首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To estimate the phylogenetic relationship of polyploid Hystrix in Triticeae, two single-copy nuclear genes (Acc1 and DMC1) and chloroplast trnL-F sequences of six Hystrix taxa were analyzed with those of nine Leymus species (NsXm), four Elymus species (StH) and 13 diploid taxa from seven monogenomic genera. Phylogenetic analyses reveal that Hystrix taxa contain two distinct types of genome constitution, despite the overall morphological and ecological similarity among Hystrix taxa. One type of genome constitution is StH (Hy. patula) as Elymus, the other is NsXm (Hy. californica, Hy. coreana, Hy. duthiei, Hy. duthiei ssp. longearistata and Hy. komarovii) as Leymus. The St, H and Ns genomes in Hystrix are donated by Pseudoroegneria, Hordeum and Psathyrostachys, respectively. The donor of the Xm genome is closely related to Agropyron (P). The trnL-F data especially indicate that there has been a maternal haplotype polymorphism in Hystrix species. Based on these results, we suggest that Hy. coreana, Hy. duthiei, Hy. duthiei ssp. longearistata, Hy. komarovii and Hy. californica should be included in the genus Leymus, and Hy. patula in the genus Elymus.  相似文献   

2.
Interspecific and intergeneric hybridizations were carried out to evaluate the genomic relationships among species of Hystrix Moench and to study the relationships between Hystrix species and Psathyrostachys huashanica Keng (2n=2x=14, Nsh). Meiotic pairing in hybrids of Hystrix duthiei ssp. duthiei × P. huashanica (2n=3x=21), Hystrix duthiei ssp. longearistata × P. huashanica (2n=3x=21) and H. patula × P. huashanica (2n=3x=21) averaged 5.18, 5.11 and 0.29 bivalents per cell, while H. patula × H. duthiei ssp. longearistata (2n=4x=28) averaged 25.36 univalents and 1.32 bivalents per cell, respectively. The results indicate that (i) H. duthiei ssp. duthiei and H. duthiei ssp. longearistata have one set of Ns genome from Psathyrostachys; (ii) H. patula has no Ns genome; (iii) genomes of H. duthiei ssp. duthiei and H. duthiei ssp. longearistata are non-homologous to those of H. patula. The genomic relationships between H. patula and other Hystrix species are also discussed.  相似文献   

3.
Abstract Twelve species, including three Hystrix species, five Leymus species, Hordeum bogdanii, Pseudoroegneria spicata, Psathyrostachys huashanica, and Roegneria ciliaris, were used for expressed sequence tag‐polymerase chain reaction (EST‐PCR) assay. A total of 125 products were amplified by 72 sets of EST‐PCR markers developed in barley, among which 106 (84.8%) products were found to be polymorphic. Each EST‐PCR marker produced 0–6 polymorphic bands, with an average of 1.47. The relationship between H. duthiei ssp. duthiei and H. duthiei ssp. longearistata is close, but they are remote to H. patula. Hystrix duthiei ssp. duthiei and H. duthiei ssp. longearistata were clustered with Leymus species and Psathyrostachys huashanica, which suggested that they have close genetic relationships. The results of EST‐PCR analysis are basically comparable with those obtained from studies on cytology, which indicated that EST‐PCR can be used to assess the genetic relationships among the perennial species in Triticeae.  相似文献   

4.
Hybrids including Hystrix patula, H. duthiei and H. longearistata were obtained and genetic relationships among them were studied. Meiotic pairing in hybrids of H. duthiei × Psathyrostachys juncea (Ns), H. longearistata × Psa. juncea (Ns), Leymus multicaulis (NsXm) × H. duthiei, L. multicaulis (NsXm) × H. longearistata, Elymus sibiricus (StH) × H. patula, Roegneria ciliaris (StY) × H. patula, R. ciliaris (StY) × H. duthiei and R. ciliaris (StY) × H. longearistata averaged 5.76, 5.44, 11.94, 10.88, 10.08, 3.57, 0.46 and 0.90 bivalents per cell, respectively. The results indicated that H. duthiei and H. longearistata had the NsXm genomes of Leymus, while H. patula contained the StH genomes and had a low genome affinity with the StY genomes of Roegneria. Results of genome-specific RAPD assay were comparable with the chromosome pairing data. According to the genomic system of classification in Triticeae, H. patula should be considered as Elymus hystrix L., while H. duthiei and H. longearistata as Leymus duthiei and Leymus duthiei ssp. longearistata, respectively.  相似文献   

5.
The phylogenetic relationships of 15 taxa from Hystrix and the related genera Leymus (NsXm), Elymus (StH), Pseudoroegneria (St), Hordeum (H), Psathyrostachys (Ns), and Thinopyrum (E) were examined by using the Giemsa C-banded karyotype. The Hy. patula C-banding pattern was similar to those of Elymus species, whereas C-banding patterns of the other Hystrix species were similar to those of Leymus species. The results suggest high genetic diversity within Hystrix, and support treating Hy. patula as E. hystrix L., and transferring Hy. coreana, Hy. duthiei ssp. duthiei and Hy. duthiei ssp. longearistata to the genus Leymus. On comparing C-banding patterns of Elymus species with their diploid ancestors (Pseudoroegneria and Hordeum), there are indications that certain chromosomal re-arrangements had previously occurred in the St and H genomes. Furthermore, a comparison of the C-banding patterns of the Hystrix and Leymus species with the potential diploid progenitors (Psathyrostachys and Thinopyrum) suggests that Hy. coreana and some Leymus species are closely related to the Ns genome of Psathyrostachys, whereas Hy. duthiei ssp. duthiei, Hy. duthiei ssp. longearistata and some of the Leymus species have a close relationship with the E genome. The results suggest a multiple origin of the polyploid genera Hystrix and Leymus.  相似文献   

6.
Genomic in situ hybridisation (GISH) and Southern genomic hybridisation were applied in order to gain further knowledge regarding generic delimitation of the genus Hystrix as well as to clarify the genomes of the Hystrix species H. patula, H. longearistata, H. coreana, H. duthiei and H. komarovii. The hybridisation intensity of different genomic probes was compared among the Hystrix species and with other Triticeae species. The Southern- and GISH results confirm that H. patula contains the StH genome and show that H. komarovii most likely has a variant of this StH genome. The other Hystrix species under study, i.e. H. longearistata, H. coreana and H. duthiei, contain an Ns basic genome, and most probably two variants of this basic genome, Ns 1 Ns 2 . The genus Hystrix is thus not a monophyletic group of species.  相似文献   

7.
对鹅观草属、披碱草属、猬草属和仲彬草属4属23个物种进行了RAMP分析。结果表明属间变异极大,多态性极高。31个引物组合产生的286条DNA扩增片段均具有多态性。聚类分析显示鹅观草属、披碱草属、猬草属和仲彬草属物种各自聚为一类;Roegneria alashanica、R.elytrigioides和R.magnticaespes聚类在一起;猬草属的模式种Hystrix patula与披碱草属物种聚类在一起,而Hystrix duthiei和H.longearistata单独聚为一类;形态相似、染色体组相同、地理分布一致的物种聚类在一起。本研究结果基本上同形态学和细胞学研究结果相吻合,将鹅观草属、披碱草属和仲彬草属作为属分类等级处理比较恰当,而猬草属的系统地位有待进一步确认。RAMP标记可作为评价多年生小麦族物种遗传多样性和亲缘关系的一种分子标记技术。  相似文献   

8.
凡星  廖莎  沙莉娜  刘静  王晓丽  周永红 《遗传》2009,31(10):1049-1058
文章对禾本科小麦族猬草属及其近缘属Thinopyrum(Eb)、Lophopyrum(Ee)、拟鹅观草属(St)、新麦草属(Ns)、大麦属(H)、赖草属(NsXm)和披碱草属(StH)植物共23个类群的单拷贝核Pgk1基因序列进行系统发育分析, 探讨猬草属及其近缘属植物的系统发育关系。序列分析发现Pgk1基因序列在L. arenarius和Psa. juncea中有81 bp的Stowaway家族DNA转座元件插入, 而在Hy. duthiei、Hy. duthiei ssp. longearistata和L. akmolinensis中有29 bp Copia家族的反转录转座元件插入。最大似然和贝叶斯推断进行的系统发育分析表明: (1)猬草属模式种Hy. patula与披碱草属、拟鹅观草属和大麦属具有密切的亲缘关系; (2)猬草属的其他物种Hy. duthiei、Hy. duthiei ssp. longearistata、Hy. coreana和Hy. komarovii与新麦草属和赖草属植物亲缘关系密切。研究结果支持将Hy. patula从猬草属组合到披碱草属中, 而Hy. duthiei、Hy. duthiei ssp. longearistata、Hy. coreana和Hy. komarovii应组合到赖草属中。  相似文献   

9.
张颖  周永红  张利  张海琴  杨瑞武  丁春邦 《遗传》2006,28(4):449-457
对鹅观草属、披碱草属、猬草属和仲彬草属23个物种和1份外类群共24份材料进行了细胞质基因组PCR-RFLP分析。3个叶绿体和3个线粒体通用引物扩增出的片段,用15种限制性内切酶对其进行酶切。在47种引物/酶组合中,获得329条DNA片段,其中304条具有多态性,占92.4%。结果表明鹅观草属、披碱草属、猬草属和仲彬草属材料存在属间和种间多态性,遗传相似系数较高。聚类分析显示仲彬草属单独聚为一类,鹅观草属R. grandisR. aristiglumisR. elytrigioidesR. alashanicaR. magnicaespes聚为一类,R. caucasicaR. ciliarisR. amurensisR. japonensis聚在一起,5个披碱草属材料、3个猬草属材料和1个鹅观草属物种R. kamoji聚为一类。这些结果与前人对其进行的RAPD和RAMP分析的结果基本一致。仲彬草属作为属分类等级处理是恰当的,对于鹅观草属、披碱草属和猬草属的系统地位和一些物种的分类处理,有待进一步研究。  相似文献   

10.
The taxonomic status of Hystrix and phylogenetic relationships among Hystrix and its related genera of Pseudoroegneria (St), Hordeum (H), Psathyrostachys (Ns), Elymus (StH), Leymus (NsXm), Thinopyrum bessarabicum (E(b)) and Lophopyrum elongatum (E(e)) were estimated from sequences of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA. The type species of Hystrix, H. patula, clustered with species of Pseudoroegneria, Hordeum, Elymus, Th. bessarabicum and Lo. elongatum, while H. duthiei ssp. duthiei, H. duthiei ssp. longearistata, H. coreana and H. komarovii were grouped with Psathyrostachys and Leymus species. The results indicate that: (i) H. patula is distantly related to other species of Hystrix, but is closely related to Elymus species; (ii) H. duthiei ssp. duthiei, H. duthiei ssp. longearistata, H. coreana and H. komarovii have a close affinity with Psathyrostachys and Leymus species, and H. komarovii might contain the NsXm genome of Leymus; and (iii) the St, H and Ns genomes in Hystrix originate from Pseudoroegneria, Hordeum and Psathyrostachys, respectively, while the Xm in Hystrix and Leymus has a complex relationship with the E or St genomes. According to the genomic system of classification in Tiritceae, it is reasonable to treat Hystrix patula as Elymus hystrix L, and the other species of Hystrix as species of a section of Leymus, Leymus Sect. Hystrix.  相似文献   

11.
Interspecies hybridization has been frequently observed in the tribe Triticeae. Natural hybridization between Kengyilia and Roegneria or Elymus species has not been reported as yet. Several sterile wheatgrass individuals exhibiting intermediately morphological traits between Kengyilia and Roegneria or Elymus species were identified in the meadow of Sichuan and Gansu provinces in China, suggesting their natural hybrid origin. The putative hybrids were analyzed by using the sequences of ITS and trnH-psbA together with cytological observation in order to assess the origin of hybrids. Both ITS and cytological data revealed the evidence of allopolyploid origin and confirmed the presence of StStYYP and StStYYHP genomes in the putative natural hybrids. The data suggest that the StStYYP hybrid originated from hybridization between Kengyilia and Roegneria and the hybrid with StStYYHP originated from hybridization between Kengyilia and Elymus. Chloroplast sequence data demonstrated that K. rigidula and K. melanthera were the likely maternal donors in the hybridization events.  相似文献   

12.
To evaluate the phylogenetic relationships of species in Pseudoroegneria and related genera, the nuclear ribosomal internal transcribed spacer (ITS) sequences were analyzed for eighteen Pseudoroegneria (St), two Elytrigia (E e St), two Douglasdeweya (StP), three Lophopyrum (E e and E b ), three Agropyron (P), two Hordeum (H), two Australopyrum (W) and two Psathyrostachys (Ns) accessions. The main results were: (i) Pseudoroegneria gracillima, P. stipifolia, P. cognata and P. strigosa (2x) were in one clade, while P. libanotica, P. tauri and P. spicata (2x) were in the other clade, indicating there are the differentiations of St genome among diploid Pseudoroegneria species; (ii) P. geniculata ssp. scythica, P. geniculata ssp. pruinifera, Elytriga caespitosa and Et. caespitosa ssp. nodosa formed the E e St clade with 6-bp indel in ITS1 regions; and (iii) Douglasdeweya wangii, D. deweyi, Agropyron cristatum and A. puberulum comprised the P clade. It is unreasonable to treat P. geniculata ssp. scythica and P. geniculata ssp. pruinifera as the subspecies of P. geniculata, and they should be transferred to a new genus Trichopyrum, which consists of species with E e St genomes. It is also suggested that one of the diploid donor of D. wangii and D. deweyi is derived from Agropyron species, and it is reasonable to treat tetraploid species with StP genomes into Douglasdeweya.  相似文献   

13.
To evaluate the phylogenetic relationships of questionable tetraploid species Roegneria alashanica Keng, Roegneria magnicaespes (D.F. Cui) L.B. Cai, Roegneria elytrigioides C. Yen et J.L. Yang, Roegneria grandis Keng and Pseudoroegneria geniculata (Trin.) Á. Löve, the single copy sequences of the plastid acetyl-CoA carboxylase gene (Acc1) were analyzed among the five species and the related diploid and tetraploid species. The results indicated that: (a) R. alashanica contained one set of modified St genome which was closely related to the Ee genome, and the other set of genome was closely related to the P genome; (b) R. magnicaespes contained one set of St genome, the other set of genome might be closely related to the P genome. There are close affinities between R. magnicaespes and R. alashanica; (c) R. elytrigioides contained two sets of St genomes, and it is reasonable to be treated as Pseudoreogneria elytrigioides (C. Yen et J.L. Yang) B.R. Lu; (d) the genome of R. grandis should be designed as StgY. The Stg genome was a differentiated form of the St genome in Pseudoroegneria and was homoeologous with the Y genome in Roegneria; (e) the genomic constitution of P. geniculata was similar to that of R. magnicaespes and R. alashanica and distinctly related to P. geniculata ssp. scythica (EeSt). They should be treated as different species in different genera; and (f) the Y genome was possibly originated from the St genome, and was sister to the St, Ee, Eb and W genomes.  相似文献   

14.
Twelve species, including three Hystrix species, five Leymus species, Hordeum bogdanii, Pseudoroegneria spicata, Psathyrostachys huashanica, and Roegneria ciliaris, were used for expressed sequence tag-polymerase chain reaction (EST-PCR) assay. A total of 125 products were amplified by 72 sets of EST-PCR markers developed in barley, among which 106 (84.8%) products were found to be polymorphic. Each EST-PCR marker produced 0–6 polymorphic bands, with an average of 1.47. The relationship between H. duthiei s...  相似文献   

15.
Interspecific and intergeneric hybridizations were carried out in an investigation of genome homology between Hystrix patula and other species of Hystrix , as well as the generic relationships between H. patula and its related species. Meiotic pairing in the hybrids H. patula  ×  H. duthiei ssp. longearistata (Ns–), H. patula  ×  Pseudoroegneria spicata (St), H. patula  ×  Pse. libanotica (St), Elymus sibiricus (StH) ×  H. patula , H. patula  ×  E. wawawaiensis (StH), Roegneria ciliaris (StY) ×  H. patula , H. patula  ×  R. grandis (StY), and H. patula  ×  Psathyrostachys huashanica (Nsh) averaged 1.32, 6.53, 5.62, 10.08, 12.83, 3.57, 3.98, and 0.29 bivalents per cell, respectively. The results indicate that: (1) H. patula has no genome homology with H. duthiei ssp. longearistata or the Ns genome from Psathyrostachys ; (2) H. patula contains the same StH genomes as the Elymus species, and the St genome is homologous to the genome of Pse. spicata and Pse. libanotica ; and (3) H. patula has a low genome affinity with the StY genomes of Roegneria . Therefore, it is reasonable to treat H. patula Moench as E. hystrix L.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 213–219.  相似文献   

16.
To reveal the maternal donor of species in genus Kengyilia, the chloroplast trnL-F sequences of 14 Kengyilia species and several related diploid species were analyzed by using Maximum Parsimony (MP) and Bayesian Inference (BI) methods. The species in Kengyilia were clustered in different clades, which indicated that Agropyron (P) is the likely maternal genome donor to Kengyilia melanthera, K. mutica and K. thoroldiana, while the maternal donor to Kengyilia batalinii, K. nana, K. kokonorica, K. kaschgarica, K. hirsuta, K. alatavica, K. gobicola, K. zhaosuensis, K. rigidula, K. longiglumis and K. grandiglumis was St or Y Roegneria genome.  相似文献   

17.
Homoploid hybrid speciation, the origin of a hybrid species without change in chromosome number, is currently considered to be a rare form of speciation. In the present study, we examined the phylogenetic origin of Hippophaë gyantsensis, a diploid species occurring in the western Qinghai–Tibet Plateau. Some of its morphological and molecular traits suggest a close relationship to H. rhamnoides ssp. yunnanensis while others indicate H. neurocarpa. We conducted phylogenetic analyses of sequence data of two maternally inherited chloroplast (cp) DNA fragments and the bi‐parentally inherited nuclear ribosomal internal transcribed spacer (ITS) from 17 populations of H. gyantsensis, 15 populations of H. rhamnoides ssp. yunnanensis and 27 populations of H. neurocarpa across their distributional ranges, and modelled the niche differentiation of the three taxa. Multiple lines of evidence suggested that H. gyantsensis is a morphologically stable, genetically independent and ecologically distinct species. The inconsistent phylogenetic placements of the H. gyantsensis clade that comprised the dominant cpDNA haplotypes and ITS ribotypes suggested a probable diploid hybrid origin from multiple crosses between H. rhamnoides ssp. yunnanensis and H. neurocarpa. This tentative hypothesis is more parsimonious than alternative explanations according to the data available, although more evidence based on further testing is needed.  相似文献   

18.
To investigate the phylogenetic relationships among species with awnless lemmas in Roegneria and their related diploid genera, the possible genomic constitution and genome donor of species with awnless lemmas in Roegneria, phylogenetic analyses of disrupted meiotic cDNA (DMC1) sequences were investigated in this study. The results showed that: (1) Roegneria alashanica-1 grouped with the Y-type sequences and Roegneria alashanica-2 grouped with the St-type sequences, confirming that Roegneria alashanica has the StY genomes. (2) Roegneria grandis-1 grouped with the Y-type sequences and Roegneria grandis-2 grouped with the St-type sequences, confirming that Roegneria grandis has the StgY genomes, where the St genome from R. grandis is different from the St genome but is homologous with the Y genome. (3) Two Roegneria elytrigioides sequences grouped with the St-type sequences, confirming that Roegneria elytrigioides has the St1St2 genomes and should therefore be classified as Pseudoroegneria elytrigioides. (4) We prefer the suggestion that the Y genome is closely related to the St genome, however, the data do not certify that the St and Y genomes have the same origin.  相似文献   

19.
Based on 100 species representative of the four genera, we scored 290 herbarium specimens for a number of morphological characters. The data were subjected to canonical discriminant analysis using characters different from those in the identification key to these genera byBaum, Yen, andYang (1991). These characters collectively support the four groupsAgropyron, Kengyilia, Roegneria, andElymus as previously defined. The four groups are also supported by the linear discriminant function with an overall rate of 83% correct classification. Length of lemma awn was found to be an additional diagnostic character asAgropyron andKengyilia have lemma awns shorter than 5 mm, whereasRoegneria andElymus have longer lemma awns with very few exceptions. Length of glume awns is also a useful supplementary generic diagnostic.Agropyron andElymus have glume awns, whereas the majority of species ofKengyilia and more than half of the species ofRoegneria lack them. If a glume awn is present it is usually not longer than 1 mm.  相似文献   

20.
Species of the genus Elymus are closely related to some important cereal crops and may thus serve as potential alien genetic resources for the improvement of these crops. E. humidus is indigenous to Japan and is well adapted to a humid climate. However, the phylogenetic and evolutionary relationships between E. humidus and other Elymus species are unclear. To elucidate these relationships, we examined the sequences of three non-coding regions of chloroplast DNA (cpDNA) and the amplified fragment length polymorphism (AFLP) variation of nuclear DNA in E. humidus and other related species. A total of 15 sequence mutations from the three non-coding regions, trnL-trnF, trnF-ndhJ(C), and atpB-rbcL, covering approximately 1,800 bp, were detected in the Elymus species. A phylogenic tree resulting from the cpDNA sequence data revealed that all the species containing the St nuclear genome (St, StH, StY, and StHY) formed a well-supported clade that is remote from the Hordeum species (H). This result strongly supports the finding that Pseudoroegneria is the maternal genome donor to the genus Elymus. In addition, E. humidus showed the closest relationship with the cpDNA genome of the Pseudoroegneria species. The AFLP analysis detected 281 polymorphic bands with 11 AFLP primer combinations. The AFLP result showed that E. humidus is relatively closer to E. tsukushiensis. However, the cpDNA sequencing results indicated that E. humidus and E. tsukushiensis have different cytoplasmic origins. Our results suggest that the evolutionary process between E. humidus and E. tsukushiensis is not monophyletic, although the two species have similar morphological characters and adaptability.Communicated by J. Dvorak  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号