首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-alkylated polyamine analogues have potential as anticancer and antiparasitic drugs. However, their metabolism in the host has remained incompletely defined thus potentially limiting their utility. Here, we have studied the degradation of three different spermine analogues N,N′-bis-(3-ethylaminopropyl)butane-1,4-diamine (DESPM), N-(3-benzyl-aminopropyl)-N′-(3-ethylaminopropyl)butane-1,4-diamine (BnEtSPM) and N,N′-bis-(3-benzylaminopropyl)butane-1,4-diamine (DBSPM) and related mono-alkylated derivatives as substrates of recombinant human polyamine oxidase (APAO) and spermine oxidase (SMO). APAO and SMO metabolized DESPM to EtSPD [K m(APAO) = 10 μM, k cat(APAO) = 1.1 s−1 and K m(SMO) = 28 μM, k cat(SMO) = 0.8 s−1, respectively], metabolized BnEtSPM to EtSPD [K m(APAO) = 0.9 μM, k cat(APAO) = 1.1 s−1 and K m(SMO) = 51 μM, k cat(SMO) = 0.4 s−1, respectively], and metabolized DBSPM to BnSPD [K m(APAO) = 5.4 μM, k cat(APAO) = 2.0 s−1 and K m(SMO) = 33 μM, k cat(SMO) = 0.3 s−1, respectively]. Interestingly, mono-alkylated spermine derivatives were metabolized by APAO and SMO to SPD [EtSPM K m(APAO) = 16 μM, k cat(APAO) = 1.5 s−1; K m(SMO) = 25 μM, k cat(SMO) = 8.2 s−1; BnSPM K m(APAO) = 6.0 μM, k cat(APAO) = 2.8 s−1; K m(SMO) = 19 μM, k cat(SMO) = 0.8 s−1, respectively]. Surprisingly, EtSPD [K m(APAO) = 37 μM, k cat(APAO) = 0.1 s−1; K m(SMO) = 48 μM, k cat(SMO) = 0.05 s−1] and BnSPD [K m(APAO) = 2.5 μM, k cat(APAO) = 3.5 s−1; K m(SMO) = 60 μM, k cat(SMO) = 0.54 s−1] were metabolized to SPD by both the oxidases. Furthermore, we studied the degradation of DESPM, BnEtSPM or DBSPM in the DU145 prostate carcinoma cell line. The same major metabolites EtSPD and/or BnSPD were detected both in the culture medium and intracellularly after 48 h of culture. Moreover, EtSPM and BnSPM were detected from cell samples. Present data shows that inducible SMO parallel with APAO could play an important role in polyamine based drug action, i.e. degradation of parent drug and its metabolites, having significant impact on efficiency of these drugs, and hence for the development of novel N-alkylated polyamine analogues.  相似文献   

2.
We cloned the gene, CdPAL1, from Cistanche deserticola callus using RACE PCR with degenerate primers that were designed based on a multiple sequence alignment of known PAL genes from other plant species. The gene shows high homology to other known PAL genes registered in GenBank. The recombinant protein exhibited MichaelisMenten kinetics with a K m of 0.1013 mM, V max of 4.858 μmol min−1, K cat of 3.36 S−1, and K cat/K m is 33,168 M−1 S−1. The enzyme had an optimal pH of 8.5 and an activation energy of 38.92 kJ mol−1 when l-Phenylalanine was used as a substrate; l-tyrosine cannot be used as substrate for this protein. The optimal temperature was 55°C, and the thermal stability results showed that, after a treatment at 70°C for 20 min, the protein retained 87% activity, while a treatment at 75°C for 20 min resulted in a loss of over 85% of the enzyme activity. Treatment with heavy metal ions (Hg2+, Pb2+, and Zn2+) showed remarkable inhibitory effects. Among the intermediates from the lignin (cinnamyl alcohol, cinnamyl aldehyde, coniferyl aldehyde, coniferyl alcohol), phenylpropanoid (cinnamic acid, coumaric acid, caffeic acid, and chlorogenic acid) and phenylethanoid (tyrosol and salidroside) biosynthetic pathways, only cinnamic acid showed strong inhibitory effects against CdPAL1 activity with a K i of 8 μM. Competitive inhibitor AIP exhibited potent inhibition with K i = 0.056 μM.  相似文献   

3.
Petunia × hybrida was grown under high (H), medium (M) and low (L) light intensity [photoperiod; 16 h d−1, photosynthetic photon flux density (PPFD); 360, 120 and 40 μmol m−2 s−1, respectively] as well as under end-of-day (EOD) red (R) and far-red (FR) light quality treatments [photoperiod; 14.5 h d−1, PPFD; 30 μmol m−2 s−1 EOD; 15 min, Control (C) light; without EOD light treatment]. Shoot growth, leaf anatomical and photosynthetic responses as well as the responses of peroxidase (POD) isoforms and their specific activities following transition to flowering (1–6 weeks) were evaluated. Flower bud formation of Petunia × hybrida was achieved at the end of the 4th week for H light treatment and on the end of the 6th week for FR light treatment. No flower bud formation was noticed in the C and R light treatments. H and M light treatments induced lower chlorophyll (Chla, Chlb, Chla+b) concentrations in comparison to L light. On the other hand R and FR light chlorophyll content were similar to C light. Photosynthetic parameters [CO2 assimilation rate (A), transpiration rate (E) and stomatal conductance (g s) values] were higher in the H light treated plants in comparison to M and L light treated plants. A, E and g s values of R and FR light were similar to C light plants. Leaf anatomy revealed that total leaf thickness, thickness of the contained tissues (epidermis, palisade and spongy parenchyma) and relative volume percentages of the leaf histological components were differently affected within the light intensity and the light quality treatments. POD specific activities increased from the 1st to the 6th week during transition to flowering. Native-PAGE analysis revealed the appearance of four anionic POD (A1–A4) isoforms in all light treatments. On the basis of the leaf anatomical, photosynthetic and plant morphological responses, the production of high quality Petunia × hybrida plants with optimal flowering times could be achieved through the control of both light intensity and light quality. The appearance of A1 and A2 anionic POD isoforms could be also used for successful scheduling under light treatments.  相似文献   

4.
CYP102A1 is an efficient medium- to long-chain fatty acid hydroxylase that is able to accept a wide range of non-natural substrates which bear no resemblance to the natural ones. 4-Hexylbenzoic acid (HBA) and 4-nonyloxybenzoic acid (NOBA) were identified as CYP102A1 substrates via screening studies using the BD Oxygen Biosensor System. Spectroscopic binding studies showed that these two substrates bind in the active site of CYP102A1 with K d values of 2.6 ± 0.1 μM for HBA and 1.9 ± 0.2 μM for NOBA. NADPH consumption rates in the presence of HBA and NOBA were 45 ± 1 min−1 and 61 ± 1 min−1, respectively. The coupling efficiency for NADPH was 57% for NOBA, while it was 77% for HBA. During whole-cell biotransformations, HBA was converted into ω−1- and ω−2-hydroxyhexylbenzoic acid, whereas NOBA was oxidized to ω−2-hydroxynonyloxybenzoic acid and ω−2,ω−4-dihydroxynonyloxybenzoic acid. HBA was used as a fatty acid mimic to compare whole-cell biotransformations with cell-free extracts. Whole-cell biotransformations carried out in a biphasic system resulted in 86% conversion of 5 mM HBA, producing 3.8 mM ω−2- and 0.5 mM ω−1-hydroxyhexylbenzoic acid in 4 h with a turnover number of 4.1 min−1, whereas 100% conversion of 5 mM HBA was obtained in 1 h with crude cell extracts and a cofactor regeneration system, giving a turnover number of 10.5 min−1.  相似文献   

5.
Human serum heme–albumin (HSA-heme) displays globin-like properties. Here, the allosteric inhibition of ferric heme [heme-Fe(III)] binding to human serum albumin (HSA) and of ferric HSA–heme [HSA-heme-Fe(III)]-mediated peroxynitrite isomerization by isoniazid and rifampicin is reported. Moreover, the allosteric inhibition of isoniazid and rifampicin binding to HSA by heme-Fe(III) has been investigated. Data were obtained at pH 7.2 and 20.0 °C. The affinity of isoniazid and rifampicin for HSA [K 0 = (3.9 ± 0.4) × 10−4 and (1.3 ± 0.1) × 10−5 M, respectively] decreases by about 1 order of magnitude upon heme-Fe(III) binding to HSA [K h = (4.3 ± 0.4) × 10−3 and (1.2 ± 0.1) × 10−4 M, respectively]. As expected, the heme-Fe(III) affinity for HSA [H 0 = (1.9 ± 0.2) × 10−8 M] decreases by about 1 order of magnitude in the presence of saturating amounts of isoniazid and rifampicin [H d = (2.1 ± 0.2) × 10−7 M]. In the absence and presence of CO2, the values of the second-order rate constant (l on) for peroxynitrite isomerization by HSA-heme-Fe(III) are 4.1 × 105 and 4.3 × 105 M−1 s−1, respectively. Moreover, isoniazid and rifampicin inhibit dose-dependently peroxynitrite isomerization by HSA-heme-Fe(III) in the absence and presence of CO2. Accordingly, isoniazid and rifampicin impair in a dose-dependent fashion the HSA-heme-Fe(III)-based protection of free l-tyrosine against peroxynitrite-mediated nitration. This behavior has been ascribed to the pivotal role of Tyr150, a residue that either provides a polar environment in Sudlow’s site I (i.e., the binding pocket of isoniazid and rifampicin) or protrudes into the heme-Fe(III) cleft, depending on ligand binding to Sudlow’s site I or to the FA1 pocket, respectively. These results highlight the role of drugs in modulating heme-Fe(III) binding to HSA and HSA-heme-Fe(III) reactivity.  相似文献   

6.
An anaerobic microorganism termed AN-C16-KBRB was isolated from the bovine rumen and demonstrated cellulolytic activity on a NB agar plate containing azo-carboxymethyl cellulose. The 16S rRNA gene of the strain was 98% similar to that of Clostridiaceae bacterium SK082 (AB298754) as the highest homology. A novel celEdx16 gene encoding a bifunctional endo-/exocellulase (CelEdx16) was cloned by the shotgun method from AN-C16-KBRB, and the enzyme was characterized. The celEdx16 gene had an open reading frame of 1,104-base pairs, which encoded 367 amino acids to yield a protein of molecular mass 40.4 kDa. The amino acid sequence was 53% identical to that of an endoglucanase from Clostridium thermocellum. CelEdx16 was overexpressed in Escherichia coli and purified using Ni-NTA affinity chromatography. The specific endocellulase and exocellulase activities of CelEdx16 were 15.9 and 3.6 × 10−2 U mg−1, respectively. The Michaelis–Menten constant (K m values) and the maximal reaction velocities (V max values) of CelEdx16 were 47.1 μM and 9.6 × 10−3 μmole min−1 when endocellulase activity was measured and 106.3 μM and 2.1 × 10−5 μmole min−1 when exocellulase activity was assessed. CelEdx16 was optimally active at pH 5.0 and 40°C.  相似文献   

7.
Laccases (benzenediol oxygen oxidoreductase; EC 1.10.3.2) have many biotechnological applications because of their oxidation ability towards a wide range of phenolic compounds. Within recent years, researchers have been highly interested in the identification and characterization of laccases from bacterial sources. In this study, we have isolated and cloned a gene encoding laccase (CotA) from Bacillus sp. HR03 and then expressed it under microaerobic conditions and decreased temperature in order to obtain high amounts of soluble protein. The laccase was purified and its biochemical properties were investigated using three common laccase substrates, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), syringaldazine (SGZ) and 2,6-dimethoxyphenol (2,6-DMP). K M and k cat were calculated 535 μM and 127 s−1 for ABTS, 53 μM and 3 s−1 for 2, 6-DMP and 5 μM and 20 s−1 for SGZ when the whole reactions were carried out at room temperature. Laccase activity was also studied when the enzyme was preincubated at 70 and 80°C. With SGZ as the substrate, the activity was increased three-fold after 50 min preincubation at 70°C and 2.4-fold after 10 min preincubation at 80°C. Preincubation of the enzyme in 70°C for 30 min raised the activity four-fold with ABTS as the substrate. Also, l-dopa was used as a substrate. The enzyme was able to oxidize l-dopa with the K M and k cat of 1,493 μM and 194 s−1, respectively.  相似文献   

8.
Proper determination of the temperature dependence of intrinsic tryptophan fluorescence intensity in native and denatured states is an essential prerequisite for extracting the free energy of protein unfolding from the thermal denaturation profile. The most common method employed in determining the temperature dependence of these conformations is through the determination of slopes of pre- and post-transition baselines. However, simulations of protein unfolding profiles suggest that this method does not work for marginally stable proteins. We show herein that the temperature dependence of the fluorescence intensity of N-acetyl tryptophanamide (NATA) in organic solvents and water may be used to represent the temperature dependence of the fluorescence intensity of tryptophan in native and denatured conformations of a protein, respectively. The wavelength of the emission maximum, λ max, of N-acetyl tryptophanamide (NATA) in a particular solvent or tryptophan in proteins is related to the temperature dependence (m) of its fluorescence intensity by the equation: m (K−1) = (−0.000299 ± 2.2 × 10−5 K−1 nm−1) × λ max (nm) + (0.0919 ± 0.0025 K−1).  相似文献   

9.
An efficient regeneration protocol for rapid multiplication of Melia azedarach, an economically as well as medicinally important timber-yielding tree, was developed. Nearly 90% of the culture exhibited axillary bud sprouting and multiple shoot formation from nodal segments derived from 20-year-old candidate plus tree on Murashige and Skoog (MS) medium supplemented with 5 μM 6-benzyladenine (BA). The highest shoot regeneration frequency (92%), maximum number of multiple shoots (19.7 ± 0.31) as well as shoot length (4.9 ± 0.08 cm) was induced from nodal explants on MS medium amended with 5.0 μM BA, 0.5 μM indole-3-acetic acid (IAA) and 30 μM adenine sulfate (AdS). Addition of 250 mg l−1 ammonium sulphate, (NH4)2SO4, and 100 mg l−1 K2SO4, prevented defoliation and tip burning without affecting the number of shoots. The explant harvest period also influenced the bud break and shoot sprouting from nodal segments. Repeated subculturing of nodal explants on fresh MS medium containing lower concentration of BA (2.5 μM) along with IAA (0.5 μM), AdS (30 μM) and additives was found most suitable growth regulator regime for achieving 1.2-fold increase in shoot multiplication rate. The percentage of shoot multiplication as well as the number of shoots per node remained the same during first three subculture passages, afterwards a decline was recorded. About 90% of the in vitro regenerated shoots were successfully rooted ex vitro by giving a pulse treatment of 250 μM indole-3-butyric acid for 15 min, followed by their transfer to thermocol cups containing soilrite. The raised plantlets were successfully acclimatized first under culture room conditions, then to green house with 85% survival rate.  相似文献   

10.
Mg2+ in various concentrations was added to purified Rubisco in vitro to gain insight into the mechanism of molecular interactions between Mg2+ and Rubisco. The enzyme activity assays showed that the reaction between Rubisco and Mg2+ was two order, which means that the enhancement of Rubisco activity was accelerated by low concentration of Mg2+ and slowed by high concentration of Mg2+. The kinetics constant (K m) and V max was 1.91 μM and 1.13 μmol CO2 mg−1 protein∙min−1, respectively, at a low concentration of Mg2+, and 3.45 μM and 0.32 μmol CO2∙mg−1 protein∙min−1, respectively, at a high concentration of Mg2+. By UV absorption and fluorescence spectroscopy assays, the Mg2+ was determined to be directly bound to Rubisco; the binding site of Mg2+ to Rubisco was 0.275, the binding constants (K A) of the binding site were 6.33 × 104 and 5.5 × 104 l·mol−1. Based on the analysis of the circular dichroism (CD) spectra, it was concluded that the binding of Mg2+ did not alter the secondary structure of Rubisco, suggesting that the observed enhancement of Rubisco carboxylase activity was caused by a subtle structural change in the active site through the formation of the complex with Mg2+.  相似文献   

11.
Two heterotrophic As(III)-oxidizing bacteria, SPB-24 and SPB-31 were isolated from garden soil. Based on 16S rRNA gene sequence analysis, strain SPB-24 was closely related to genus Bordetella, and strain SPB-31 was most closely related to genus Achromobacter. Both strains exhibited high As(III) (15 mM for SPB-24 and 40 mM for SPB-31) and As(V) (>300 mM for both strains) resistance. Both strains oxidized 5 mM As(III) in minimal medium with oxidation rate of 554 and 558 μM h−1 for SPB-24 and SPB-31, respectively. Washed cells of both strains oxidized As(III) over broad pH and temperature range with optimum pH 6 and temperature 42°C for both strains. The As(III) oxidation kinetic by washed cells showed K m and V max values of 41.7 μM and 1,166 μM h−1 for SPB-24, 52 μM and 1,186 μM h−1 for SPB-31. In the presence of minimal amount of carbon source, the strains showed high As(III) oxidation rate and high specific arsenite oxidase activity. The ability of strains to resist high concentration of arsenic and oxidize As(III) with highest rates reported so far makes them potential candidates for bioremediation of arsenic-contaminated environment.  相似文献   

12.
Using degenerate polymerase chain reaction (PCR) and thermal asymmetric interlaced PCR, a 1,347-bp full-length complementary DNA fragment encompassing the gene man5A, which encodes a 429-amino acid β-mannanase with a calculated mass of 46.8 kDa, was cloned from acidophilic Bispora sp. MEY-1. The deduced amino acid sequence (catalytic domain) displayed highest identity (54.1%) with the Emericella nidulans endo-β-1,4-d-mannanase, a member of the glycoside hydrolase family 5. Recombinant MAN5A was overexpressed in Pichia pastoris, and its activity in the culture medium reached 500 U ml−1. The enzyme was acidophilic, with highest activity at pH 1.0–1.5, lower than any known mannanases, and optimal temperature for activity was 65°C. MAN5A had good pH adaptability, excellent thermal and pH stability, and high resistance to both pepsin and trypsin. The specific activity, K m, and V max for locust bean gum substrate was 3,373 U mg−1, 1.56 mg ml−1, and 6,587.6 μmol min−1 mg−1, respectively. The enzymatic activity was not significantly affected by ions such as Ca2+, Cr3+, Co2+, Zn2+, Na+, K+, and Mg2+ and enhanced by Ni2+, Fe3+, Mn2+ and Ag+. These favorable properties make MAN5A a potential candidate for use in various industrial applications.  相似文献   

13.
Ferredoxin reductase BphA4 was well known as a component of biphenyl dioxygenase. However, there was little information about whether it could utilize nonphysiological oxidants as electron acceptors. In the present study, we reported the novel nitroreductase activity of BphA4LA−4. The homology model of ferredoxin reductase BphA4 from Dyella ginsengisoli LA−4 was constructed. According to the alignment of three-dimensional structures, it was supposed that BphA4LA−4 could function as nitroreductase. Recombinant His-tagged BphA4LA−4 was purified with a molecular mass of 49.6 ± 1 kDa. Biochemical characterization of purified BphA4LA−4 possessed the nitroreductase activity with the optimal temperature 50°C and pH 8.0. The substrate spectrum and kinetics indicated BphA4LA−4 could reduce several nitroaromatics with different apparent K m values: m-dinitrobenzene (560 μM), o-dinitrobenzene (1,060 μM), o-nitroaniline (1,570 μM), m-nitrobenzoic acid (1,300 μM) and m-nitrophenol (67 μM). The nitroreductase activity was further explained by docking studies, which was indicated that Arg 288 should play an important role in binding nitroaromatics. Moreover, there existed a good linear correlation between lnK m and calculated binding energy.  相似文献   

14.
Adenosine is known to exert most of its physiological functions by acting as local modulator at four receptor subtypes named A1, A2A, A2B and A3 (ARs). Principally as a result of the difficulty in identifying potent and selective agonists, the A2B AR is the least extensively characterised of the adenosine receptors family. Despite these limitations, growing understanding of the physiological meaning of this target indicates promising therapeutic perspectives for specific ligands. As A2B AR signalling seems to be associated with pre/postconditioning cardioprotective and anti-inflammatory mechanisms, selective agonists may represent a new therapeutic group for patients suffering from coronary artery disease. Herein we present an overview of the recent advancements in identifying potent and selective A2B AR agonists reported in scientific and patent literature. These compounds can be classified into adenosine-like and nonadenosine ligands. Nucleoside-based agonists are the result of modifying adenosine by substitution at the N 6-, C2-positions of the purine heterocycle and/or at the 5′-position of the ribose moiety or combinations of these substitutions. Compounds 1-deoxy-1-{6-[N′-(furan-2-carbonyl)-hydrazino]-9H-purin-9-yl}-N-ethyl-β-D-ribofuranuronamide (19, hA1 K i = 1050 nM, hA2A K i = 1550 nM, hA2B EC50 = 82 nM, hA3 K i > 5 μM) and its 2-chloro analogue 23 (hA1 K i = 3500 nM, hA2A K i = 4950 nM, hA2B EC50 = 210 nM, hA3 K i > 5 μM) were confirmed to be potent and selective full agonists in a cyclic adenosine monophosphate (cAMP) functional assay in Chinese hamster ovary (CHO) cells expressing hA2B AR. Nonribose ligands are represented by conveniently substituted dicarbonitrilepyridines, among which 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulfanyl]acetamide (BAY-60–6583, hA1, hA2A, hA3 EC50 > 10 μM; hA2B EC50 = 3 nM) is currently under preclinical-phase investigation for treating coronary artery disorders and atherosclerosis.  相似文献   

15.

Abstract  

The purple acid phosphatases (PAPs) are the only binuclear metallohydrolases where the necessity for a heterovalent active site [Fe(III)–M(II) (M is Fe, Zn or Mn)] for catalysis has been established. The paradigm for the construction of PAP biomimetics, both structural and functional, is that the ligands possess characteristics which mimic those of the donor sites of the metalloenzyme and permit discrimination between trivalent and divalent metal ions. The donor atom set of the ligand 2-((2-hydroxy-5-methyl-3-((pyridin-2-ylmethylamino)methyl)benzyl)(2-hydroxybenzyl)amino)acetic acid (H3HPBA) mimics that of the active site of PAP although the iron(III) complex of this ligand has been characterized as the tetramer [Fe4(HPBA)2(μ-CH3COO)2(μ-O)(μ-OH)(OH2)2]ClO4·5H2O. The phosphoesterase-like activity of the complex in 1:1 acetonitrile/water has now been investigated using the substrate 2,4-bis(dinitrophenyl)phosphate. The pH dependence of the catalytic rate revealed a non-symmetric bell-shaped profile, with a finite but non-zero rate at high pH. Unlike the traditional approach usually employed to analyse these bell-shaped profiles, the approach used here involved incorporating additional species which contribute to the overall activity. Employing this approach, we show that the complex has a k cat of 1.6 (±0.2) × 10−3 s−1, three kinetically relevant pK a values of 5.3, 6.2 and 8.4, with K M of 7.4 ± 0.6 mM. The kinetic parameters are similar to those reported for heterovalent PAP biomimetics. Additionally, it is observed that, unlike the enzyme, the oxidation state is not the determining factor for catalytic activity.  相似文献   

16.
Adenosine is known to exert most of its physiological functions by acting as local modulator at four receptor subtypes named A1, A2A, A2B and A3 (ARs). Principally as a result of the difficulty in identifying potent and selective agonists, the A2B AR is the least extensively characterised of the adenosine receptors family. Despite these limitations, growing understanding of the physiological meaning of this target indicates promising therapeutic perspectives for specific ligands. As A2B AR signalling seems to be associated with pre/postconditioning cardioprotective and anti-inflammatory mechanisms, selective agonists may represent a new therapeutic group for patients suffering from coronary artery disease. Herein we present an overview of the recent advancements in identifying potent and selective A2B AR agonists reported in scientific and patent literature. These compounds can be classified into adenosine-like and nonadenosine ligands. Nucleoside-based agonists are the result of modifying adenosine by substitution at the N 6-, C2-positions of the purine heterocycle and/or at the 5′-position of the ribose moiety or combinations of these substitutions. Compounds 1-deoxy-1-{6-[N′-(furan-2-carbonyl)-hydrazino]-9H-purin-9-yl}-N-ethyl-β-D-ribofuranuronamide (19, hA1 K i = 1050 nM, hA2A K i = 1550 nM, hA2B EC50 = 82 nM, hA3 K i > 5 μM) and its 2-chloro analogue 23 (hA1 K i = 3500 nM, hA2A K i = 4950 nM, hA2B EC50 = 210 nM, hA3 K i > 5 μM) were confirmed to be potent and selective full agonists in a cyclic adenosine monophosphate (cAMP) functional assay in Chinese hamster ovary (CHO) cells expressing hA2B AR. Nonribose ligands are represented by conveniently substituted dicarbonitrilepyridines, among which 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulfanyl]acetamide (BAY-60–6583, hA1, hA2A, hA3 EC50 > 10 μM; hA2B EC50 = 3 nM) is currently under preclinical-phase investigation for treating coronary artery disorders and atherosclerosis. This article has previously been published in issue 4/4, under doi:.  相似文献   

17.
Phytoplankton supports fisheries and aquaculture production. Its vital role as food for aquatic animals, like mollusks, shrimp, and fish cannot be overemphasized. Because of its contribution as a food source for fish, the growth kinetics of Microcystis aeruginosa, a dominant cyanobacterium in the lake, was studied. The regular occurrence of M. aeruginosa is experienced during the months of May to July or from September to November in Laguna de Bay, the largest freshwater lake in the Philippines. M. aeruginosa was collected from Laguna de Bay, isolated, and established in axenic conditions. Data on the growth kinetic parameters for nitrate-nitrogen and phosphate-phosphorus utilization by M. aeruginosa gave the following values: half-saturation constant (K s ), 0.530 mg N. L−1 and 0.024 mg P. L−1 respectively; maximum growth rate (μ max ), 0.671. d−1 and 0.668. d−1 respectively; maximum cell yield, 6.5 and 6.54 log, cells. ml−1 respectively; nutrient level for saturated growth yield, 8.71 mg N. L−1 and 0.22 mg P. L−1 respectively; and minimum cell quota (Q 0 ), 2.82 pg N. cell−1 and 0.064 pg P. cell−1 respectively. The low K s value and high maximum growth rate (μ max ) for phosphorus by M. aeruginosa would suggest a high efficiency of phosphorus utilization. On the other hand, the high K s value for nitrogen indicated a low rate of uptake for this nutrient.  相似文献   

18.
Mammalian NADPH-cytochrome P450 reductase (CPR) transfers electrons from NADPH to cytochrome P450 enzymes and other several microsomal enzymes. It also catalyzes the one-electron reduction of many chemicals and drugs. Reduction of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) by CPR was assessed as a method for monitoring CPR activity. The electrons released from NADPH by CPR were transferred to CTC in the reaction medium, and CTC reduction activity could be assessed spectrophotometrically and spectrofluorometrically. The reduction kinetics of CTC follows classical Michaelis–Menten kinetics (K m = 50 μM, k cat = 2,520 min−1). This method offers a continuous assay of the enzymatic activity of CPR. D. H. Kim and S. K. Yim are contributed equally to this work.  相似文献   

19.
The study comprises a data set of CTD, optical properties—K 0(PAR), c p, a(PAR), b(PAR)—and optical constituents—Chl a, SPM, CDOM—from 72 shelf and off-shelf stations in the Faroe Islands (62°N, 7°W) North East Atlantic, in early spring 2005. Results showed that shelf waters surrounding the islands were cold and low saline, whereas off-shelf waters were warmer (~1°C) and more saline (~0.05) PSU. A pronounced oceanographic front separated the two waters, and diffuse light attenuation K 0(PAR), beam attenuation c p, Chl a, absorption a(PAR), and scattering coefficient b(PAR) were all significantly higher on the shelf. Analyses showed that off-shelf light attenuation K 0(PAR) was governed by Chl a, shown by a high (r 2 = 0.64) Chl aK 0(PAR) correlation, whereas light attenuation on the shelf was governed by both Chl a, SPM, and CDOM in combination. A Chl a specific diffuse attenuation coefficient K0* ( \textPAR ) K_{0}^{*} \left( {\text{PAR}} \right) of 0.056 (m2 mg−1 Chl a) and a Chl a specific beam attenuation ( c\textp* c_{\text{p}}^{*} ) of 0.27 (m2 mg−1 Chl a) coefficients were derived for the off-shelf. It is pointed out that Chl a is the single variable that changes over time as no rivers with high SPM and CDOM enter the shelf area. Data were obtained in early spring, and Chl a concentrations were low ~0.5 mg Chl a m−3. Spring bloom Chl a are about 10 mg Chl a m−3 and estimations showed that shelf K 0(PAR) will increase about 5 times and beam attenuation about 10 times. The Faroe Islands shelf–off-shelf waters is a clear example where physical conditions maintain some clear differences in optical properties and optical constituents. The complete data set is enclosed.  相似文献   

20.
Glucose-6-phosphate dehydrogenase (G6PDH) and the pentose phosphate pathway play a key role in reductive biosynthesis and antioxidant defense, while diverting glucose from other cellular functions. G6PDH was isolated from liver of the wood frog, Rana sylvatica, a freeze tolerant species that uses glucose as a cryoprotectant. Analysis of kinetic parameters (K m and V max) of G6PDH showed a significant increase in K m G6P (from 98.2 ± 3.8 to 121 ± 5.3 μM) and K m NADP+ (from 65.5 ± 2.3 to 89.1 ± 4.8 μM) in frogs following freezing exposure, indicating lower affinity for G6PDH substrates in this state. Subsequent analyses indicated that differential phosphorylation of G6PDH between the two states was responsible for the altered kinetic properties. Thus, two differentially charged forms of G6PDH were resolved by DEAE ion-exchange chromatography and, compared with controls, the proportion of G6PDH activity in peak I decreased and in peak II increased in liver from frozen frogs. G6PDH in peak I had a K m G6P of 94.1 ± 1.1 μM and K m NADP+ of 61.2 ± 3.5 μM, whereas Peak II G6PDH showed higher values (K m G6P was 172 ± 4.3 μM, K m NADP+ was 98.2 ± 3.3 μM). G6PDH from each peak was incubated with ions and second messengers to stimulate the actions of protein kinases with results indicating that G6PDH can be phosphorylated by protein kinase G, protein kinase C, AMP-activated protein kinase, or calmodulin-dependent protein kinase. The data indicate that in control frogs, G6PDH is in a high phosphate form and displays a high substrate affinity, whereas in frozen frogs G6PDH is less phosphorylated, with lower substrate affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号