首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Here we report the cDNA sequence of a human ganglioside sialidase. The cDNA was isolated from a human brain cDNA library by screening with a 240 bp probe generated by polymerase chain reaction using primers based on the sequences of rat cytosolic and bovine membrane sialidases which we previously cloned. The 3.0 kb cDNA encodes an open reading frame of 436 amino acids containing a putative transmenbrane domain and an Arg-Ile-Pro and three Asp-box sequences characteristic of sialidases and showing overall 83% and 39% identities to the bovine and rat enzymes, respectively. Northern blot analysis revealed high expression in skeletal muscle and testis, but low level in kidney, placenta, lung, and digestive organs. Transient expression of the cDNA in COS-1 cells resulted in a 130-fold increase in sialidase activity compared to the control level, and the activity was found to be almost specific for gangliosides. Fluorescent in situ hybridization allowed the human sialidase gene localized to chromosome 11 at q 13.5.  相似文献   

3.
Cytosolic sialidase was purified from rat skeletal muscle, and the purified enzyme migrated as a single band of Mr 43,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A polyclonal antibody raised against the enzyme inhibited and immunoprecipitated rat liver cytosolic sialidase as well as the muscle enzyme but failed to cross-react with the intralysosomal sialidase of rat liver and membrane sialidases I (synaptosomal) and II (lysosomal) of rat brain. The antibody against brain membrane sialidase I (anti-I) and that against sialidase II (anti-II), which could be useful to discriminate the two enzymes, did not cross-react with the intralysosomal and cytosolic sialidases of liver. Although more than 90% of liver plasma membrane sialidase was immunoprecipitated with anti-I, only 60% of liver lysosomal membrane sialidase was immunoprecipitated with anti-II, the remainder being immunoprecipitated with anti-I. In confirmation of these data, liver lysosomal membrane exhibited two peaks of ganglioside sialidase corresponding to the membrane sialidases I and II on Aminohexyl-Sepharose chromatography while only one peak of ganglioside sialidase corresponding to sialidase I was observed for liver plasma membrane. These results indicate that the four types of rat sialidase are proteins distinct from one another and that the three kinds of antisera described above are useful for discriminating these sialidases qualitatively and probably quantitatively.  相似文献   

4.
Sialidase (EC 3.2.1.18) catalyzes the release of sialic acid from sialo-oligosaccharides, gangliosides, or sialo-glycoproteins. In this investigation, we cloned a novel cDNA for mouse brain sialidase and expressed the cDNA in COS-7 cells. This 1,699 bp cDNA codes for a 41.6 kDa protein consisting of 372 deduced amino acid residues. In COS-7 cells transiently transfected with the cDNA, a 250-fold increase was observed in specific activity toward 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid. Similarity searches of the nonredundant GenBank peptide sequence database by the PSI-BLAST program identified rat, hamster, human, and bacterial sialidases homologous to this mouse brain sialidase. Amino acid sequence identities to rat and hamster sialidases (84% and 77%, respectively) suggest that this form of sialidase is conserved in rodents. Sequence identities to human and mouse lysosomal sialidases (30% and 28%, respectively) indicate that the mouse brain sialidase is distinct from the lysosomal enzyme. Mouse brain sialidase has two amino acid sequence motifs common to bacterial sialidases: the 'F/YRIP' motif and the 'Asp-box' motif. The 'F/YRIP' motif is present near the N terminus while two 'Asp-box' motifs are present downstream.  相似文献   

5.
The substrate specificity and subcellular location of the major sialidases of three types of rat blood cells were characterized and compared with those of the known three types of rat liver sialidase, which have been designated intralysosomal, cytosolic, and plasma membrane-associated sialidases. Platelets and leucocytes contain mainly an acid sialidase, which is highly active towards oligosaccharides and 4MU-NeuAc, and erythrocytes possess a high level of a sialidase acting on gangliosides. A Percoll gradient centrifugation study showed that the former is located in lysosomes and the latter in plasma membrane. When the sialidase was solubilized and partially purified from erythrocyte ghosts, the enzyme was found to hydrolyze actively gangliosides but only poorly other substrates such as 4MU-NeuAc, oligosaccharides, and glycoproteins. The sialidase partially purified from rat liver membrane fraction exhibited the same substrate specificity. It is concluded that the major sialidase of platelets and leucocytes corresponds to hepatic intralysosomal sialidase while erythrocytes contain almost exclusively a ganglioside sialidase which corresponds to hepatic plasma membrane sialidase.  相似文献   

6.
Several mammalian sialidases have been cloned so far and here we describe the identification and expression of a new member of the human sialidase gene family. The NEU4 gene, identified by searching sequence databases for entries showing homologies to the human cytosolic sialidase NEU2, maps in 2q37 and encodes a 484-residue protein. The polypeptide contains all the typical sialidase amino acid motifs and, apart from an amino acid stretch that appears unique among mammalian sialidases, shows a high degree of homology for NEU2 and the plasma membrane-associated (NEU3) sialidases. RNA dot-blot analysis showed a low but wide expression pattern, with the highest level in liver. Transient transfection in COS7 cells allowed the detection of a sialidase activity toward the artificial substrate 4MU-NeuAc in the acidic range of pH. Immunofluorescence staining and Western blot analysis demonstrated the association of NEU4 with the inner cell membranes.  相似文献   

7.
We have totally sequenced a cytosolic sialidase [EC 3.2.1.18] by RT-PCR from the murine thymus (murine thymic sialidase, MTS) which has a 1844-base length (encoding 385 amino acids including two sialidase motifs) and is the longest cytosolic sialidase ever reported. MTS has high and relatively low homologies with those of mammalian cytosolic sialidases from the mouse brain (99%), rat (91%), and human skeletal muscle (75%), and those of the mouse lysosomal (47%) and membrane-bound (51%) sialidases, respectively. Chromosomal mapping, being the first report of mouse cytosolic sialidase gene, showed that the MTS gene is localized to the distal part of mouse chromosome 1D and to rat chromosome 9q36. RT-PCR with the site-specific primers revealed that the coding region was expressed in all organs tested, but expressions including the 5'-UTR were barely detectable except for in the upper-thymic fraction. Also, soluble sialidase activity in the thymus was the highest of these organs. There were mRNA instability signals and AT-rich regions in 143 bp of MTS 5'-end.  相似文献   

8.
Human sialidase as a cancer marker   总被引:1,自引:0,他引:1  
Altered sialylation of cell surface glycoproteins and glycolipids is closely related to the malignant phenotype of cancer cells, including the metastatic potential and invasiveness. Many cancer-related antigens in clinical use contain sialic acids at the terminal position of sugar chains in the molecules. To elucidate the molecular mechanism, we focused our investigation on sialidase, which catalyzes the removal of sialic acid residues from the glycoconjugates. Four types of human sialidases identified to date behave in different manners during carcinogenesis. One of the sialidases, found in the lysosomes, showed downregulation in cancers, promoting anchorage-independent growth, and metastatic ability, while another, found in the plasma membrane, showed marked upregulation, causing apoptosis suppression. It was found that estimation of the mRNA levels of sialidases by real-time PCR allowed discrimination of cancerous from noncancerous tissues and even determination of the pathological stage in some cancers. Immunohistochemistry of cancer tissues using the antibody against the plasma membrane sialidase was useful for clinical diagnosis. This paper briefly summarizes our findings of the altered sialidase expression in cancers and the possibility of their clinical application as cancer markers. Human sialidases are indeed related to malignancy and may be potential targets for cancer diagnosis and therapy.  相似文献   

9.
Bacterial sialidases represent important colonization or virulence factors. The development of a rational basis for the design of antimicrobials targeted to sialidases requires the knowledge of the exact roles of their conserved amino acids. A recombinant enzyme of the 'small' (43 kDa) sialidase of Clostridium perfringens was used as a model in our study. Several conserved amino acids, identified by alignment of known sialidase sequences, were altered by site-directed mutagenesis. All recombinant enzymes were affinity-purified and the enzymatic characteristics were determined. Among the mutated enzymes with modifications in the environment of the 4-hydroxyl group of bound sialic acids, D54N and D54E exhibited minor changes in substrate binding. However, a reduced activity and changes in their pH curves indicate the importance of a charged group at this area. R56K, which is supposed to bind directly to sialic acids as in the homologous Salmonella typhimurium sialidase, showed a 2500-fold reduced activity. The amino acids Asp-62 and Asp-100 are probably involved in catalysis, indicated by reduced activities and altered temperature and pH curves of mutant enzymes. Exchanging Glu-230 with threonine or aspartic acid led to dramatic decreases in activity. This residue and Y347 are supposed to be crucial for providing a suitable environment for catalysis. However, unaltered pH curves of mutant sialidases exclude their direct involvement in protonation or deprotonation events. These results indicate that the interactions with the substrates vary in different sialidases and that they might be more complex than suggested by mere static X-ray structures.  相似文献   

10.
Sialidases are enzymes that influence cellular activity by removing terminal sialic acid from glycolipids and glycoproteins. Four genetically distinct sialidases have been identified in mammalian cells. In this study, we demonstrate that three of these sialidases, lysosomal Neu1 and Neu4 and plasma membrane-associated Neu3, are expressed in human monocytes. When measured using the artificial substrate 2'-(4-methylumbelliferyl)-alpha-d-N-acetylneuraminic acid (4-MU-NANA), sialidase activity of monocytes increased up to 14-fold per milligram of total protein after cells had differentiated into macrophages. In these same cells, the specific activity of other cellular proteins (e.g. beta-galactosidase, cathepsin A and alkaline phosphatase) increased only two- to fourfold during differentiation of monocytes. Sialidase activity measured with 4-MU-NANA resulted from increased expression of Neu1, as removal of Neu1 from the cell lysate by immunoprecipitation eliminated more than 99% of detectable sialidase activity. When exogenous mixed bovine gangliosides were used as substrates, there was a twofold increase in sialidase activity per milligram of total protein in monocyte-derived macrophages in comparison to monocytes. The increased activity measured with mixed gangliosides was not affected by removal of Neu1, suggesting that the expression of a sialidase other than Neu1 was present in macrophages. The amount of Neu1 and Neu3 RNAs detected by real time RT-PCR increased as monocytes differentiated into macrophages, whereas the amount of Neu4 RNA decreased. No RNA encoding the cytosolic sialidase (Neu2) was detected in monocytes or macrophages. Western blot analysis using specific antibodies showed that the amount of Neu1 and Neu3 proteins increased during monocyte differentiation. Thus, the differentiation of monocytes into macrophages is associated with regulation of the expression of at least three distinct cellular sialidases, with specific up-regulation of the enzyme activity of only Neu1.  相似文献   

11.
Mammalian Neu3 sialidases are involved in various biological processes, such as cell death and differentiation, through desialylation of gangliosides. The enzymatic profile of Neu3 seems to be highly conserved from birds to mammals. In fish, the functional properties of Neu3 sialidase are not clearly understood, with the partial exception of the zebrafish form. To cast further light on the molecular evolution of Neu3 sialidase, we identified the encoding genes in the medaka Oryzias latipes and investigated the properties of the enzyme. PCR amplification using medaka brain cDNA allowed identification of two novel medaka Neu3 genes, neu3a and neu3b. The YRIP, VGPG motif and Asp-Box, characteristic of consensus motifs of sialidases, were well conserved in the both medaka Neu3 sialidases. When each gene was transfected into HEK293 to allow cell lysates for the use of enzymatic characterization, two Neu3 sialidases showed strict substrate specificity toward gangliosides, similar to mammalian Neu3. The optimal pH values were at pH 4.2 and pH 4.0, respectively, and neu3b in particular showed a broad optimum. Immunofluorescence assays indicated neu3a localization at plasma membranes, while neu3b was found in cytosol. The tissue distribution of two genes was then investigated by estimation of mRNA expression and sialidase activity, both being dominantly expressed in the brain. In neu3a gene-transfected neuroblastoma cells, the enzyme was found to positively regulate retinoic acid-induced differentiation with the elongation of axon length. On the other hand, neu3b did not affect neurite formation. These results and phylogenetic analysis suggested that the medaka neu3a is an evolutionally conserved sialidase with regard to enzymatic properties, whereas neu3b is likely to have originally evolved in medaka.  相似文献   

12.
Sialidase and malignancy: a minireview   总被引:6,自引:0,他引:6  
Aberrant sialylation in cancer cells is thought to be a characteristic feature associated with malignant properties including invasiveness and metastatic potential. Sialidase which catalyzes the removal of sialic acid residues from glycoproteins and glycolipids, has been suggested to play important roles in many biological processes through regulation of cellular sialic acid contents. The altered expression of sialidase observed in cancer would, therefore, suggest its involvement in the malignant process. In mammalian cells, three types of sialidase cloned and characterized to date were found to behave in different manners during carcinogenesis. Recent progress in molecular cloning of these sialidases has facilitated elucidation of the molecular mechanisms and significance of these alterations. Herein we briefly describe our own studies on sialidase changes associated with malignant transformation and summarize the topic from both a retrospective and a prospective viewpoint. Sialidases are indeed closely related to malignancy and are thus potential targets for cancer diagnosis and therapy.  相似文献   

13.
Sialidase Activity in Nuclear Membranes of Rat Brain   总被引:1,自引:1,他引:0  
Abstract: A highly purified nuclear membrane preparation was obtained from adult rat brain and examined for sialidase activity using GM3, GD1a, GD1b, or N -acetylneuramin lactitol as the substrate. The nuclear membranes contained an appreciable level of sialidase activity; the specific activities toward GM3 and N -acetylneuramin lactitol were 20.5 and 23.8% of the activities in the total brain homogenate, respectively. The sialidase activity in nuclear membranes showed substrate specificity distinct from other membrane-bound sialidases localized in lysosomal membranes, synaptosomal plasma membranes, or myelin membranes. These results strongly suggest the existence of a sialidase activity associated with the nuclear membranes from rat brain.  相似文献   

14.
Li Y  Cao H  Yu H  Chen Y  Lau K  Qu J  Thon V  Sugiarto G  Chen X 《Molecular bioSystems》2011,7(4):1060-1072
Aberrant expression of human sialidases has been shown to associate with various pathological conditions. Despite the effort in the sialidase inhibitor design, less attention has been paid to designing specific inhibitors against human sialidases and characterizing the substrate specificity of different sialidases regarding diverse terminal sialic acid forms and sialyl linkages. This is mainly due to the lack of sialoside probes and efficient screening methods, as well as limited access to human sialidases. A low cellular expression level of the human sialidase NEU2 hampers its functional and inhibitory studies. Here we report the successful cloning and expression of the human sialidase NEU2 in E. coli. About 11 mg of soluble active NEU2 was routinely obtained from 1 L of E. coli cell culture. Substrate specificity studies of the recombinant human NEU2 using twenty p-nitrophenol (pNP)-tagged α2-3- or α2-6-linked sialyl galactosides containing different terminal sialic acid forms including common N-acetylneuraminic acid (Neu5Ac), non-human N-glycolylneuraminic acid (Neu5Gc), 2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid (Kdn), or their C5-derivatives in a microtiter plate-based high-throughput colorimetric assay identified a unique structural feature specifically recognized by the human NEU2 but not two bacterial sialidases. The results obtained from substrate specificity studies were used to guide the design of a sialidase inhibitor that was selective against human NEU2. The selectivity of the inhibitor was revealed by the comparison of sialidase crystal structures and inhibitor docking studies.  相似文献   

15.
Ganglioside-hydrolyzing sialidase activity was solubilized from rat brain particulate fraction by using Triton X-100 plus sodium deoxycholate. When chromatographed on AH-Sepharose 4B, the solubilized activity was resolved into two peaks, which were designated sialidases I and II in order of elution. The two sialidases were purified by using sequential chromatographies on Octyl-Sepharose CL-4B, Phenyl-Sepharose CL-4B, and Sephadex G-200. Sialidase II was purified further by Mono Q-FPLC. Overall purification was 450- and 2,150-fold, for sialidases I and II, respectively. Purified sialidases I and II were maximally active at near pH 5.0 and exhibited M = 70,000 by gel filtration. Sialidase I hydrolyzed gangliosides but scarcely other substrates including 4-methylumbelliferyl-NeuAc (4MU-NeuAc). Sialidase II hydrolyzed oligosaccharides, glycoproteins, and 4MU-NeuAc although gangliosides appeared to be preferential substrates. Sialidase II cleaved GM2 much faster than sialidase I. An antibody raised in rabbits against sialidase I reacted with only sialidase I and an antibody against sialidase II reacted with only sialidase II. A subcellular distribution study suggested sialidase I in the synaptosomal membrane and sialidase II in the synaptosomal and lysosomal membranes, and this was verified by using the above antibodies.  相似文献   

16.
Sialic acids (Sias) mediate many biological functions, including molecular recognition during development, immune response, and fertilization. A Sia-rich glycocalyx coats the surface of sperm, allowing them to survive as allogeneic cells in the female reproductive tract despite female immunity. During capacitation, sperm lose a fraction of their Sias. We quantified shed Sia monosaccharides released from capacitated sperm and measured sperm sialidase activity. We report the presence of two sialidases (neuraminidases Neu1 and Neu3) on mammalian sperm. These are themselves shed from sperm during capacitation. Inhibiting sialidase activity interferes with sperm binding to the zona pellucida of the ovum. A survey of human sperm samples for the presence of sialidases NEU1 and NEU3 identified a lack of one or both sialidases in sperm of some male idiopathic infertility cases. The results contribute new insights into the dynamic remodeling of the sperm glycocalyx prior to fertilization.  相似文献   

17.
18.
Aberrant sialylation in cancer cells is thought to be a characteristic feature associated with malignant properties including invasiveness and metastatic potential. Sialidase which catalyzes the removal of sialic acid residues from glycoproteins and glycolipids, has been suggested to play important roles in many biological processes through regulation of cellular sialic acid contents. The altered expression of sialidase observed in cancer would, therefore, suggest its involvement in the malignant process. In mammalian cells, three types of sialidase cloned and characterized to date were found to behave in different manners during carcinogenesis. Recent progress in molecular cloning of these sialidases has facilitated elucidation of the molecular mechanisms and significance of these alterations. Herein we briefly describe our own studies on sialidase changes associated with malignant transformation and summarize the topic from both a retrospective and a prospective viewpoint. Sialidases are indeed closely related to malignancy and are thus potential targets for cancer diagnosis and therapy. Published in 2004. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Aberrant glycosylation is a characteristic feature of cancer cells. In particular, altered sialylation is closely associated with malignant properties, including invasiveness and metastatic potential. To elucidate the molecular mechanisms underlying the aberrancy, our studies have focused on mammalian sialidase, which catalyzes the removal of sialic acid residues from glycoproteins and glycolipids. The four types of mammalian sialidase identified to date show altered expression and behave in different manners during carcinogenesis. The present review briefly summarizes results on altered expression of sialidases and their possible roles in cancer progression. These enzymes are indeed factors defining cancer malignancy and thus potential targets for cancer diagnosis and therapy.  相似文献   

20.
Gangliosides play key roles in cell differentiation, cell-cell interactions, and transmembrane signaling. Sialidases hydrolyze sialic acids to produce asialo compounds, which is the first step of degradation processes of glycoproteins and gangliosides. Sialidase involvement has been implicated in some lysosomal storage disorders such as sialidosis and galactosialidosis. Neu2 is a recently identified human cytosolic sialidase. Here we report the first high resolution x-ray structures of mammalian sialidase, human Neu2, in its apo form and in complex with an inhibitor, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA). The structure shows the canonical six-blade beta-propeller observed in viral and bacterial sialidases with its active site in a shallow crevice. In the complex structure, the inhibitor lies in the catalytic crevice surrounded by ten amino acids. In particular, the arginine triad, conserved among sialidases, aids in the proper positioning of the carboxylate group of DANA within the active site region. The tyrosine residue, Tyr(334), conserved among mammalian and bacterial sialidases as well as in viral neuraminidases, facilitates the enzymatic reaction by stabilizing a putative carbonium ion in the transition state. The loops containing Glu(111) and the catalytic aspartate Asp(46) are disordered in the apo form but upon binding of DANA become ordered to adopt two short alpha-helices to cover the inhibitor, illustrating the dynamic nature of substrate recognition. The N-acetyl and glycerol moieties of DANA are recognized by Neu2 residues not shared by bacterial sialidases and viral neuraminidases, which can be regarded as a key structural difference for potential drug design against bacteria, influenza, and other viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号