is suggested thatthe different responses of these tissues to light/dark transientsmay reflect differences in their ability to metabolize ACC and/ordifferences in their ability to retain and metabolize ethyleneitself.  相似文献   

3.
Rates of net photosynthesis, PN, and dark respiration of Viciafaba plants were measured in the laboratory in clean air andin air containing up to 175 parts 10–9 (500 µg m–3)SO2. At all SO2 concentrations exceeding 35 parts 10–9,PN was inhibited compared with clean air. At light saturation,the magnitude of inhibition depended on SO2 concentration butat low irradiances the inhibition was independent of concentration.Dark respiration rates increased substantially, independentof concentration. When exposures continued for up to 3 days,PN returned to clean air values about 1 h after fumigation ceased:dark respiration recovered after one photoperiod. There wereno visible injuries. Reviewing possible mechanisms responsible for the inhibitionof PN, it is suggested that SO2 competes with CO2 for bindingsites in RuBP carboxylase. Analysis of resistance analoguesdemonstrates that SO2 altered both stomatal and internal (residual)resistances. A model of crop photosynthesis shows the implications of theobserved responses for the growth of field crops in which plantsare assumed to respond like laboratory plants. Photosynthesisof the crop would be less sensitive than that of individualplants to SO2 concentration. Daily dry matter accumulation ofhypothetical ‘polluted crops’ would be substantiallyless than clean air values but would vary relatively littlewith SO2 concentration. It is concluded that physiological basesexist to account for observed reductions in growth of plantsat very low SO2 concentrations, and that thresholds for plantresponses to SO2 require reassessment.  相似文献   

4.
Some plant species show constant rates of respiration and photosynthesismeasured at their respective growth temperatures (temperaturehomeostasis), whereas others do not. However, it is unclearwhat species show such temperature homeostasis and what factorsaffect the temperature homeostasis. To analyze the inherentability of plants to acclimate respiration and photosynthesisto different growth temperatures, we examined 11 herbace-ouscrops with different cold tolerance. Leaf respiration (Rarea)and photosynthetic rate (Parea) under high light at 360 µll–1 CO2 concentrations were measured in plants grown at15 and 30°C. Cold-tolerant species showed a greater extentof temperature homeostasis of both Rarea and Parea than cold-sensitivespecies. The underlying mechanisms which caused differencesin the extent of temperature homeostasis were examined. Theextent of temperature homeostasis of Parea was not determinedby differences in leaf mass and nitrogen content per leaf area,but by differences in photosynthetic nitrogen use efficiency(PNUE). Moreover, differences in PNUE were due to differencesin the maximum catalytic rate of Rubisco, Rubisco contents andamounts of nitrogen invested in Rubisco. These findings indicatedthat the temperature homeostasis of photosynthesis was regulatedby various parameters. On the other hand, the extent of temperaturehomeostasis of Rarea was unrelated to the maximum activity ofthe respiratory enzyme (NAD-malic enzyme). The Rarea/Parea ratiowas maintained irrespective of the growth temperatures in allthe species, suggesting that the extent of temperature homeostasisof Rarea interacted with the photosynthetic rate and/or thehomeostasis of photosynthesis.  相似文献   

5.
Chickpea cultivar ILC 482 was inoculated with salt-tolerantRhizobium strain Ch191 in solution culture with different saltconcentrations added either immediately with inoculation or5 d later. The inhibitory effect of salinity on nodulation ofchickpea occurred at 40 dS m–1 (34.2 mol m–3 NaCl)and nodulation was completely inhibited at 7 dS m–1 (61.6mol m–3 NaCl); the plants died at 8 dS m–1 (71.8mol m–3 NaCl). Chickpea cultivar ILC 482 inoculated with Rhizobium strain Ch191spcstrwas grown in two pot experiments and irrigated with saline water.Salinity (NaCl equivalent to 1–4 dS m–1) significantlydecreased shoot and root dry weight, total nodule number perplant, nodule weight and average nodule weight. The resultsindicate that Rhizobium strain Ch191 forms an infective andeffective symbiosis with chickpea under saline and non-salineconditions; this legume was more salt-sensitive compared tothe rhizobia, the roots were more sensitive than the shoots,and N2 fixation was more sensitive to salinity than plant growth. Key words: Cicer arietinum, nodulation, N2 fixation, Rhizobium, salinity  相似文献   

6.
The red mangrove (Rhizophora mangle L.) in southern Floridaoccurs frequently in two distinct growth forms, tall and scrubplants, with the scrub form usually found in coastal inlandareas having a higher fluctuation of soil water salinity. Inthe present study, effects of constant and fluctuating salinitieson leaf gas exchange and plant growth of red mangrove seedlingswere investigated under greenhouse conditions. Both constantand fluctuating salinity treatments significantly affected leafgas exchange and plant growth of red mangrove seedlings. Seedlingssubjected to the fluctuating salinity with the mean of both100 and 250 mol m–3 NaCl showed significantly lower photosynthesisand plant growth than those subjected to the corresponding constantsalinity with the same mean. The photosynthetic and growth ratesof the seedlings under these fluctuating treatments were aslow as, or even lower than those expected if they were growingunder the high constant salinity of their respective fluctuationtreatments. Seedlings subjected to the fluctuating salinitywith the mean of 500 mol m–3 NaCl, however, demonstratedslightly higher CO2 assimilation rate and stomatal conductance,but the same plant growth rates as those under the constant500 mol m–3 NaCl treatment. These results suggest that,in general, fluctuating salinity has significant negative effectson photosynthesis and plant growth relative to constant salinitywith the same mean. If this finding can be applicable to fieldsituations, the low photosynthesis and plant growth observedpreviously in several scrub mangrove forests probably can beattributed in part to the salinity fluctuation of soil waterin these mangrove forests. Key words: Fluctuating salinity, photosynthesis, growth, growth forms, mangroves  相似文献   

7.
REUVENI  J.; GALE  J.; ZERONI  M. 《Annals of botany》1997,79(2):191-196
Sodium chloride, at a concentration of 88 mol m-3in half strengthHoagland nutrient solution, increased dry weight per unit areaofXanthium strumarium L. leaves by 19%, and chlorophyll by 45%compared to plants grown without added NaCl at ambient (350µmol mol-1) CO2concentration. Photosynthesis, per unitleaf area, was almost unaffected. Even so, over a 4-week period,growth (dry weight increment) was reduced in the salt treatmentby 50%. This could be ascribed to a large reduction in leafarea (>60%) and to an approx. 20% increase in the rate ofdark respiration (Rd). Raising ambient [CO2] from zero to 2000 µmol mol-1decreasedRd in both control and salinized plants (by 20% at 1000, andby 50% at 2000 µmol mol-1CO2concentration) compared toRd in the absence of ambient CO2. High night-time [CO2] hadno significant effect on growth of non-salinized plants, irrespectiveof day-time ambient [CO2]. Growth reduction caused by salt wasreduced from 51% in plants grown in 350 µmol mol-1throughoutthe day, to 31% in those grown continuously in 900 µmolmol-1[CO2]. The effect of [CO2] at night on salinized plants depended onthe daytime CO2concentration. Under 350 µmol mol-1day-time[CO2], 900 µmol mol-1at night reduced growth over a 4-weekperiod by 9% (P <0.05) and 1700 µmol mol-1reduced itby 14% (P <0.01). However, under 900 µmol mol-1day-time[CO2], 900vs . 350 µmol mol-1[CO2] at night increasedgrowth by 17% (P <0.01). It is concluded that there is both a functional and an otiose(functionless) component to Rd, which is increased by salt.Under conditions of low photosynthesis (such as here, in thelow day-time [CO2] regime) the otiose component is small andhigh night-time [CO2] partly suppresses functional Rd, therebyreducing salt tolerance. In plants growing under conditionswhich stimulate photosynthesis (e.g. with increased daytime[CO2]), elevated [CO2] at night suppresses mainly the otiosecomponent of respiration, thus increasing growth. Consequently,in regions of adequate water and sunlight, the predicted furtherelevation of the world atmospheric [CO2] may increase plantsalinity tolerance. Xanthium strumarium ; respiration; photosynthesis; salt stress; sodium chloride; carbon dioxide; atmosphere  相似文献   

8.
Changes in photosystem stoichiometry in response to shift ofenvironments for cell growth other than light regime were studiedwith the cyanophyte Synechocystis PCC 6714 in relation to thechange induced by light-quality shift. Following two environment-shiftswere examined: the shift of molecular form of inorganic carbonsource for photosynthesis from CO2 to HCO3 (CO2 stress)and the increase in salinity of the medium with NaCl (0.5 M)(Na+ stress). Both CO2 and Na+ stresses induced the increasein PSI abundance resulting in a higher PSI/PSII stoichiometry.CO2 stress was found to elevate simultaneously Cyt c oxidaseactivity (Vmax). The feature was the same as that caused bylight-quality shift from preferential excitation of PSI to PSII(light stress) though the enhancement by either stress was smallerthan that by light stress. Under our experimental conditions,PSI/PSII stoichiometry appeared to increase at a fairly constantrate to the basal level even when the basal level had been differentlydetermined by the light-quality. Enhancing rates for PSI/PSIIstoichiometry and for Cyt c oxidase activity were also similarto each other. Since the two stresses affect the thylakoid electrontransport similarly to the shift of light-quality, we interpretedour results as follows: three environmental stresses, CO2, Na+,and light stresses, cause changes in electron turnover capacityof PSI and Cyt c oxidase under a similar, probably a common,mechanism for monitoring redox state of thylakoid electron transportsystem. 1On leave from Department of Biology, College of Natural Science,Kyngpook National University, Taegu 702-701, Korea. 2Present address: Department of Marine Bioscience, Fukui Pre-fecturalUniversity, Obama, Fukui, 917 Japan.  相似文献   

9.
The response of two speciality vegetable crops, New Zealandspinach (Tetragonia tetragonioides Pall.) and red orach (Atriplexhortensis L.), to salt application at three growth stages wasinvestigated. Plants were grown with a base nutrient solutionin outdoor sand cultures and salinized at 13 (early), 26 (mid),and 42 (late) d after planting (DAP). For the treatment saltconcentrations, we used a salinity composition that would occurin a typical soil in the San Joaquin Valley of California usingdrainage waters for irrigation. Salinity treatments measuringelectrical conductivities (ECi) of 3, 7, 11, 15, 19 and 23 dSm-1were achieved by adding MgSO4, Na2SO4, NaCl and CaCl2to thebase nutrient solution. These salts were added to the base nutrientsolution incrementally over a 5-d period to avoid osmotic shockto the seedlings. The base nutrient solution without added saltsserved as the non-saline control (3 dS m-1). Solution pH wasuncontrolled and ranged from 7.7 to 8.0. Both species were saltsensitive at the early seedling stage and became more salt tolerantas time to salinization increased. For New Zealand spinach,the salinity levels that gave maximal yields (Cmax) were 0,0 and 3.1 dS m-1and those resulting in a 50% reduction of biomassproduction (C50) were 9.1, 11.1 and 17.4 dS m-1for early, midand late salinization dates, respectively. Maximal yield ofred orach increased from 4.2 to 10.9 to 13.7 dS m-1as the timeof salinization increased from 13, to 26, to 42 DAP, respectively.The C50value for red orach was unaffected by time of salt imposition(25 dS m-1). Both species exhibited high Na+accumulation evenat low salinity levels. Examination of K-Na selectivity dataindicated that K+selectivity increased in both species withincreasing salinity. However, increased K-Na selectivity didnot explain the increased salt tolerance observed by later salinization.Higher Na-Ca selectivity was determined at 3 dS m-1in New Zealandspinach plants treated with early- and mid-salinization plantsrelative to those exposed to late salinization. This correspondedwith lower Cmaxand C50values for those plants. Lower Ca uptakeselectivity or lower Ca levels may have inhibited growth inyoung seedlings. This conclusion is supported by similar resultswith red orach. High Na-Ca selectivity found only in the early-salinizationplants of red orach corresponded to the lower Cmaxvalues measuredfor those plants. Copyright 2000 Annals of Botany Company New Zealand spinach, Tetragonia tetragonioides Pall., red orach, Atriplex hortensis L., salinity, stage of growth, ion accumulation, selectivity, plant nutrition  相似文献   

10.
Ethylene Release from Leaves of Xanthium strumarium L. and Zea mays L.   总被引:1,自引:0,他引:1  
The release of ethylene into sealed Erlenmeyer flasks by intactleaves and leaf discs of Xanthium strumarium L. a C3 plant andZea mays L. a C4 plant were compared both in white light andin darkness. The effects of the presence or absence of addedCO2 (in the form of sodium bicarbonate) the photosynthetic inhibitor3-[3,4-dichlorophenyl]-l, l-dimethyl urea (DCMU) and 1-aminocyclopropane-1-carboxylicacid (ACC), the precursor of ethylene in higher plants, werealso investigated. The rate of ethylene release from leaf tissue of Xanthium inthe absence of added CO2 was markedly reduced in the light (i.e.at the CO2 compensation point). Treatments that would enhancethe CO2 availability to the tissue (i.e. added bicarbonate,darkness, treatment with DCMU) allowed higher levels of ethylenerelease. Incubation of the tissue with ACC considerably enhancedthe release of ethylene compared to that from the correspondingcontrol tissue without ACC. However, the pattern of ethylenerelease induced by the various treatments was similar with orwithout added ACC. When tissue, in the absence of added CO2, was transferred fromlight to darkness, and back to light for 90 min periods, theethylene release rates Increased during the interposed darkperiod but resumed the lower rate during the final light period.The addition of CO2 in the light resulted in a similar rateof ethylene release to that found in the dark. The overall pattern of ethylene release from Zea leaf tissuesubjected to light and dark in the presence or absence of addedCO2 was similar to that of Xanthium. However, two or three timesmore ethylene was released from maize leaves in the light whenCO2 was added compared to that generated in the dark. This isin marked contrast to Xanthium, where, under the light conditionsused, the ethylene release rate in the dark equalled or exceededthat occurring in the light, even in the presence of high levelsof CO2. A very low rate of ethylene release was observed atthe CO2 compensation point of maize. A speculative model is presented to explain how photosyntheticactivity might act as a key factor in regulating ethylene evolutionfrom leaf tissue in these experiments. It invokes the conceptof an inhibition by CO2 of ethylene retention or breakdown thuspermitting more ethylene to be released from the leaves.  相似文献   

11.
The effects of elevated atmospheric CO2 concentrations on theecophysiological responses (gas exchange, chlorophyll a fluorescence,Rubisco activity, leaf area development) as well as on the growthand biomass production of two poplar clones (i.e. Populus trichocarpax P. deltoides clone Beaupré and P. x euramericana cloneRobusta) were examined under open top chamber conditions. Theelevated CO2 treatment (ambient + 350 µmol mol-1) stimulatedabove-ground biomass of clones Robusta and Beaupré afterthe first growing season by 55 and 38%, respectively. This increasedbiomass production under elevated CO2 was associated with asignificant increase in plant height, the latter being the resultof enhanced internode elongation rather than an increased productionof leaves or internodes. Both an increased leaf area index (LAI)and a stimulated net photosynthesis per unit leaf contributedto a significantly higher stem biomass per unit leaf area, andthus to the increased above-ground biomass production underthe elevated CO2 concentrations in both clones. The larger LAIwas caused by a larger individual leaf size and leaf growthrate; the number of leaves was not altered by the elevated CO2treatment. The higher net leaf photosynthesis was the resultof an increase in the photochemical (maximal chlorophyll fluorescenceFm and photochemical efficiency Fv/Fm) as well as in the biochemical(increased Rubisco activity) process capacities. No significantdifferences were found in dark respiration rate, neither betweenclones nor between treatments, but specific leaf area significantlydecreased under elevated CO2 conditions.Copyright 1995, 1999Academic Press Biomass, chlorophyll a fluorescence, elevated CO2, growth, Populus, poplar, photosynthesis, respiration, Rubisco  相似文献   

12.
Agrostis capillaris L.5, Festuca vivipara L. and Poaalpina L.were grown in outdoor open-top chambers at either ambient (340 3µmol mol–1) or elevated (6804µmol mol–1)concentrations of atmospheric carbon dioxide (CO2) for periodsfrom 79–189 d. Photosynthetic capacity of source leaves of plants grown atboth ambient and elevated CO2 concentrations was measured atsaturating light and 5% CO2. Dark respiration of leaves wasmeasured using a liquid phase oxygen electrode with the buffersolution in equilibrium with air (21% O2, 0.034% CO2). Photo-syntheticcapacity of P. alpina was reduced by growth at 680 µmolmol–1 CO2 by 105 d, and that of F. vivipara was reducedat 65 d and 189 d after CO2 enrichment began, suggesting down-regulationor acclimation. Dark respiration of successive leaf blades ofall three species was unaltered by growth at 680 relative to340 µmol mol–1 CO2. In F. vivipara, leaf respirationrate was markedly lower at 189 d than at either 0 d or 65 d,irrespective of growth CO2 concentration. There was a significantlylower total non-structural carbohydrate (TNC) concentrationin the leaf blades and leaf sheaths of A. capillaris grown at680µmol mol–1 CO2. TNC of roots of A. capillariswas unaltered by CO2 treatment. TNC concentration was increasedin both leaves and sheaths of P. alpina and F. vivipara after105 d and 65 d growth, respectively. A 4-fold increase in thewater-soluble fraction (fructan) in P. alpina and in all carbohydratefractions in F. vivipara accounted for the increased TNC content. In F. vivipara the relationship between leaf photosyn-theticcapacity and leaf carbohydrate concentration was such that therewas a strong positive correlation between photosynthetic capacityand total leaf N concentration (expressed on a per unit structuraldry weight basis), and total nitrogen concentration of successivemature leaves reduced with time. Multiple regression of leafphotosynthetic capacity upon leaf nitrogen and carbohydrateconcentrations further confirmed that leaf photosynthetic capacitywas mainly determined by leaf N concentration. In P. alpina,leaf photosynthetic capacity was mainly determined by leaf CHOconcentration. Thus there is evidence for down-regulation ofphotosynthetic capacity in P. alpina resulting from increasedcarbohydrate accumulation in source leaves. Leaf dark respiration and total N concentration were positivelycorrelated in P. alpina and F. vivipara. Leaf dark respirationand soluble carbohydrate concentration of source leaves werepositively correlated in A. capillaris. Changes in source leafphotosynthetic capacity and carbohydrate concentration of plantsgrown at ambient or elevated CO2 are discussed in relation toplant growth, nutrient relations and availability of sinks forcarbon. Key words: Elevated CO2, Climate change, grasses, carbohydrate partitioning, photosynthesis, respiration  相似文献   

13.
Respiration rate of the entire above-ground parts of field-grown8-year-old hinoki cypress [Chamaecyparis obtusa(Sieb. et Zucc.)Endl.] was measured at monthly intervals over a 5-year period,to evaluate the trend in proportion of maintenance and growthcomponents of respiration with stand development. Representativesample trees were selected for respiration measurements. Theannual respiration rates of individual sample trees were combinedand partitioned into maintenance and growth components by regressingspecific respiration rate on mean relative growth rate. Maintenanceand growth respiration coefficients generated in this way were5.2 mol CO2kg-1year-1and 39 mol  CO2kg-1, which are equivalentto 14.3 mg C kg-1C h-1(at mean annual air temperature of 15.1°C) and 0.94 kg C kg-1C. Considering the maintenance andgrowth respiration coefficients, and phytomass and phytomassincrement of individual trees in the stand, the maintenanceand growth respiration rates of the stand were estimated. Theproportion of the maintenance respiration increased, whereasthat of the growth respiration decreased with stand development,due to decreasing relative growth rate.Copyright 1997 Annalsof Botany Company Chamaecyparis obtusa; growth respiration coefficient; hinoki; maintenance respiration coefficient; stand respiration  相似文献   

14.
The effect of an increase in salinity on the physiology of thehalotolerant chlorophyte Scenedesmus protuberans was studiedin light-limited continuous cultures. It was observed that agradual, as well as a steep increase in salinity resulted inlower biomass. However, the mechanisms by which this was achievedwere different. In the culture that was exposed to a gradualsalinity increase, respiration and the cellular protein contentof the culture were initially unaffected. However, this culturewas not able to maintain its cellular chlorophyll content and,consequently, gross and net photosynthesis decreased. The culturethat was exposed to a steep salinity increase rapidly reactedby increasing its respiration and cellular protein content,which is ascribed to an induction of osmoregulation. This culturewas able to maintain its gross photosynthesis rate. It is speculatedthat, in this species, a steep salinity increase induces a nearlyimmediate osmoregulatory response, allowing growth to continue.If the cells are exposed to a gradual salinity increase, inductionof osmoregulation lags behind and, consequently, photosynthesisand growth rate will be* affected.  相似文献   

15.
Millhouse, J. and Strother, S. 1987. Further characteristicsof salt-dependent bicarbonate use by the seagrass Zostera muelleri.—J.exp. Bot. 38: 1055–1068. The contribution of HCO3to photosynthetic O2 evolutionin the seagrass Zostera muelleri Irmisch ex Aschers. increasedwith increasing salinity of the bathing seawater when the inorganiccarbon concentration was kept constant. K1/2 (seawater salts)for HCO3 -dependent photosynthesis was 66% of seawatersalinity. Both short- and long-term pretreatment at low salinitiesstimulated photosynthesis in full strength seawater. Twentyfour hours pre-incubation of seagrass plants in 3·0 molm–3 NaHCO3 resulted in increased photosynthesis at allsalinities, apparently due to stimulation of HCO3 use(K1/2 (seawater salts) = 26%). Vmax (HCO3) was not affectedby low salinity pretreatment. The kinetics of HCO3 stimulationby the major seawater cations was investigated. Ca2+ was themost effective cation with the highest Vmax (HCO3) andwith K1/2(Ca2+) = 14 mol m–3. Mg2+ was also very effectiveat less than 50 mol m–3 but higher concentrations wereinhibitory. This inhibition cannot be accounted for solely byprecipitation of MgCO3. Na+ and K+ were both capable of stimulatingHCO3 use. Stimulation was in two distinct parts. Up to500 mol m–3, both citrate and chloride salts gave similarresults (K1/2(Na+) 81 mol m–3, Vmax(HCO3) 0·26µmol O2 mg–1 chl min–1), but use of citratesalts above 500 mol m–2 caused a second stimulation ofHCO3 use (K1/2(Na+) 830 mol m–3, Vmax(HCO3)0·68 µmol O2 mg–1 chl min–1). Vmax(HCO3)for the second-phase Na+ or K+ stimulation was of the same orderas for Ca2+-stimulated HCO3 use. To further characterizesalt-dependent HCO3 use, the sensitivity of photosynthesisto Tris and TES buffers was investigated. The effects of Trisappear to be due to the action of Tris+ causing stimulationof HCO3 -dependent photosynthesis in the absence of salt,but inhibition of HCO3 use in saline media. TES has noeffect on photosynthesis. External carbonic anhydrase, althoughimplicated in salt-dependent HCO3 use in Z. muelleri,could not be detected in whole leaves. Key words: Zostera muelleri, HCO3 use, salinity  相似文献   

16.
Physiology and Growth of Wheat Across a Subambient Carbon Dioxide Gradient   总被引:5,自引:0,他引:5  
Two cultivars of wheat (Triticum aestivum L.), 'Yaqui 54' and'Seri M82', were grown along a gradient of daytime carbon dioxideconcentrations ([CO2]) from near 350-200 µmol CO2 mol-1air in a 38 m long controlled environment chamber. Carbon dioxidefluxes and evapotranspiration were measured for stands (plantsand soil) in five consecutive 7·6-m lengths of the chamberto determined potential effects of the glacial/interglacialincrease in atmospheric [CO2] on C3 plants. Growth rates andleaf areas of individual plants and net assimilation per unitleaf area and daily (24-h) net CO2 accumulation of wheat standsrose with increasing [CO2]. Daytime net assimilation (PD, mmolCO2 m-2 soil surface area) and water use efficiency of wheatstands increased and the daily total of photosynthetic photonflux density required by stands for positive CO2 accumulation(light compensation point) declined at higher [CO2]. Nighttimerespiration (RN, mmol CO2 m-2 soil surface) of wheat, measuredat 369-397 µmol mol-1 CO2, apparently was not alteredby growth at different daytime [CO2], but RN /PD of stands declinedlinearly as daytime [CO2] and PD increased. The responses ofwheat to [CO2], if representative of other C3 species, suggestthat the 75-100% increase in [CO2] since glaciation and the30% increase since 1800 reduced the minimum light and waterrequirements for growth and increased the productivity of C3plants.Copyright 1993, 1999 Academic Press Atmospheric carbon dioxide, carbon accumulation, evapotranspiration, light compensation point, net assimilation, respiration, Triticum aestivum, water use efficiency, wheat  相似文献   

17.
The calanoid copepod, Eudiaplomus graciloides, was reared fromegg to adult on uni-algal diets (0.1. 0.5 and 2.5 mg dry wt1–1) using the green alga, Chlamydomonas reinhardtii,as food, or on a mixed diet consisting of Lake Esrom water filteredthrough a plankton net with pore size 45 µm and supplementedwith C. reinhardtii (2.5 mg dry wt 1–1). On the mixeddiet at 21.0°C growth in body dry wt (W, µg dry wt)was exponential, and the growth constants were 0.21 day–1in the early to mid juvenile stage (N1 - C4) and 0.11 day–1in the late juvenile to early adult stage (C4-A). At 14.5°Cthe corresponding growth rate constants were 0.10 and 0.08 day–1.Similar growth rates were found at uni-algal concentrationsof 0.5 and 2.5 mg dry wt I–1, and it was argued that thethreshold concentration for growth in Eudiaptomus was closeto 0.1 mg dry wt I–1. The clearance (C, ml h–1)of copepodites was measured on the uni-algal diets. The constantsof the regression (C = aWb) were: a = 0.125, b = 0.858 (2000C. reinhardtii ml–1), a = 0.068, b = 0.849 (10 000), a= 0.028, b = 0.875 (50 000). Ingestion rates were calculatedfrom the clearances and the average algal concentrations. Atthe three food levels the average daily rations were 30, 67and 125% of body dry wt. The respiration rate (R, nl O2 h–1)was measured in individuals reared on the mixed diet. The constantsof the regression (R = aWb) were: a = 4.82, b = 1.07 (nauplii,14.5°C), a = 4.17, b = 0.904 (copepodites and adults, 14.5°C),a = 6.87, b = 0.757 (copepodites and adults, 21.0°C). Nosignificant difference in the respiration rate of copepoditesreared on uni-algal diets and the mixed diet could be demonstrated.Energy budgets were calculated. The assimilation efficiencyand the gross growth efficiency of copepodites decreased markedlywith increasing food concentration, the net growth efficiencyvaried from an average of 0.44 at the lowest algal concentrationto 0.60 on the mixed diet. The results are discussed in relationto previous findings with both freshwater and marine copepods.  相似文献   

18.
Single clonal plants of white clover (Trifolium repens L) grownfrom explants in a Perlite rooting medium, and dependent fornitrogen on N2 fixation in root nodules, were grown for severalweeks in controlled environments which provided two regimesof CO2, and temperature 23/18 °C day/night temperaturesat 680 µmol mol–1 CO2, (C680), and 20/15 °Cday/night temperatures at 340 µmol mol–1 CO2 (C340)After 3–4 weeks of growth, when the plants were acclimatedto the environmental regimes, leaf and whole-plant photosynthesisand respiration were measured using conventional infra-red gasanalysis techniques Elevated CO2 and temperature increased ratesof photosynthesis of young, fully expanded leaves at the growthirradiance by 17–29%, despite decreased stomatal conductancesand transpiration rates Water use efficiency (mol CO2 mol H2O–1)was also significantly increased Plants acclimated to elevatedCO2, and temperature exhibited rates of leaf photosynthesisvery similar to those of C340 leaves ‘instantaneously’exposed to the C680 regime However, leaves developed in theC680 regime photosynthesised less rapidly than C340 leaves whenboth were exposed to a normal CO2, and temperature environmentIn measurements where irradiance was varied, the enhancementof photosynthesis in elevated CO2 at 23 °C increased graduallyfrom approx 10 % at 100 µmol m–1 s–1 to >27 % at 1170 µmol m–2 s–1 In parallel, wateruse efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 In parallel,water use efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 to approx100 % at the highest irradiance Elevated CO2, and temperatureincreased whole-plant photosynthesis by > 40 %, when expressedin terms of shoot surface area or shoot weight No effects ofelevated CO2 and temperature on rate of tissue respiration,either during growth or measurement, were established for singleleaves or for whole plants Dependence on N2, fixation in rootnodules appeared to have no detrimental effect on photosyntheticperformance in elevated CO2, and temperature Trifolium repens, white clover, photosynthesis, respiration, elevated CO2, elevated temperature, water use efficiency, N2 fixation  相似文献   

19.
Wheat (Triticum aestivum L.) embryos form in dynamically-regulatedovular environments. Our objectives were to improve developmentof cultured immature wheat embryos by simulating, in vitro,abscisic acid (ABA) levels and O2 tensions as found in wheatovules during zygotic embryogenesis. We characterized from intactwheat kernels embryo respiration, embryo morphology and embryoand endosperm + ABA levels at 13, 19 and 25 d post-anthesis(DPA). Young (13 DPA) embryos were then excised and culturedin vitro, where they were exposed to 0·2 or 2·Ommol m–3 ±ABA and 2.·1, 2·5 or 7·4mol m–3 (6, 7 and 21%, respectively) gaseous O2. At 6and 12 d in culture, + ABA levels, embryo respiration and embryomorphology were characterized by treatment. Thirteen-day-oldembryos from two different plant populations differed by 17-foldin initial ABA content. However, this difference did not affectprecocious germination in vitro, nor did it affect the amountof exogenous ABA required to reduce precocious germination by40%. In this respect, embryos from both populations were equallysensitive to exogenous ABA. Cavity sap O2 levels (2·1to 2·5 mol m–3) were much more effective in preventingprecocious germination of cultured embryos than were cavitysap levels of ABA (0·2 to 2·0 mmol m–3).The combination of physiological levels of both ABA and O2 largelynormalized DW accumulation and embryo morphology without alteringendogenous + ABA levels. Residual respiration of cultured embryoswas higher than that of embryos grown in situ, and was not influencedby the exogenous O2 and ABA treatments Key words: Abscisic acid, embryo development, oxygen tensions, respiration, wheat  相似文献   

20.
White pine seedlings (Pinus strobus L.) were grown under highor low soil-moisture levels. The increase in the length andin the fresh weight of seedlings, respiration, photosynthesis,transpiration, translocation of photosynthate from shoots toroots, and bio-electric potentials between the tip and the baseof a stem were measured throughout the growing season from Aprilto October 1964. At both moisture levels the lowest translocation of recent photosynthatefrom shoots to roots occurred during early summer, or at thetime when the rate of root growth was the lowest and that ofthe shoot the highest. The specific activity of 14CO2, respiredby the shoots of such plants remained high throughout the 8h of the experiment, indicating a continuous utilization ofrecent photosynthate as a respiratory substrate. On the otherhand, early and late in the growing season, when translocationof recent photosynthate from shoots to roots and the rate ofroot growth were high, the specific activity of 14CO2, respiredby the shoots rapidly decreased during the 8 h of the experiment,indicating a drop in the utilization of recent photosynthateas respiratory substrate. The highest positive values for thepotential difference between the top and the base of the mainshoot also occurred in early summer or during the period ofhigh rates of transpiration per needle stomatal surface area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号