首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Dasso  T Seki  Y Azuma  T Ohba    T Nishimoto 《The EMBO journal》1994,13(23):5732-5744
The Ran protein is a small GTPase that has been implicated in a large number of nuclear processes including transport. RNA processing and cell cycle checkpoint control. A similar spectrum of nuclear activities has been shown to require RCC1, the guanine nucleotide exchange factor (GEF) for Ran. We have used the Xenopus laevis egg extract system and in vitro assays of purified proteins to examine how Ran or RCC1 could be involved in these numerous processes. In these studies, we employed mutant Ran proteins to perturb nuclear assembly and function. The addition of a bacterially expressed mutant form of Ran (T24N-Ran), which was predicted to be primarily in the GDP-bound state, profoundly disrupted nuclear assembly and DNA replication in extracts. We further examined the molecular mechanism by which T24N-Ran disrupts normal nuclear activity and found that T24N-Ran binds tightly to the RCC1 protein within the extract, resulting in its inactivation as a GEF. The capacity of T24N-Ran-blocked interphase extracts to assemble nuclei from de-membranated sperm chromatin and to replicate their DNA could be restored by supplementing the extract with excess RCC1 and thereby providing excess GEF activity. Conversely, nuclear assembly and DNA replication were both rescued in extracts lacking RCC1 by the addition of high levels of wild-type GTP-bound Ran protein, indicating that RCC1 does not have an essential function beyond its role as a GEF in interphase Xenopus extracts.  相似文献   

2.
RCC1, the only known guanine-nucleotide exchange factor for the Ran GTPase, is an approximately 45-kD nuclear protein that can bind chromatin. An important question concerns how RCC1 traverses the nuclear envelope. We now show that nuclear RCC1 is not exported readily in interphase cells and that the import of RCC1 into the nucleoplasm is extremely rapid. Import can proceed by at least two distinct mechanisms. The first is a classic import pathway mediated by basic residues within the NH(2)-terminal domain (NTD) of RCC1. This pathway is dependent upon both a preexisting Ran gradient and energy, and preferentially uses the importin-alpha3 isoform of importin-alpha. The second pathway is not mediated by the NTD of RCC1. This novel pathway does not require importin-alpha or importin-beta or the addition of any other soluble factor in vitro; however, this pathway is saturable and sensitive only to a subset of inhibitors of classical import pathways. Furthermore, the nuclear import of RCC1 does not require a preexisting Ran gradient or energy. We speculate that this second import pathway evolved to ensure that RCC1 never accumulates in the cytoplasm.  相似文献   

3.
Transport regulation by the Ran GTPase requires its nuclear localization and GTP loading by the chromatin-associated exchange factor RCC1. These reactions generate Ran protein and Ran nucleotide gradients between the nucleus and the cytoplasm. Cellular stress disrupts the Ran gradients, but the specific mechanisms underlying this disruption have not been elucidated. We used biochemical approaches to determine how oxidative stress disrupts the Ran system. RCC1 exchange activity was reduced by diamide-induced oxidative stress and restored with dithiothreitol. Using mass spectrometry, we found that multiple solvent-exposed cysteines in RCC1 are oxidized in cells treated with diamide. The cysteines oxidized in RCC1 included Cys93, which is solvent exposed and unique because it becomes buried upon contact with Ran. A Cys93Ser substitution dramatically reduced exchange activity through an effect on RCC1 binding to RanGDP. Diamide treatment reduced the size of the mobile fraction of RCC1-green fluorescent protein in cells and inhibited nuclear import in digitonin-permeabilized cell assays. The Ran protein gradient was also disrupted by UV-induced stress but without affecting RCC1 exchange activity. Our data suggest that stress can disrupt the Ran gradients through RCC1-dependent and RCC1-independent mechanisms, possibly dependent on the particular stress condition.  相似文献   

4.
Ran is a small GTPase that is essential for nuclear transport, mRNA processing, maintenance of structural integrity of nuclei, and cell cycle control. RanBP1 is a highly conserved Ran guanine nucleotide dissociation inhibitor. We sought to use Xenopus egg extracts for the development of an in vitro assay for RanBP1 activity in nuclear assembly, protein import, and DNA replication. Surprisingly, when we used anti-RanBP1 antibodies to immunodeplete RanBP1 from Xenopus egg extracts, we found that the extracts were also depleted of RCC1, Ran’s guanine nucleotide exchange factor, suggesting that these proteins form a stable complex. In contrast to previous observations using extracts that had been depleted of RCC1 only, extracts lacking both RanBP1 and RCC1 (codepleted extracts) did not exhibit defects in assays of nuclear assembly, nuclear transport, or DNA replication. Addition of either recombinant RanBP1 or RCC1 to codepleted extracts to restore only one of the depleted proteins caused abnormal nuclear assembly and inhibited nuclear transport and DNA replication in a manner that could be rescued by further addition of RCC1 or RanBP1, respectively. Exogenous mutant Ran proteins could partially rescue nuclear function in extracts without RanBP1 or without RCC1, in a manner that was correlated with their nucleotide binding state. These results suggest that little RanBP1 or RCC1 is required for nuclear assembly, nuclear import, or DNA replication in the absence of the other protein. The results further suggest that the balance of GTP- and GDP-Ran is critical for proper nuclear assembly and function in vitro.  相似文献   

5.
The mutant form of lamin A responsible for the premature aging disease Hutchinson-Gilford progeria syndrome (termed progerin) acts as a dominant negative protein that changes the structure of the nuclear lamina. How the perturbation of the nuclear lamina in progeria is transduced into cellular changes is undefined. Using patient fibroblasts and a variety of cell-based assays, we determined that progerin expression in Hutchinson-Gilford progeria syndrome inhibits the nucleocytoplasmic transport of several factors with key roles in nuclear function. We found that progerin reduces the nuclear/cytoplasmic concentration of the Ran GTPase and inhibits the nuclear localization of Ubc9, the sole E2 for SUMOylation, and of TPR, the nucleoporin that forms the basket on the nuclear side of the nuclear pore complex. Forcing the nuclear localization of Ubc9 in progerin-expressing cells rescues the Ran gradient and TPR import, indicating that these pathways are linked. Reducing nuclear SUMOylation decreases the nuclear mobility of the Ran nucleotide exchange factor RCC1 in vivo, and the addition of SUMO E1 and E2 promotes the dissociation of RCC1 and Ran from chromatin in vitro. Our data suggest that the cellular effects of progerin are transduced, at least in part, through reduced function of the Ran GTPase and SUMOylation pathways.  相似文献   

6.
The RanGTP gradient depends on nucleocytoplasmic shuttling of Ran and its nucleotide exchange in the nucleus. Here we show that hyperosmotic stress signaling induced by sorbitol disrupts the Ran protein gradient and reduces the production of RanGTP. Ran gradient disruption is rapid and is followed by early (10-20 min) and late (30-60 min) phases of recovery. Results from SB203580 and siRNA experiments suggest the stress kinase p38 is important for Ran gradient recovery. NTF2 and Mog1, which are transport factors that regulate the nuclear localization of Ran, showed kinetics of delocalization and recovery similar to Ran. Microinjection of a nuclear localization signal reporter protein revealed that sorbitol stress decreases the rate of nuclear import. Sorbitol stress also slowed RCC1 mobility in the nucleus, which is predicted to reduce RCC1 dissociation from chromatin and RanGTP production. This was tested using a FRET biosensor that registers nuclear RanGTP levels, which were reduced in response to sorbitol stress. Although sorbitol alters nucleotide levels, we show that inverting the GTP/GDP ratio in cells is not sufficient to disrupt the Ran gradient. Thus, the Ran system is a target of hyperosmotic stress signaling, and cells use protein localization-based mechanisms as part of a rapid stress response.  相似文献   

7.
The molecular mechanism of nuclear envelope (NE) assembly is poorly understood, but in a cell-free system made from Xenopus eggs NE assembly is controlled by the small GTPase Ran [1,2]. In this system, Sepharose beads coated with Ran induce the formation of functional NEs in the absence of chromatin [1]. Both generation of Ran-GTP by the guanine nucleotide exchange factor RCC1 and GTP hydrolysis by Ran are required for NE assembly, although the roles of the GDP- and GTP-bound forms of Ran in the recruitment of precursor vesicles and their fusion have been unclear. We now show that beads coated with either Ran-GDP or Ran-GTP assemble functional nuclear envelopes in a cell-free system derived from mitotic human cells, forming pseudo-nuclei that actively transport proteins across the NE. Both RCC1 and the GTPase-activating protein RanGAP1 are recruited to the beads, allowing interconversion between Ran-GDP and Ran-GTP. However, addition of antibodies to RCC1 and RanGAP1 shows that Ran-GDP must be converted to Ran-GTP by RCC1 before precursor vesicles are recruited, whereas GTP hydrolysis by Ran stimulated by RanGAP1 promotes vesicle recruitment and is necessary for vesicle fusion to form an intact envelope. Thus, the GTP-GDP cycle of Ran controls both the recruitment of vesicles and their fusion to form NEs.  相似文献   

8.
9.
Nuclear envelope (NE) formation can be studied in a cell-free system made from Xenopus eggs. In this system, NE formation involves the small GTPase Ran. Ran associates with chromatin early in nuclear assembly and concentration of Ran on inert beads is sufficient to induce NE formation. Here, we show that Ran binds to chromatin prior to NE formation and recruits RCC1, the nucleotide exchange factor that generates Ran-GTP. In extracts prepared by high-speed centrifugation, increased concentrations of Ran are sufficient to induce chromatin decondensation and NE assembly. Using field emission in-lens scanning electron microscopy (FEISEM), we show that Ran promotes the formation of smoothed membranes and the assembly of nuclear pore complexes (NPCs). In contrast, RanT24N, a mutant that fails to bind GTP and inhibits RCC1, does not support efficient NE assembly, whereas RanQ69L, a mutant locked in a GTP-bound state, permits some membrane vesicle recruitment to chromatin, but inhibits vesicle fusion and NPC assembly. Thus, binding of Ran to chromatin, followed by local generation of Ran-GTP and GTP hydrolysis by Ran, induces chromatin decondensation, membrane vesicle recruitment, membrane formation and NPC assembly. We propose that the biological activity of Ran is determined by its targeting to structures such as chromatin as well as its guanine nucleotide bound state.  相似文献   

10.
The Ran GTPase regulates nuclear import and export by controlling the assembly state of transport complexes. This involves the direct action of RanGTP, which is generated in the nucleus by the chromatin‐associated nucleotide exchange factor, RCC1. Ran interactions with RCC1 contribute to formation of a nuclear:cytoplasmic (N:C) Ran protein gradient in interphase cells. In previous work, we showed that the Ran protein gradient is disrupted in fibroblasts from Hutchinson–Gilford progeria syndrome (HGPS) patients. The Ran gradient disruption in these cells is caused by nuclear membrane association of a mutant form of Lamin A, which induces a global reduction in heterochromatin marked with Histone H3K9me3 and Histone H3K27me3. Here, we have tested the hypothesis that heterochromatin controls the Ran gradient. Chemical inhibition and depletion of the histone methyltransferases (HMTs) G9a and GLP in normal human fibroblasts reduced heterochromatin levels and caused disruption of the Ran gradient, comparable to that observed previously in HGPS fibroblasts. HMT inhibition caused a defect in nuclear localization of TPR, a high molecular weight protein that, owing to its large size, displays a Ran‐dependent import defect in HGPS. We reasoned that pathways dependent on nuclear import of large proteins might be compromised in HGPS. We found that nuclear import of ATM requires the Ran gradient, and disruption of the Ran gradient in HGPS causes a defect in generating nuclear γ‐H2AX in response to ionizing radiation. Our data suggest a lamina–chromatin–Ran axis is important for nuclear transport regulation and contributes to the DNA damage response.  相似文献   

11.
Protozoan parasites represent major public health challenges. Many aspects of their cell biology are distinct from their animal hosts, providing potential therapeutic targets. Toxoplasma gondii is a protozoan parasite that contains a divergent regulator of chromosome condensation 1 (TgRCC1) that is required for virulence and efficient nuclear trafficking. RCC1 proteins function as a guanine exchange factor for Ras-related nuclear protein (Ran), an abundant GTPase responsible for the majority of nucleocytoplasmic transport. Here we show that while there are dramatic differences from well-conserved RCC1 proteins, TgRCC1 associates with chromatin, interacts with Ran and complements a mammalian temperature-sensitive RCC1 mutant cell line. During the investigation of TgRCC1, we observed several unprecedented phenotypes for TgRan, despite a high level of sequence conservation. The cellular distribution of TgRan is found throughout the parasite cell, whereas Ran in late branching eukaryotes is predominantly nuclear. Additionally, T. gondii tolerates at least low-level expression of dominant lethal Ran mutants. Wild type parasites expressing dominant negative TgRan grew similarly to wild type in standard tissue culture conditions, but were attenuated in serum-starved host cells and mice. These growth characteristics paralleled the TgRCC1 mutant and highlight the importance of the nuclear transport pathway for virulence of eukaryotic pathogens.  相似文献   

12.
Ran-binding protein 3 (RanBP3) is an approximately 55-kDa protein that functions as a cofactor for Crm1-mediated nuclear export. RanBP3 stimulates export by enhancing the affinity of Crm1 for Ran.GTP and cargo. However, important additional functions for this cofactor may exist. We now report that RanBP3 associates with the Ran-specific guanine nucleotide exchange factor, regulator of chromosome condensation 1 (RCC1). This interaction was stimulated by the addition of Ran; moreover, Ran.GDP, Ran.GTP, and Ran without nucleotide could all stimulate complex formation between RanBP3 and RCC1 even though binding of Ran.GDP to RanBP3 alone was undetectable. RanBP3 could also promote binding of Crm1 to RCC1 in the presence of Ran. Binding of RanBP3 to RCC1 increased the catalytic activity of RCC1 toward Ran, and importantly, the ability of RanBP3 to stimulate RCC1 was not affected by the presence of Crm1. These data indicate that RanBP3 acts as a scaffold protein to promote the efficient assembly of export complexes. By tethering Crm1 to catalytically enhanced RCC1, RanBP3 may lower the entropic barrier for the loading of Ran.GTP onto Crm1. We propose that this provides an additional mechanism by which RanBP3 facilitates export.  相似文献   

13.
RCC1 is the only known guanine nucleotide exchange factor for the small GTPase Ran and is normally found inside the nucleus bound to chromatin. In order to analyze in more detail the nuclear import of RCC1, we created a fusion construct in which four IgG binding domains of protein A were fused to the amino terminus of human RCC1 (pA-RCC1). Surprisingly, we found that neither Xenopus ovarian cytosol nor a mixture of recombinant import factors (karyopherin alpha2, karyopherin beta1, Ran, and p10/NTF2) were able to support the import of pA-RCC1 into the nuclei of digitonin-permeabilized cells. Both, in contrast, were capable of supporting the import of a construct containing another classical nuclear localization sequence (NLS), glutathione S-transferase-green fluorescent protein-NLS. Subsequently, we found that only one of the NLS receptors, karyopherin alpha3 (Kapalpha3/Qip), would support significant nuclear import of pA-RCC1 in permeabilized cells, while members of the other two main classes, Kapalpha1 and Kapalpha2, would not. Accordingly, in vitro binding studies revealed that only Kapalpha3 showed significant binding to RCC1 (unlike Kapalpha1 and Kapalpha2) and that this binding was dependent on the basic amino acids present in the RCC1 NLS. In addition to Kapalpha3, we found that the nuclear import of pA-RCC1 also required both karyopherin beta1 and Ran.  相似文献   

14.
The small GTPase Ran coordinates retrograde axonal transport in neurons, spindle assembly during mitosis, and the nucleo-cytoplasmic transport of mRNA. Its localization is tightly regulated by the GTPase-activating protein RanGAP1 and the nuclear guanosine exchange factor (GEF) RCC1. We show that loss of the neuronal E3 ubiquitin ligase MYCBP2 caused the up-regulation of Ran and RanGAP1 in dorsal root ganglia (DRG) under basal conditions and during inflammatory hyperalgesia. SUMOylated RanGAP1 physically interacted with MYCBP2 and inhibited its E3 ubiquitin ligase activity. Stimulation of neurons induced a RanGAP1-dependent translocation of MYCBP2 to the nucleus. In the nucleus of DRG neurons MYCBP2 co-localized with Ran and facilitated through its RCC1-like domain the GDP/GTP exchange of Ran. In accordance with the necessity of a GEF to promote GTP-binding and nuclear export of Ran, the nuclear localization of Ran was strongly increased in MYCBP2-deficient DRGs. The finding that other GEFs for Ran besides RCC1 exist gives new insights in the complexity of the regulation of the Ran signaling pathway.  相似文献   

15.
Using the two-hybrid method, we isolated a Saccharomyces cerevisiae cDNA encoding a protein homologous to Schizosaccharomyces pombe protein Dis3sp, using as bait, human GTPase Ran. The DIS3 gene is essential for viability and complements S.pombe mutant dis3-54 which is defective in mitosis. Although Dis3sc has no homology to RanBP1, it bound directly to Ran and the S.cerevisiae Ran homologue Cnr1, but not to the S.cerevisiae RCC1 homologue Srm1. Upon binding to Ran with a 1:1 molar ratio, Dis3sc enhanced a nucleotide-releasing activity of RCC1 on Ran. In the presence of Dis3sc, the K(m) of RCC1 on Ran decreased by half, while the kcat was unchanged. In vivo, Dis3sp was present as oligomers of M(r) 670-200 kDa as previously reported, and the 200 kDa oligomer of Dis3sp was found to include Spi1 and Pim1, the S.pombe homologues of Ran and RCC1, respectively. Although the biological function of the heterotrimeric oligomer consisting of Dis3, Spi1 and Pim1 is unknown, our results indicate that Dis3 is a component of the RCC1-Ran pathway.  相似文献   

16.
D Grlich  N Pant  U Kutay  U Aebi    F R Bischoff 《The EMBO journal》1996,15(20):5584-5594
The importin-alpha/beta heterodimer and the GTPase Ran play key roles in nuclear protein import. Importin binds the nuclear localization signal (NLS). Translocation of the resulting import ligand complex through the nuclear pore complex (NPC) requires Ran and is terminated at the nucleoplasmic side by its disassembly. The principal GTP exchange factor for Ran is the nuclear protein RCC1, whereas the major RanGAP is cytoplasmic, predicting that nuclear Ran is mainly in the GTP form and cytoplasmic Ran is in the GDP-bound form. Here, we show that nuclear import depends on cytoplasmic RanGDP and free GTP, and that RanGDP binds to the NPC. Therefore, import might involve nucleotide exchange and GTP hydrolysis on NPC-bound Ran. RanGDP binding to the NPC is not mediated by the Ran binding sites of importin-beta, suggesting that translocation is not driven from these sites. Consistently, a mutant importin-beta deficient in Ran binding can deliver its cargo up to the nucleoplasmic side of the NPC. However, the mutant is unable to release the import substrate into the nucleoplasm. Thus, binding of nucleoplasmic RanGTP to importin-beta probably triggers termination, i.e. the dissociation of importin-alpha from importin-beta and the subsequent release of the import substrate into the nucleoplasm.  相似文献   

17.
A concentration gradient of the GTP-bound form of the GTPase Ran across nuclear pores is essential for the transport of many proteins and nucleic acids between the nuclear and cytoplasmic compartments of eukaryotic cells [1], [2], [3] and [4]. The mechanisms responsible for the dynamics and maintenance of this Ran gradient have been unclear. We now show that Ran shuttles between the nucleosol and cytosol, and that cytosolic Ran accumulates rapidly in the nucleus in a saturable manner that is dependent on temperature and on the guanine-nucleotide exchange factor RCC1. Nuclear import in digitonin-permeabilized cells in the absence of added factors was minimal. The addition of energy and nuclear transport factor 2 (NTF2) [5] was sufficient for the accumulation of Ran in the nucleus. An NTF2 mutant that cannot bind Ran [6] was unable to facilitate Ran import. A GTP-bound form of a Ran mutant that cannot bind NTF2 was not a substrate for import. A dominant-negative importin-β mutant inhibited nuclear import of Ran, whereas addition of transportin, which accumulates in the nucleus, enhanced NTF2-dependent Ran import. We conclude that NTF2 functions as a transport receptor for Ran, permitting rapid entry into the nucleus where GTP-GDP exchange mediated by RCC1 [7] converts Ran into its GTP-bound state. The Ran–GTP can associate with nuclear Ran-binding proteins, thereby creating a Ran gradient across nuclear pores.  相似文献   

18.
The small GTPase Ran has been found to play pivotal roles in several aspects of cell function. We have investigated the role of the Ran GTPase cycle in spindle formation and nuclear envelope assembly in dividing Caenorhabditis elegans embryos in real time. We found that Ran and its cofactors RanBP2, RanGAP, and RCC1 are all essential for reformation of the nuclear envelope after cell division. Reducing the expression of any of these components of the Ran GTPase cycle by RNAi leads to strong extranuclear clustering of integral nuclear envelope proteins and nucleoporins. Ran, RanBP2, and RanGAP are also required for building a mitotic spindle, whereas astral microtubules are normal in the absence of these proteins. RCC1(RNAi) embryos have similar abnormalities in the initial phase of spindle formation but eventually recover to form a bipolar spindle. Irregular chromatin structures and chromatin bridges due to spindle failure were frequently observed in embryos where the Ran cycle was perturbed. In addition, connection between the centrosomes and the male pronucleus, and thus centrosome positioning, depends upon the Ran cycle components. Finally, we have demonstrated that both IMA-2 and IMB-1, the homologues of vertebrate importin alpha and beta, are essential for both spindle assembly and nuclear formation in early embryos.  相似文献   

19.
The small GTPase Ran has multiple roles during the cell division cycle, including nuclear transport, mitotic spindle assembly, and nuclear envelope formation. However, regulation of Ran during cell division is poorly understood. Ran-GTP is generated by the guanine nucleotide exchange factor RCC1, the localization of which to chromosomes is necessary for the fidelity of mitosis in human cells. Using photobleaching techniques, we show that the chromosomal interaction of human RCC1 fused to green fluorescent protein (GFP) changes during progression through mitosis by being highly dynamic during metaphase and more stable toward the end of mitosis. The interaction of RCC1 with chromosomes involves the interface of RCC1 with Ran and requires an N-terminal region containing a nuclear localization signal. We show that this region contains sites phosphorylated by mitotic protein kinases. One site, serine 11, is targeted by CDK1/cyclin B and is phosphorylated in mitotic human cells. Phosphorylation of the N-terminal region of RCC1 inhibits its binding to importin alpha/beta and maintains the mobility of RCC1 during metaphase. This mechanism may be important for the localized generation of Ran-GTP on chromatin after nuclear envelope breakdown and may play a role in the coordination of progression through mitosis.  相似文献   

20.

Background  

Regulator of chromosome condensation 1 (RCC1) is the guanine nucleotide exchange factor for Ran GTPase. Localised generation of Ran-GTP by RCC1 on chromatin is critical for nucleocytoplasmic transport, mitotic spindle assembly and nuclear envelope formation. Both the N-terminal tail of RCC1 and its association with Ran are important for its interaction with chromatin in cells. In vitro, the association of Ran with RCC1 induces a conformational change in the N-terminal tail that promotes its interaction with DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号