首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The urodele amphibian Necturus maculosus has a zoned testis, which is advantageous for separating Leydig cells from germinal elements and for studying stage-dependent biochemical changes. Using [3H]testosterone (T) in a standard binding assay and dextran-coated charcoal (DCC) or Sephadex LH-20 to separate free and bound steroids, we identified an androgen-binding protein (ABP) in Necturus testis cytosols. This protein was of high affinity (Kd = 10(-9) M) and was saturable (Bmax = 10(-9) M) and specific for androgen (T; 5 alpha-dihydrotestosterone, DHT) but could be distinguished from the androgen receptor of Necturus testis by its relative abundance (300-550 fmol/mg protein), short half-time of dissociation (3 min at 22 degrees C), inability to adhere to DNA-cellulose, and absence from nuclear extracts. Additionally, when analyzed on sucrose gradients, the ABP of Necturus testis sedimented at 6-7 S in both low or high ionic strength buffers. In that estradiol (E2) is a poor competitor for T-binding, this protein resembles a sex steroid-binding protein previously identified in urodele serum but differs from the ABP and testosterone-estradiol-binding globulin (TEBG) of rodents, humans, goldfish, and sharks. It is differentially distributed within the testis, with the highest levels in immature lobular regions composed of Sertoli cells and germ cells in premeiotic stages and lower levels in regions composed primarily of Leydig cells. The cellular source and function of this protein in Necturus testis remain to be determined.  相似文献   

2.
O Naess 《Steroids》1976,27(2):167-185
The specific androgen receptors for testosterone (T) (1) and 5alpha-dihydrotestosterone (DHT) in the cytosol fraction of the hypothalamus, preoptic area and brain cortex of the rat have been characterized using electrophoresis and isoelectric focusing in polyacrylamide gels. After labeling of the cytosol fractions in vivo and in vitro we were able to demonstrate androgen-receptor complexes moving with an electrophoretic mobility (R(f) of 0.5 in 3.25% acrylamide gels containing 0.5% agarose and 10% glycerol. Polyacrylamide gel electrophoresis was used as a quantitative assay for androgen receptors in the tissues. The hypothalamus, preoptic area and brain cortex were found to possess a single class of high affinity binding sites for androgens and the dissociation constants (K(D) were estimated to be 3.4, 4.3 and 2.6 X 10 (-10M) respectively. The binding capacities were 3.7 (hypothalamus), 3.5 (preoptic area) and 1.8 X 10 (-15) (brain cortex) moles of high affinity binding sites per mg protein. Like other androgen-receptor complexes, the testosterone-receptor complexes of the hypothalamus, preoptic area and brain cortex were temperature labile, sulfhydryl dependent and revealed a very slow rate of dissociation at o degrees C (t1/2 greater than 36 hr). The receptors in all the tissues had an isoelectric point of 5.8. The steroid specificity of the cytoplasmic androgen receptors was tested in vitro by the competing efficiency of different unlabeled steroids for (3H)-testosterone binding. In the three tissues in investigation the following order of affinity was found: DHT greater than T greater than Cyproterone acetate greater than progesterone greater than androstenedione greater than 17beta-estradiol. Cortisol did not effect androgen binding significantly. Thus, the physiochemical characteristics of the cytoplasmic androgen receptors of the hypothalamus, preoptic area and brain cortex are very similar, if not identical, to those of the androgen receptors described in the anterior pituitary, ventral prostate, epididymis and testis.  相似文献   

3.
The binding of biologically active 125I-Bolton-Hunter-CCK-33 to bullfrog brain and pancreatic membrane particles was characterized. Both tissues exhibited time-dependent, saturable, reversible, and high affinity binding without evidence for cooperative interaction. Both bullfrog CCK receptors resembled their mammalian counterparts in having acidic pH optima for tracer binding and a Kd of about 0.5 nM. However, the receptors differed from their mammalian counterparts in that (1) the bullfrog brain membranes bound more tracer per mg protein than did the pancreatic membranes, (2) both bullfrog CCK receptors were relatively insensitive to dibutyryl cGMP, and (3) both bullfrog brain and pancreatic CCK receptors exhibited the same general specificity toward a variety of CCK and gastrin peptides. For both tissues, the relative order of receptor binding potency was CCK-8 greater than caerulein = CCK-33 greater than gastrin-17-II greater than CCK-8-ns = gastrin-17-I greater than caerulein-ns greater than gastrin-4 with the sulfated CCK peptides being 1000-fold more potent than their nonsulfated analogs. Sulfated gastrin was also relatively potent, being only 10-fold weaker than CCK-8. Gastrin-4 was 20 000-fold weaker than CCK-8 in interacting with the brain CCK receptor. The latter finding is in sharp contrast to the mammalian brain CCK receptor. We conclude that the bullfrog brain and pancreas contain similar CCK receptors of probable physiological significance and may represent an ancestral condition from which the two distinct CCK receptors present in mammalian brain and pancreas have evolved.  相似文献   

4.
Two distinct nuclear androgen receptors (ARs) were identified in brain and ovarian tissues of kelp bass, Paralabrax clathratus, termed kbAR1 and kbAR2, which correspond to the two nuclear ARs we have previously characterized in Atlantic croaker, Micropogonias undulatus, termed acAR1 and acAR2. Scatchard analysis of nuclear fractions of whole brain tissue demonstrated that kbAR1 had a single class of high-affinity binding sites for testosterone (T; K(d) of 1. 8 nM and B(max) of 1.0 pmol/g tissue), whereas cytosolic fractions of kbAR2 ovarian tissue had a single class of high-affinity binding sites for dihydrotestosterone (DHT; K(d) of 0.1 nM and B(max) of 0.5 pmol/g tissue). Competition studies showed that both kbAR1 and kbAR2 were specific for androgens. However, kbAR1 bound only T with high affinity, whereas kbAR2 bound DHT, mibolerone, 17alpha-methyl-testosterone, T, and 11-ketotestosterone with high affinity. In addition, we examined the binding affinities of dichlorodiphenyltrichloroethane and its derivatives, several hydroxylated polychlorinated biphenyl (PCB) congeners, PCB mixtures, and the fungicide vinclozolin and its two metabolites M1 and M2 for the two ARs in Atlantic croaker ovarian, testicular, and brain tissues and in kelp bass ovarian and brain tissues. Only 4, 4'-PCB-3-OH and 2',5'-PCB-3-OH demonstrated greater than 50% displacement of [(3)H]testosterone from either acAR1 or kbAR1. In contrast, with the exception of vinclozolin, all of the xenobiotics examined demonstrated binding to acAR2 in testicular and ovarian tissues. The binding affinities were highest in the testicular tissue with M2, 2,2'5'-PCB-4-OH, and o,p'-DDD all binding with EC(50)s less than 10 microM. The binding affinities of xenobiotics to kbAR2 in ovarian tissue were similar to their binding affinities for ovarian acAR2. The finding that AR1 and AR2 possess different binding affinities for natural androgens and synthetic steroids, as well as for xenobiotics, suggests that the activities of androgens and of certain xenobiotics will depend upon the type of AR present within the target tissue.  相似文献   

5.
We treated pregnant guinea pigs on Day 50 of gestation with 10 mg testosterone propionate (TP), obtaining fetuses 2, 4, 8, or 18 h later as well as after 5 days of treatment. In a second group of pregnant guinea pigs, dihydrotestosterone propionate (DHTP), estradiol benzoate (E2B), progesterone (P), or cortisol was given 2 h before obtaining fetuses. Although TP treatment elevated fetal serum T (p less than 0.05), brain cytosolic androgen receptor (ARc) content was unchanged in fetuses of either sex. In female fetuses, nuclear androgen receptors (ARn) increased 10-fold in medial-basal hypothalamus (MBH) and preoptic area (POA) at 2 and 4 h (respectively) after treatment, while fetal male ARn content was unchanged. Maternal injection of other steroids (E2B, P, or cortisol, but not DHTP) significantly increased these hormones in the fetus 2 h later (p less than 0.05). Only androgens affected fetal androgen receptor (AR) content. While TP increased ARn in female MBH, DHTP decreased ARc in fetal anterior pituitary of both sexes. In this latter case, a metabolite of DHT may mediate the effects. We conclude that T crosses the guinea pig placenta and activates ARn in POA and MBH of female fetuses; male ARn appear to be maximally occupied by endogenous T. Steroids of other classes do not induce AR responses in fetal guinea pig brain. These AR changes may represent an initial cellular mechanism in brain sexual differentiation.  相似文献   

6.
Several reports have shown that sodium molybdate stabilizes steroid hormone receptors. We have utilized these observations to develop an exchange assay for the androgen receptor at elevated temperatures. Exchange was found to be complete after 30 min at 30 degrees C. Receptor degradation was negligible during this treatment. Scatchard analysis indicated that the dissociation constant of the androgen receptor was similar both in the absence (Kd = 3.9 nM) and presence (Kd = 2.9 nM) of molybdate. Steroid specificity of the androgen receptor was unaltered by this treatment. The exchange procedure was reproducible, with an interassay variation of 2.45% and intraassay variation less than 10.0%. Using this assay, highest concentrations of androgen binding were measured in androgen target tissues of the rat (Dunning R3327 tumor, prostate and seminal vesicle; 23.37, 20.20 and 19.84 fmol/mg protein respectively). Lower concentrations were observed in other tissues (lung, brain, heart, spleen, liver and kidney; 9.06, 5.63, 3.50, 2.42, 2.33 and 1.36 fmol/mg protein respectively). These results demonstrate that molybdate stabilization of the androgen receptor allows efficient steroid exchange without significant alteration of the receptor's steroid binding properties. Furthermore, this exchange assay can be used to obtain a reasonable measurement of receptor concentrations in different androgen target tissues.  相似文献   

7.
Mammalian liver is a sex-steroid responsive tissue in that androgen and estrogen receptors are present and mediate differential hepatic hormonal effects. Further, we and others have found a sexual dimorphism in the hepatic cytosolic content of estrogen binding proteins. In addition to the estrogen receptor, the male has a high-capacity (12.0-15.0 pmol/mg protein) estrogen binding protein (MEB) which demonstrates a moderate affinity for estradiol (Kd = 31.0-43.2 nM) if estradiol metabolizing enzymes are first precipitated with protamine sulfate. This protein exhibits a unique specificity for steroidal estrogens: 2-methoxyestriol greater than estradiol greater than estriol = 2-methoxyestradiol greater than 2-hydroxyestradiol greater than estrone greater than 2-methoxyestrone greater than estriol 3-glucuronide greater than 2-hydroxyestrone = 3-methoxyestriol greater than androstanediol greater than dihydrotestosterone greater than testosterone. Other androgens such as androstenedione and methyltrienolone, nonsteroidal estrogens such as diethylstilbestrol, and the antiestrogens tamoxifen and 4-hydroxytamoxifen do not compete for [3H]estradiol ([3H]E2) binding. MEB is a relatively small-molecular-weight protein with a Sr of 20.4 A as determined by gel filtration on Sephadex G-100. The kinetics of [3H]E2 association and dissociation at 4 degrees C are very rapid, with t1/2 values of less than 5 s. Sodium molybdate, generally used to stabilize steroid receptors, inhibits MEB-[3H]estradiol binding activity in cytosol in a time- and dose-dependent manner, an effect not observed with partially purified MEB. Magnesium chloride inhibits binding activity of the Sephadex G-100 MEB pool, an effect reversed by EDTA. Other divalent cations also inhibit binding: Mn2+ greater than Mg2+ greater than Ca2+. Furthermore, EDTA complexes of these cations slightly enhance binding relative to EDTA alone: Ca2+ EDTA greater than Mg2+ EDTA greater than Mn2+ EDTA. These results demonstrate that MEB is a unique sex-steroid binding protein, albeit of unknown function, which is distinct from hepatic steroid receptors.  相似文献   

8.
9.
Sexual differentiation of the guinea pig brain is androgen dependent. To understand the cellular mechanisms of androgen action, we studied the ontogeny of cytosolic (ARc) and nuclear (ARn) androgen receptors in the brains and anterior pituitaries of fetal, neonatal, and adult guinea pigs. Using cytosol from the hypothalamus-preoptic area-amygdala-septum of 60- to 65-day fetuses and nuclear preparations from 6-day-old neonates treated with testosterone propionate, validation studies revealed an AR with an apparent Kd of 1.9 +/- 1.1 (mean +/- SEM, n = 3) x 10(-10) M (ARc) and 3.4 +/- 3.2 (n = 3) x 10(-10) M (ARn). The cytosolic receptors were highly specific for androgens. After assay validation, AR content was determined from specific brain regions of fetuses obtained on Days 30, 40, 50, and 59 of gestation and on Days 6 and 120 postpartum. ARc differed significantly (p less than 0.05) between brain regions and times of gestation, but no sex differences were apparent. In contrast, ARn showed little difference between tissues or with gestational age, but there were significant differences between males and females, especially in late gestation and early postnatal life, with males having greater ARn binding (p less than 0.05). These data demonstrate the presence of ARc and ARn in the fetal brain and pituitary gland during the critical period of sexual differentiation (Days 30-37 of gestation), thus establishing the identity of cellular structures involved in androgen action.  相似文献   

10.
11.
C Bonne  J P Raynaud 《Steroids》1976,27(4):497-507
Methyltrienolone (R 1881 - 17beta-hydroxy-17alpha-methyl-estra-4,9,11-trien-3-one) binds specifically to androgen receptor in rat prostate cytosol where, unlike androstanolone, it is not metabolized. By exchanging bound endogenous hormone in rat prostate cytosol with labelled R 1881, it is possible to measure total (free anc occupied) binding sites. This assay method has also been applied to the measurement of androgen receptor sites in human benign prostatic hypertrophy where R 1881 has the added advantage of not being bound by any contaminating plasma protein (sex hormone binding protein).  相似文献   

12.
Transformed and bacterially expressed glucocorticoid receptors free from Mr 90,000 heat shock protein (hsp90) have a 100-fold lower steroid-binding affinity than the hsp90-bound nontransformed receptor, suggesting that hsp90 is needed for high-affinity steroid binding [Nemoto, T., Ohara-Nemoto, Y., Denis, M., & Gustafsson, J.-A. (1990) Biochemistry 29, 1880-1886]. To investigate whether or not this phenomenon is common to all steroid receptors, we investigated the steroid-binding affinities of bacterially expressed and transformed androgen receptors. The C-terminal portion of the rat androgen receptor containing the putative steroid-binding domain was expressed as a fusion protein of protein A in Escherichia coli. The recombinant protein bound a synthetic androgen, [3H]R1881, with high affinity (Kd = 0.8 +/- 0.3 nM). Glycerol gradient analysis revealed that the recombinant protein sedimented at around the 3S region irrespective of the presence of molybdate, indicating that the receptor is present in monomeric form. The steroid-free transformed androgen receptor was obtained by exposure of rat submandibular gland cytosol to 0.4 M NaCl in the absence of steroid. High-performance ion-exchange liquid chromatography analysis showed that the transformed androgen receptor bound to [3H]R1881 with high affinity. Thus these observations indicate that, in contrast to the glucocorticoid receptor, hsp90 is not required for the high-affinity steroid binding of the androgen receptor. In addition, the hsp90-free androgen receptor prebound with radioinert R1881 was efficiently relabeled with [3H]R1881, while the triamcinolone acetonide-bound, transformed glucocorticoid receptor failed in ligand exchange. The inability to achieve ligand exchange probably reflects the low steroid-binding affinity of this entity.  相似文献   

13.
Membrane androgen receptors have been biochemically characterized in only a few vertebrate species to date. Therefore, the purpose of the current study was to comprehensively investigate the binding characteristics of a putative membrane androgen receptor in the ovary of the teleost, Atlantic croaker (Micropogonias undulatus). Specific androgen binding to an ovarian plasma membrane fraction was demonstrated using a radioreceptor assay protocol consisting of a short-term incubation with [(3)H]testosterone (T) and subsequent filtration of bound steroid from free steroid. Saturation and Scatchard analyses of T binding to an ovarian plasma membrane fraction indicated the presence of a single, high-affinity (K(d) = 15.32 +/- 2.68 nM [mean +/- SEM]), low-capacity (B(max) = 2.81 +/- 0.31 pmol/mg protein), androgen-binding site. Specific androgen binding to the receptor was readily displaceable, and the association and dissociation kinetics were rapid (half-time = 3.7 +/- 1.7 and 4.7 +/- 0.2 min, respectively). Competitive binding assays showed that 5alpha-dihydrotestosterone, T, and 11-ketotestosterone had relative binding affinities (RBAs) of 193%, 100%, and 13%, respectively, whereas none of the C(18) or C(21) steroids tested bound with high affinity except for progesterone (RBA = 191%). This androgen-binding moiety with high affinity for progesterone is unlikely to mediate the physiological actions of progestins in croaker, because it has low binding affinity for fish progestin hormones. Androgen-binding sites were also detected in membrane fractions of the brain, liver, kidney, and drumming muscle, whereas little or no binding was detected in the trunk muscle, heart, gills, or intestine. Receptor levels increased 10-fold during ovarian recrudescence, reaching maximum levels in fully mature ovaries, which suggests a likely physiological role for this receptor during the reproductive cycle of female croaker. It is concluded that the androgen-binding moiety identified in the plasma membrane fraction of Atlantic croaker ovarian tissue fulfils all the criteria for its designation as a steroid receptor.  相似文献   

14.
The aromatization hypothesis asserts that testosterone (T) must be aromatized to estradiol (E2) to activate copulatory behavior in the male rat. In support of this hypothesis, the aromatization inhibitor, ATD, has been found to suppress male sexual behavior in T-treated rats. In our experiment, we first replicated this finding by peripherally injecting ATD (15 mg/day) or propylene glycol into T-treated (two 10-mm Silastic capsules) or control castrated male rats. In a second experiment, we bilaterally implanted either ATD-filled or blank cannulae into the medial preoptic area (MPOA) of either T-treated or control castrated male rats. With this more local distribution of ATD, a lesser decline in sexual behavior was found, suggesting that other brain areas are involved in the neurohormonal activation of copulatory behavior in the male rat. To determine whether in vivo ATD interacts with androgen or estrogen receptors, we conducted cell nuclear androgen and estrogen receptor binding assays of hypothalamus, preoptic area, amygdala, and septum following treatment with the combinations of systemic T alone. ATD plus T, ATD alone, and blank control. In all four brain areas binding of T to androgen receptors was significantly decreased in the presence of ATD, suggesting that ATD may act both as an androgen receptor blocker and as an aromatization inhibitor. Competitive binding studies indicated that ATD competes in vitro for cytosol androgen receptors, thus substantiating the in vivo antiandrogenic effects of ATD. Cell nuclear estrogen receptor binding was not significantly increased by exposure to T in the physiological range. No agonistic properties of ATD were observed either behaviorally or biochemically. Thus, an alternative explanation for the inhibitory effects of ATD on male sexual behavior is that ATD prevents T from binding to androgen receptors.  相似文献   

15.
16.
In rhesus monkeys sexual differentiation of the brain and reproductive tract (RT) is androgen-dependent. Presumably these effects are mediated through the androgen receptor (AR). The AR has not been characterized in fetal tissues such as liver, kidney, heart, spinal cord and RT in this species. We characterized AR binding using [3H]R1881 as the ligand in cytosols from tissues obtained on days 100-138 of gestation. Scatchard analyses revealed a single, saturable, high affinity AR in liver, kidney, heart, spinal cord and RT. The apparent dissociation constant (Kd) ranged from 0.52 to 0.85 nM with no significant tissue differences. The number of AR (Bmax; fmol/mg protein) differed significantly (P less than 0.01) between tissues (liver greater than RT much greater than kidney greater than or equal to heart greater than or equal to spinal cord). Radioinert testosterone (T) and 5 alpha-dihydrotestosterone (DHT) but not androstenedione, progesterone, estradiol-17 beta, estrone or cortisol in a 50-fold molar excess inhibited [3H]R1881 binding to the AR in spinal cord, heart, kidney and RT. However, in liver only DHT competed significantly (P less than 0.01) for binding. This difference in binding of DHT vs T in the liver was further investigated by incubating liver and kidney cytosols with [3H]DHT and [3H]T at 4 degrees C. We identified the metabolic products by mobility on Sephadex LH-20 columns and reverse isotope dilution. Liver cytosols metabolized [3H]DHT to 5 alpha-androstane- 3 alpha,17 beta-diol (5 alpha-diol) and [3H]T to 5 beta-androstane-3 alpha, 17 beta-diol (5 beta-diol) at 4 degrees C. In contrast, kidney cytosols metabolized [3H]DHT while [3H]T remained unchanged. Further studies indicated that a 50-fold molar excess of 5 alpha-diol inhibited the binding of [3H]R1881 in liver cytosols by about 50% whereas the same molar concentration of 5 beta-diol had no effect. These data demonstrate the presence of AR in peripheral tissues of fetal rhesus monkeys and suggest that androgens through their receptors may affect development of these tissues. Liver cytosols are capable of metabolizing T and DHT at 4 degrees C at conditions similar to those used for measuring cytosolic AR. However, T and DHT are metabolized differently, generating different isomers which have different affinities for hepatic AR.  相似文献   

17.
Sex hormones play an important role in adipose tissue metabolism by activating specific receptors that alter several steps of the lipolytic and lipogenic signal cascade in depot- and sex-dependent manners. However, studies focusing on steroid receptor status in adipose tissue are scarce. In the present study, we analyzed steroid content [testosterone (T), 17beta-estradiol (17beta-E2), and progesterone (P4)] and steroid receptor mRNA levels in different rat adipose tissue depots. As expected, T levels were higher in males than in females (P = 0.031), whereas the reverse trend was observed for P4 (P < 0.001). It is noteworthy that 17beta-E2 adipose tissue levels were higher in inguinal than in the rest of adipose tissues for both sexes, where no sex differences in 17beta-E2 tissue levels were noted (P = 0.010 for retroperitoneal, P = 0.005 for gonadal, P = 0.018 for mesenteric). Regarding steroid receptor levels, androgen (AR) and estrogen receptor (ER)alpha and ERbeta densities were more clearly dependent on adipose depot location than on sex, with visceral depots showing overall higher mRNA densities than their subcutaneous counterparts. Besides, expression of ERalpha predominated over ERbeta expression, and progesterone receptor (PR-B form and PR-A+B form) mRNAs were identically expressed regardless of anatomic depot and sex. In vitro studies in 3T3-L1 cells showed that 17beta-E2 increased ERalpha (P = 0.001) and AR expression (P = 0.001), indicating that estrogen can alter estrogenic and androgenic signaling in adipose tissue. The results highlighted in this study demonstrate important depot-dependent differences in the sensitivity of adipose tissues to sex hormones between visceral and subcutaneous depots that could be related to metabolic situations observed in response to sex hormones.  相似文献   

18.
D S Colvard  E M Wilson 《Biochemistry》1984,23(15):3479-3486
The partially purified 4.5S [3H]dihydrotestosterone receptor binds to nuclear matrix isolated from rat Dunning prostate tumor with properties similar to those reported for androgen receptor binding in intact nuclei [Colvard, D.S., & Wilson, E.M. (1984) Biochemistry (preceding paper in this issue)] in that it requires Zn2+ and mercaptoethanol, is saturable, and is temperature dependent and of high affinity (Ka approximately 10(13) M-1). On a milligrams of DNA equivalent basis, the extent of matrix binding of androgen receptor (700 fmol of receptor bound/mg of matrix protein) is similar to that of intact nuclei, corresponding to approximately 1400 sites/nucleus. Association rate constants (ka) for 4.5S androgen receptor binding to matrix at 0, 15, and 25 degrees C are 2.7 X 10(5), 1.2 X 10(6), and 2.4 X 10(6) M-1 min-1, respectively, indicating an energy of activation of 15 kcal/mol. Up to 50% of matrix-bound receptor is extractable in buffer containing 3 mM ethylenediaminetetraacetic acid plus either 0.4 M KCl or 5 mM pyridoxal 5'-phosphate. A protein fraction designated 8S androgen receptor promoting factor that promotes conversion of the 4.5S androgen receptor to 8 S [Colvard, D. S., & Wilson, E. M. (1981) Endocrinology (Baltimore) 109, 496-504] has been further purified and found to inhibit the binding of the 4.5S androgen receptor to isolated nuclei and nuclear matrix in a concentration-dependent manner. The results support the hypothesis that the 8S steroid receptor is a complex of the activated 4.5S androgen receptor with a non-steroid binding protein that renders the receptor incapable of binding in nuclei.  相似文献   

19.
Androgens play key roles in vertebrate sex differentiation, gonadal differentiation and sexual behaviour. The action of androgens is primarily mediated through androgen receptors (ARs). The present study describes the isolation, sequencing and initial characterisation of an androgen receptor from zebrafish Danio rerio. The predicted protein of 868 residues has an estimated calculated molecular weight of 96 kDa. The amino acid sequence of the zebrafish AR (zfRA) shows high homology with other vertebrate ARs. The highest overall similarity was 82% to ARs from fathead minnow (Pimephales promelas) and goldfish (Carassius auratus). Binding assays with zfAR demonstrated high affinity, saturable, single class binding site, with the characteristics of an androgen receptor. Saturation experiments along with subsequent Scatchard analysis determined that the Kd of the zfAR for 3H-testosterone was 2 nM. Androgen binding affinities in competition with 3H-testosterone were: 5alpha-dihydrotestosterone>11-ketotestosterone>testosterone>androstenedione. The deletion of 12 amino acids (zfARd12) in the ligand binding domain of zfAR resulted in impaired binding to the receptor. Therefore, it was not possible to determine Kd for the zfARd12. The characterisation of this zfAR provides a new perspective for understanding the mechanisms underlying androgen actions in a model vertebrate species commonly used for studies investigating potential endocrine disrupters.  相似文献   

20.
Injuries to the anterior cruciate ligament (ACL) result in immediate and long-term morbidity and expense. Young women are more likely to sustain ACL injuries than men who participate in similar athletic and military activities. Although significant attention has focused on the role that female sex hormones may play in this disparity, it is still unclear whether the female ACL also responds to androgens. The purpose of this study was to determine whether the female ACL was an androgen-responsive tissue. To identify and localize androgen receptors in the female ACL, we used Western blotting and immunofluorescent labeling, respectively, of ACL tissue harvested during surgery from young women (n = 3). We then measured ACL stiffness and assessed total testosterone (T) and free [free androgen index (FAI)] testosterone concentrations, as well as relative estradiol to testosterone ratios (E(2)/T and E(2)/FAI) at three consecutive menstrual stages (n = 20). There were significant rank-order correlations between T (0.48, P = 0.031), FAI (0.44, P = 0.053), E(2)/T (-0.71, P < 0.001), E(2)/FAI (-0.63, P = 0.003), and ACL stiffness near ovulation. With the influences of the other variables controlled, there were significant negative partial rank-order correlations between ACL stiffness and E(2)/T (-0.72, P < 0.001) and E(2)/FAI (-0.59, P = 0.012). The partial order residuals for T and FAI were not significant. These findings suggest that the female ACL is an androgen-responsive tissue but that T and FAI are not independent predictors of ACL stiffness near ovulation. Instead, the relationship between T, FAI, and ACL stiffness was likely influenced by another hormone or sex hormone binding globulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号