首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A single polymerase chain reaction (PCR) reaction targeting the spliced-leader intergenic region of Trypanosoma cruzi I was standardised by amplifying a 231 bp fragment in domestic (TcIDOM) strains or clones and 450 and 550 bp fragments in sylvatic strains or clones. This reaction was validated using 44 blind coded samples and 184 non-coded T. cruzi I clones isolated from sylvatic triatomines and the correspondence between the amplified fragments and their domestic or sylvatic origin was determined. Six of the nine strains isolated from acute cases suspected of oral infection had the sylvatic T. cruzi I profile. These results confirmed that the sylvatic T. cruzi I genotype is linked to cases of oral Chagas disease in Colombia. We therefore propose the use of this novel PCR reaction in strains or clones previously characterised as T. cruzi I to distinguish TcIDOMfrom sylvatic genotypes in studies of transmission dynamics, including the verification of population selection within hosts or detection of the frequency of mixed infections by both T. cruzi I genotypes in Colombia.  相似文献   

2.
Two evolutionary lineages, called Trypanosoma cruzi I and II, have been identified in T. cruzi, the etiologic agent of human Chagas disease. Here, we describe a molecular strategy for direct genetic typing of these major groups of T. cruzi directly in human tissues. The protocol is based on heminested PCR amplification of the D7 region of the 24Salpha ribosomal DNA (rDNA), followed by identification of the products using denaturation curves in real time PCR. The repetitive nature of the gene, and the heminested PCR format insured the high sensitivity necessary to detect the presence of the very scarce T. cruzi DNA present in the chronically infected human tissues. There is 80% DNA sequence homology between the two 24Salpha rDNA alleles that define the T. cruzi I and II groups, sufficient to produce different thermal denaturation curves with melting temperature (TM) values of 81.7+/-0.43 and 78.2+/-0.33 degrees C (mean+/-SEM). Using this technical approach, we analysed tissue samples (esophagi, hearts and colon) from 25 different patients with the gastrointestinal or cardiac forms of Chagas disease; in all of them we found only the presence of T cruzi II. Previous epidemiological and immunological findings had already led to the idea that chronic human infections occurring in Brazil and Argentina might be primarily due to T. cruzi II strains, but all the evidence available had been indirect. Our findings provide definitive proof of this hypothesis and will also allow the establishment of which group of T. cruzi is responsible for Chagas disease in other countries.  相似文献   

3.
Trypanosoma cruzi Y reference strain is found in many laboratories under at least two highly distinct genotypes, A and B corresponding to the 'discrete typing units' T. cruzi IIb and T. cruzi IId, respectively. Previous work has reported reversible switches between these genotypes according to the culture media used in the experiments: genotype A would be associated with blood-enriched culture media, while genotype B would be associated with blood-free culture media. We tried to reproduce this observation, but used a different cloning method of individual organisms. Our cloning was verified visually under the microscope, while the previous studies relied on a cloning by dilution only. The subclones so obtained were submitted to long-term exposure to both media, and no change was observed in isoenzyme and random amplified polymorphic DNA genotypes. The discrepancy is probably explained by the cloning method: clones obtained from the previous method (dilution and plating) could come from several parasite cells while only one cell generates a clone when micro-manipulation is used.  相似文献   

4.
A set of 65 Trypanosoma cruzi stocks from dogs, opossums, insect vectors and humans was isolated in a geographically restricted endemic area for Chagas' disease in Argentina and was analysed by multilocus enzyme electrophoresis for 15 loci. The results show that at least five multilocus genotypes (clonets) circulate in the study area, one belonging to T. cruzi IIe, one to T. cruzi IId and three clonets belonging to T. cruzi I; and they confirm the presence of these lineages in the country. The three clonets attributed to T. cruzi I were identical to each other for all loci except for Sod-2, where three different patterns were identified. These patterns suggest the presence of two homozygous genotypes and one heterozygous genotype. Our results also suggest association of clonet IIe with dogs, clonet IId with humans and the three T. cruzi I clonets with Didelphis albiventris. On the other hand, there was no significant association between Triatoma infestans and any particular clonet circulating in the area. These findings are consistent with the hypothesis of natural selection, from mixed populations of T. cruzi in vectors, toward more restricted populations in mammals. The epidemiological implications of the possible selection of different clonets by different mammal hosts and the significance of two homozygous genotypes and one heterozygous genotype for the Sod-2 locus are discussed.  相似文献   

5.
We have previously identified a Trypanosoma cruzi gene encoding a protein named Tc52 sharing structural and functional properties with the thioredoxin and glutaredoxin family involved in thiol-disulfide redox reactions. Gene targeting strategy and immunological studies allowed showing that Tc52 is among T. cruzi virulence factors. Taking into account that T. cruzi has a genetic variability that might be important determinant that governs the different behaviour of T. cruzi clones in vitro and in vivo, we thought it was of interest to analyse the sequence polymorphism of Tc52 gene in several reference clones. The DNA sequences of 12 clones which represent the whole genetic diversity of T. cruzi allowed showing that 40 amino-acid positions over 400 analysed are targets for mutations. A number of residues corresponding to putative amino-acids playing a role in GSH binding and/or enzymatic function and others located nearby are subject to mutations. Although the immunological analysis showed that Tc52 is present in parasite extracts from different clones, it is possible that the amino-acid differences could affect the enzymatic and/or the immunomodulatory function of Tc52 variants and therefore the parasite phenotype.  相似文献   

6.
Platelet-activating factor is a phospholipid mediator that exhibits a wide variety of physiological and pathophysiological effects, including induction of inflammatory response, chemotaxis and cellular differentiation. Trypanosoma cruzi, the etiological agent of Chagas' disease, is transmitted by triatomine insects and while in the triatomine midgut the parasite differentiates from a non-infective epimastigote stage into the pathogenic trypomastigote metacyclic form. We have previously demonstrated that platelet activating factor triggers in vitro cell differentiation of T. cruzi. Here we show a platelet activating factor-like activity isolated from lipid extract of T. cruzi epimastigotes incubated in the presence of [14C]acetate. Trypanosoma cruzi-platelet activating factor-like lipid induced the aggregation of rabbit platelets, which was prevented by platelet activating factor-acetylhydrolase. Mouse macrophage infection by T. cruzi was stimulated when epimastigotes were kept for 5 days in the presence of T. cruzi-platelet activating factor, before interacting with the macrophages. The differentiation of epimastigotes into metacyclic trypomastigotes was also triggered by T. cruzi-platelet activating factor. These effects were abrogated by a platelet activating factor antagonist, WEB 2086. Polyclonal antibody raised against mouse platelet activating factor receptor showed labelling for T. cruzi epimastigotes using immunoblotting and immunofluorescence assays. These data suggest that T. cruzi contain the components of an autocrine platelet activating factor-like ligand-receptor system that modulates cell differentiation towards the infectious stage.  相似文献   

7.
Herein, we have analyzed major biological properties following dual-clone Trypanosoma cruzi infections in BALB/c mice. Eight T. cruzi clonal stocks, two of each principal genotype, including genotype 19 and 20 (T. cruzi I), hybrid genotype 39 (T. cruzi) and 32 (T. cruzi II) were combined into 24 different dual-clone infections. Special attention was given to characterize biological parameters assayed including: prepatent period, patent period, maximum of parasitemia, day of maximum parasitemia, area under the parasitemia curve, infectivity, mortality, and hemoculture positivity. Our findings clearly demonstrated that features resultant of dual-clone infections of T. cruzi clonal stocks did not display either the characteristics of the corresponding monoclonal infections or the theoretical mixture based on the respective monoclonal infections. Significant changes in the expected values were observed in 4.2-79.2% of the mixtures considering the eight biological parameters studied. A lower frequency of significant differences was found for mixtures composed by phylogenetically distant clonal stocks. Altogether, our data support our hypothesis that mixed T. cruzi infections have a great impact on the biological properties of the parasite in the host and re-emphasizes the importance of considering the possible occurrence of natural mixed infections in humans and their consequences on the biological aspects of ongoing Chagas' disease.  相似文献   

8.
Studies were carried out on the effects of different carbohydrates on the lysis of Trypanosoma cruzi, Trypanosoma rangeli and erythocytes caused by the bacteria Serratia marcescens variants SM 365 and RPH. High concentrations of d-mannose were found to protect T. cruzi and T. rangeli markedly diminishing the lysis caused by S. marcescens. However, this carbohydrate is unable to interfere with the hemolysis induced by SM 365 and RPH variants. These results showed that the trypanolytic effect induced by S. marcescens SM 365 and RPH variants is dependent on d-mannose and distinct from the hemolytic activity, strongly suggesting that bacterial fimbriae are relevant to S. marcescens in lysis of parasites.  相似文献   

9.
This study aimed to evaluate whether experimental Chagas disease in acute phase under benznidazole therapy can cause DNA damage in peripheral blood, liver, heart, and spleen cells or induce nitric oxide synthesis in spleen cells. Twenty Balb/c mice were distributed into four groups: control (non-infected animals); Trypanosoma cruzi infected; T. cruzi infected and submitted to benznidazole therapy; and only treated with benznidazole. The results obtained with the single cell gel (comet) assay showed that T. cruzi was able induce DNA damage in heart cells of both benznidazole treated or untreated infected mice. Similarly, T. cruzi infected animals showed an increase of DNA lesions in spleen cells. Regarding nitric oxide synthesis, statistically significant differences (p<0.05) were observed in all experimental groups compared to negative control, the strongest effect observed in the T. cruzi infected group. Taken together, these results indicate that T. cruzi may increase the level of DNA damage in mice heart and spleen cells. Probably, nitric oxide plays an important role in DNA damaging whereas benznidazole was able to minimize induced T. cruzi genotoxic effects in spleen cells.  相似文献   

10.
This paper presents the genetic characterization of Trypanosoma cruzi strains isolated from chronic chagasic patients, triatomines, and sylvatic reservoirs from Paraná state, Southern Brazil, using the RAPD and SSR-PCR techniques. It has shown the presence of both phylogenetic groups of T. cruzi (I and II), describing for the first time the existence of T. cruzi II in Paraná state.  相似文献   

11.
Trypanosoma cruzi, the causative agent of Chagas disease, has at least two principal intraspecific subdivisions, T. cruzi I (TCI) and T. cruzi II (TCII), the latter containing up to five subgroups (a-e). Whilst it is known that TCI predominates from the Amazon basin northwards and TCII to the South, where the disease is considered to be clinically more severe, the precise clinical and evolutionary significance of these divisions remains enigmatic. Here, we present compelling evidence of an association between TCI and opossums (Didelphis), and TCII and armadillos, on the basis of key new findings from the Paraguayan Chaco region, together with a comprehensive analysis of historical data. We suggest that the distinct arboreal and terrestrial ecologies, respectively, of these mammal hosts provide a persuasive explanation for the extant T. cruzi intraspecific diversity in South America, and for separate origins of Chagas disease in northern South America and in the southern cone countries.  相似文献   

12.
We analyzed the influence of Trypanosoma cruzi maintenance in different hosts (dog and mouse) on its susceptibility to benznidazole treatment. Five T. cruzi stocks were isolated from dogs inoculated with Be-62 or Be-78 strain (both sensitive to benznidazole) 2-10 years ago, and the benznidazole sensitivity was then determined using the mouse as experimental model. The different T. cruzi stocks obtained from long-term infected dogs showed 50-90% drug resistance right after isolation. However, maintenance of these T. cruzi stocks in mice, by successive blood passages (2.5 years), led to either a decrease or stability of the drug resistance pattern and an increase in parasite virulence. We also demonstrated the effectiveness of the induction of parasitemia reactivation by cyclophosphamide immunosuppression in the evaluation of the response to the specific drug treatment.  相似文献   

13.
The collection of Panstrongylus geniculatus bugs by inhabitants of dwellings in Caracas city (Metropolitan District) and in the neighboring Miranda and Vargas Sates, Venezuela, allowed for the gathering of data on the potential role of this sylvatic triatomine bug as a vector of Chagas disease in this area. The natural infection by Trypanosoma cruzi was recorded by examining fresh and stained faeces of the bugs. Additionally, a random amplification of polymorphic DNA technique for parasite identification and group typing was employed. A dot-ELISA test was used to identify the gut content of the triatomine bugs with the aim of assessing and quantifying the vector-human contact. Sixty-seven specimens (76.1%) were positive to T. cruzi (identified as T. cruzi I) and 60.2% (53/88) gave a positive reaction to the human antiserum. The human blood-positive samples included mixed blood meals with domestic animals (dog, pig and cow) (9.4%) and with mouse (3.8%). The overall Human Blood Index, measured as the percentage of bugs whose gut contents reacted with human antiserum on the total numbers of bugs that reacted with all the antisera tested, was 98.1%. Almost 41% of the bugs that had fed on humans were also positive for T. cruzi. These data show that the feeding of P. geniculatus on humans does not seem to be accidental and that its rate of infection by T. cruzi is high in this area which is not regarded as endemic for Chagas disease by the National Control Programme. This situation is particularly striking because it occurs in and around Caracas, the capital city, where 20% of the whole population of Venezuela live, human migrations from endemic areas are continuous, people in the crowded shantytown as well as people living in high-quality country houses are equally at risk and the epidemiological cycle Didelphis marsupialis/Rattus rattus-P. geniculatus-human does appear to occur successfully.  相似文献   

14.
The polymerase chain reaction showed high sensitivity for detecting Trypanosoma cruzi in the blood of mice, independent of clonal genotype (19, 20-T. cruzi I; 32, 39-T. cruzi II) or phase of the infection (acute or chronic).  相似文献   

15.
The "amino acid/auxin permeases" is probably the most represented family of transporters in the Trypanosoma cruzi genome. Using a high-throughput searching routine and preliminary data from the T. cruzi genome project, more than 15,000 sequences were iteratively assembled into contigs, and 60 open reading frames corresponding to different putative amino acid transporters, clustered in 12 groups, were detected and characterized in silico. T. cruzi genomic organization of such sequences showed that these putative amino acid transporter genes are in an unusually large number and arranged in repeat clusters comprising about 0.2% of the genome. These data suggest that the family has evolved following tandem duplication events and constitutes a novel family of variable proteins in protozoan organisms. The mRNA expression of the predicted genes was demonstrated in infective and non-infective parasite forms. Orthologous sequences were also identified in other unicellular parasites such as Leishmania spp., Plasmodium spp., and Trypanosoma brucei.  相似文献   

16.
17.
Trypanosoma cruzi, the agent of Chagas disease, expresses a modified sialidase, the trans-sialidase, which transfers sialic acid from host glycoconjugates to beta-galactose present in parasite mucins. Another American trypanosome, Trypanosoma rangeli, expresses a homologous protein that has sialidase activity but is devoid of transglycosidase activity. Based on the recently determined structures of T.rangeli sialidase (TrSA) and T.cruzi trans-sialidase (TcTS), we have now constructed mutants of TrSA with the aim of studying the relevant residues in transfer activity. Five mutations, Met96-Val, Ala98-Pro, Ser120-Tyr, Gly249-Tyr and Gln284-Pro, were enough to obtain a sialidase mutant (TrSA(5mut)) with trans-sialidase activity; and a sixth mutation increased the activity to about 10% that of wild-type TcTS. The crystal structure of TrSA(5mut) revealed the formation of a trans-sialidase-like binding site for the acceptor galactose, primarily defined by the phenol group of Tyr120 and the indole ring of Trp313, which adopts a new conformation, similar to that in TcTS, induced by the Gln284-Pro mutation. The transition state analogue 2,3-didehydro-2-deoxy-N-acetylneuraminic acid (DANA), which inhibits sialidases but is a poor inhibitor of trans-sialidase, was used to probe the active site conformation of mutant enzymes. The results show that the presence of a sugar acceptor binding-site, the fine-tuning of protein-substrate interactions and the flexibility of crucial active site residues are all important to achieve transglycosidase activity from the TrSA sialidase scaffold.  相似文献   

18.
Congenital transmission of Trypanosoma cruzi may occur in some or all the gestations from a T. cruzi-infected mother. Variable rates of congenital transmission have been reported in different geographical areas where different parasitic strains predominate, suggesting that parasitic genotypes might play a role in the risk of congenital transmission. Moreover, in cases of transmission it is unknown if the whole maternal T. cruzi population or certain clones are preferentially transmitted by the transplacental route. In this study, bloodstream T. cruzi lineages were identified in blood samples from congenitally infected children, transmitting and non-transmitting mothers and unrelated Chagas disease patients, using improved PCR strategies targeted to nuclear genomic markers. T. cruzi IId was the prevalent genotype among 36/38 PCR-positive congenitally infected infants, 5/5 mothers who transmitted congenital Chagas disease, 12/13 mothers who delivered non-infected children and 28/34 unrelated Chagas disease patients, all coming from endemic localities of Argentina and Bolivia. These figures indicate no association between a particular genotype and vertical transmission. Furthermore, minicircle signatures from the maternal and infants' bloodstream trypanosomes were profiled by restriction fragment length polymorphism of the 330-bp PCR-amplified variable regions in seven cases of mothers and congenitally infected infants. Minicircle signatures were nearly identical between each mother and her infant/s and unique to each mother-infant/s case, a feature that was also observed in twin deliveries. Moreover, allelic size polymorphism analysis of microsatellite loci from populations transmitted to twins showed that all clones from the maternal polyclonal population were equally infective to both siblings.  相似文献   

19.
Trypanosoma cruzi, the etiological agent of Chagas' disease, is the only eukaryotic cell which lacks the ability to synthesize polyamines de novo. In this work, we describe for the first time the molecular and biochemical properties of a high-affinity spermidine transporter from T. cruzi. The transporter gene TcPAT12 was functionally expressed in Xenopus laevis oocytes, showing high levels of spermidine uptake. Similar apparent affinity constants for spermidine uptake were obtained when comparing T. cruzi epimastigotes and heterologous expressed TcPAT12 in X. laevis. In addition, TcPAT12 also transports putrescine and the amino acid l-arginine at lower rates than spermidine.  相似文献   

20.
During invasion of nonphagocytic cells by Trypanosoma cruzi (T. cruzi), host cell lysosomes are recruited to the plasma membrane attachment site followed by lysosomal enzyme secretion. The membrane trafficking events involved in invasion have not been delineated. We demonstrate here that T. cruzi invasion of nonphagocytic cells was completely abolished by overexpression of a dominant negative mutant of dynamin. Likewise, overexpression of a dominant negative mutant of Rab5, the rate-limiting GTPase for endocytosis, resulted in reduced infection rates compared with cells expressing Rab5 wild-type. Moreover, cells expressing the activated mutant of Rab5 experienced higher infection rates. A similar pattern was also observed when Rab7-transfected cells were examined. Confocal microscopy experiments showed that parasites colocalized with green fluorescent protein-Rab5-positive early endosomes after 5 min of invasion. These data clearly indicate that newly forming T. cruzi phagosomes first interact with an early endosomal compartment and subsequently with other late component markers before lysosomal interaction occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号