首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro translation systems are used to investigate translational mechanisms and to synthesize proteins for characterization. Most available mammalian cell-free systems have reduced efficiency due to decreased translation initiation caused by phosphorylation of the initiation factor eIF2alpha on Ser51. We describe here a novel cell-free protein synthesis system using extracts from cultured mouse embryonic fibroblasts that are homozygous for the Ser51 to- Ala mutation in eIF2alpha (A/A cells). The translation efficiency of a capped and polyadenylated firefly luciferase mRNA in A/A cell extracts was 30-fold higher than in wild-type extracts. Protein synthesis in extracts from A/A cells was active for at least 2 h and generated up to 20 microg/mL of luciferase protein. Additionally, the A/A cell-free system faithfully recapitulated the selectivity of in vivo translation for mRNA features; translation was stimulated by a 5'-end cap (m7GpppN) and a 3'-end poly(A) tail in a synergistic manner. The system also showed similar efficiencies of cap-dependent and IRES-mediated translation (EMCV IRES). Significantly, the A/A cell-free system supported the post-translational modification of proteins, as shown by glycosylation of the HIV type-1 gp120 and cleavage of the signal peptide from beta-lactamase. We propose that cell-free systems from A/A cells can be a useful tool for investigating mechanisms of mammalian mRNA translation and for the production of recombinant proteins for molecular studies. In addition, cell-free systems from differentiated cells with the Ser51Ala mutation should provide a means for investigating cell type-specific features of protein synthesis.  相似文献   

2.
3.
As the molecular processes of complex cell stress signaling pathways are defined, the subsequent challenge is to elucidate how each individual event influences the final biological outcome. Phosphorylation of the translation initiation factor 2 (eIF2alpha)atSer(51) is a molecular signal that inhibits translation in response to activation of any of four diverse eIF2alpha stress kinases. We used gene targeting to replace the wild-type Ser(51) allele with an Ala in the eIF2alpha gene to test the hypothesis that translational control through eIF2alpha phosphorylation is a central death stimulus in eukaryotic cells. Homozygous eIF2alpha mutant mouse embryo fibroblasts were resistant to the apoptotic effects of dsRNA, tumor necrosis factor-alpha, and serum deprivation. TNFalpha treatment induced eIF2alpha phosphorylation and activation of caspase 3 primarily through the dsRNA-activated eIF2alpha kinase PKR. In addition, expression of a phospho-mimetic Ser(51) to Asp mutant eIF2alpha-activated caspase 3, indicating that eIF2alpha phosphorylation is sufficient to induce apoptosis. The proapoptotic effects of PKR-mediated eIF2alpha phosphorylation contrast with the anti-apoptotic response upon activation of the PKR-related endoplasmic reticulum eIF2alpha kinase, PERK. Therefore, divergent fates of death and survival can be mediated through phosphorylation at the same site within eIF2alpha. We propose that eIF2alpha phosphorylation is fundamentally a death signal, yet it may promote either death or survival, depending upon coincident signaling events.  相似文献   

4.
There are a growing number of reports on the beneficial effects of subphysiological temperature in vitro culturing (27–35°C) of mammalian cells on recombinant protein yield. However, this effect is not conserved across cell lines and target products, and our understanding of the molecular mechanism(s) responsible for increased recombinant protein yield upon reduced temperature culturing of mammalian cells is poor. What is known is that mammalian cells respond to cold-shock by attenuating global cap-dependent translation. Here, we have investigated the hypothesis that the cap-dependent attenuation of mRNA translation upon cold-stress of in vitro-cultured mammalian cells can be prevented, or at least alleviated, by overexpressing mutant translation initiation factors in Chinese hamster ovary and HeLa cells. We have shown that the transient coexpression of either an eIF2αSer51→Ala51 mutant or an eIF4ESer209→Glu209 mutant with firefly luciferase affects luciferase expression levels in a cell line and temperature dependent manner. Further, regardless of the coexpression of initiation factors, transient reporter gene expression was enhanced at subphysiological temperatures (<37°C), suggesting that reduced temperature cultivation can be used to improve the yield of recombinant protein during transient expression. The implications of these results upon cell engineering strategies involving manipulation of the translational apparatus for the enhancement of recombinant protein synthesis upon cold-shock are discussed. Joint first authors who contributed equally to this work  相似文献   

5.
Four stress-responsive protein kinases, including GCN2 and PKR, phosphorylate eukaryotic translation initiation factor 2alpha (eIF2alpha) on Ser51 to regulate general and gene-specific protein synthesis. Phosphorylated eIF2 is an inhibitor of its guanine nucleotide exchange factor, eIF2B. Mutations that block translational regulation were isolated throughout the N-terminal OB-fold domain in Saccharomyces cerevisiae eIF2alpha, including those at residues flanking Ser51 and around 20 A away in the conserved motif K79GYID83. Any mutation at Glu49 or Asp83 blocked translational regulation; however, only a subset of these mutations impaired Ser51 phosphorylation. Substitution of Ala for Asp83 eliminated phosphorylation by GCN2 and PKR both in vivo and in vitro, establishing the critical contributions of remote residues to kinase-substrate recognition. In contrast, mutations that blocked translational regulation but not Ser51 phosphorylation impaired the binding of eIF2B to phosphorylated eIF2alpha. Thus, two structurally distinct effectors of eIF2 function, eIF2alpha kinases and eIF2B, have evolved to recognize the same surface and overlapping determinants on eIF2alpha.  相似文献   

6.
Stress imposed on the endoplasmic reticulum (ER) induces the phosphorylation of the alpha-subunit of the eukaryotic initiation factor 2 (eIF2) on Ser51. This results in transient inhibition of general translation initiation while concomitantly activating a signaling pathway that promotes the expression of genes whose products improve ER function. Conversely, dephosphorylation of eIF2alphaSer51 is accomplished by protein phosphatase 1 (PP1c) complexes containing either the protein CReP or GADD34, which target PP1c to eIF2. Here, we demonstrate that the Src homology (SH) domain-containing adaptor Nck is a key component of a molecular complex that controls eIF2alpha phosphorylation and signaling in response to ER stress. We show that overexpression of Nck decreases basal and ER stress-induced eIF2alpha phosphorylation and the attendant induction of ATF4 and CHOP. In contrast, we demonstrate that the mouse embryonic fibroblasts lacking both isoforms of Nck (Nck1-/-Nck2-/-) show higher levels of eIF2alpha phosphorylation and premature induction of ATF4, CHOP, and GADD34 in response to ER stress and finally, are more resistant to cell death induced by prolonged ER stress conditions. We establish that a significant amount of Nck protein localizes at the ER and is in a complex with eIF2 subunits. Further analysis of this complex revealed that it also contains the Ser/Thr phosphatase PP1c, its regulatory subunit CReP, and dephosphorylates eIF2alpha on Ser51 in vitro. Overall, we demonstrate that Nck as a component of the CReP/PP1c holophosphatase complex contributes to maintain eIF2alpha in a hypophosphorylated state. In this manner, Nck modulates translation and eIF2alpha signaling in response to ER stress.  相似文献   

7.
Two isoforms of the translation initiation factor eIF4G, eIF4GI and eIF4GII, have been described in eukaryotic cells. The exact function of each isoform during the initiation of protein synthesis is still under investigation. We have developed an efficient and reliable method of expressing poliovirus 2Apro, which differentially proteolyzes eIF4GI and eIF4GII in a time- and dose-dependent manner. This system is based on the electroporation of an in vitro transcribed mRNA that contains the encephalomyocarditis virus internal ribosome entry site followed by the sequence of poliovirus 2Apro. In contrast to HeLa cells, expression of this protease in BHK-21 cells induces delayed hydrolysis kinetics of eIF4GI with respect to eIF4GII. Moreover, under these conditions the polyadenylate binding protein is not cleaved. Interestingly, translation of de novo synthesized luciferase mRNA is highly dependent on eIF4GI integrity, whereas ongoing translation is inhibited at the same time as eIF4GII cleavage. Moreover, reinitiation of a preexisting mRNA translation after polysome run-off is dependent on the integrity of eIF4GII. Notably, de novo translation of heat shock protein 70 mRNA depends little on eIF4GI integrity but is more susceptible to eIF4GII hydrolysis. Finally, translation of an mRNA containing encephalomyocarditis virus internal ribosome entry site when the two isoforms of eIF4G are differentially hydrolyzed has been examined.  相似文献   

8.
The role of eukaryotic initiation factor 2 (eIF-2) phosphorylation in translational control has been demonstrated in vivo by overexpressing variant forms of eIF-2 alpha that are not phosphorylated. COS-1 cells transiently transfected with expression vectors for human eIF-2 alpha contain 10-20-fold more eIF-2 alpha subunit than the endogenous COS cell eIF-2 trimeric complex. Expression of the variant form of eIF-2 alpha, Ser51Asp, where Asp replaces Ser51, causes inhibition of protein synthesis, whereas the Ser48Asp variant does not. When either Ser48 or Ser51 is replaced by Ala, the variants stimulate dihydrofolate reductase synthesis when the eIF-2 alpha kinase, DAI, is activated. In order to elucidate these mechanisms, we have separated eIF-2 trimeric complexes from free overexpressed eIF-2 alpha subunits by fast protein liquid chromatography Superose chromatography. Pulse-labeled cells transfected with wild-type or variant DNAs produced eIF-2 preparations with greater than 10-fold higher specific radioactivity in the alpha-subunit compared to the gamma-subunit, thus demonstrating that the human eIF-2 alpha produced from the plasmids readily exchanges into COS cell eIF-2 complexes. Both wild-type and Ser48Ala variant forms of the free 2 alpha-subunit, further purified by MonoQ chromatography, are poor substrates for the heme-regulated eIF-2 alpha kinase, HRI, but are good substrates for double-stranded RNA-activated inhibitor in vitro; the Ser51Ala variant subunit is not phosphorylated by either kinase. None of the purified free eIF-2 alpha subunits inhibits phosphorylation of eIF-2 in vitro, even at up to 8-fold molar excess. Examination of the extent of eIF-2 alpha phosphorylation in the COS cell eIF-2 complexes by two-dimensional polyacrylamide gel electrophoresis shows that the stimulation of dihydrofolate reductase synthesis by the Ser51Ala variant is most readily explained by failure of eIF-2 to be phosphorylated. Stimulation by the Ser48Ala variant appears to occur by mitigation of the effect of phosphorylation at Ser51 since the double variant, Ser48Ala-Ser51Asp, inhibits protein synthesis less than the single variant Ser51Asp. The evidence argues strongly against there being a second site of phosphorylation involved in translational repression.  相似文献   

9.
Phosphoinositide-3 kinase (PI3K) plays an important role in signal transduction in response to a wide range of cellular stimuli involved in cellular processes that promote cell proliferation and survival. Phosphorylation of the alpha subunit of the eukaryotic translation initiation factor eIF2 at Ser51 takes place in response to various types of environmental stress and is essential for regulation of translation initiation. Herein, we show that a conditionally active form of the eIF2alpha kinase PKR acts upstream of PI3K and turns on the Akt/PKB-FRAP/mTOR pathway leading to S6 and 4E-BP1 phosphorylation. Also, induction of PI3K signaling antagonizes the apoptotic and protein synthesis inhibitory effects of the conditionally active PKR. Furthermore, induction of the PI3K pathway is impaired in PKR(-/-) or PERK(-/-) mouse embryonic fibroblasts (MEFs) in response to various stimuli that activate each eIF2alpha kinase. Mechanistically, PI3K signaling activation is indirect and requires the inhibition of protein synthesis by eIF2alpha phosphorylation as demonstrated by the inactivation of endogenous eIF2alpha by small interfering RNA or utilization of MEFs bearing the eIF2alpha Ser51Ala mutation. Our data reveal a novel property of eIF2alpha kinases as activators of PI3K signaling and cell survival.  相似文献   

10.
Expanded polyglutamine 72 repeat (polyQ72) aggregates induce endoplasmic reticulum (ER) stress-mediated cell death with caspase-12 activation and vesicular formation (autophagy). We examined this relationship and the molecular mechanism of autophagy formation. Rapamycin, a stimulator of autophagy, inhibited the polyQ72-induced cell death with caspase-12 activation. PolyQ72, but not polyQ11, stimulated Atg5-Atg12-Atg16 complex-dependent microtubule-associated protein 1 (MAP1) light chain 3 (LC3) conversion from LC3-I to -II, which plays a key role in autophagy. The eucaryotic translation initiation factor 2 alpha (eIF2alpha) A/A mutation, a knock-in to replace a phosphorylatable Ser51 with Ala51, and dominant-negative PERK inhibited polyQ72-induced LC3 conversion. PolyQ72 as well as ER stress stimulators upregulated Atg12 mRNA and proteins via eIF2alpha phosphorylation. Furthermore, Atg5 deficiency as well as the eIF2alpha A/A mutation increased the number of cells showing polyQ72 aggregates and polyQ72-induced caspase-12 activation. Thus, autophagy formation is a cellular defense mechanism against polyQ72-induced ER-stress-mediated cell death by degrading polyQ72 aggregates, with PERK/eIF2alpha phosphorylation being involved in polyQ72-induced LC3 conversion.  相似文献   

11.
Ultraviolet light (UV) inhibits translation initiation through activation of kinases that phosphorylate the α-subunit of eukaryotic initiation factor 2 (eIF2α). Two eIF2α kinases, PERK and GCN2, are known to phosphorylate the Serine-51 of eIF2α in response to UV-irradiation. In this report, we present evidence that phosphorylation of eIF2α plays a role in UV-induced apoptosis. Our data show that wild-type mouse embryo fibroblasts (MEFs/s) are less sensitive to UV-induced apoptosis than MEFA/A cells in which the phosphorylation site, Ser51, of eIF2α is replaced with a non-phosphorylatable Ala (Ser51Ala). PARP expression in MEFA/A cells is reduced without being cleaved after UV-irradiation. In contrast, PARP is cleaved without a significant decrease in parental PARP in MEFS/S cells after UV-irradiation. Our data also show that MEFGCN2−/− cells, in which GCN2 is knocked out, are more sensitive to UV-irradiation, agreeing with the observation from MEFA/A cells. However, MEFPERK−/− cells, in which PERK is knocked out, are less sensitive to UV-irradiation. In addition, MCF-7-PERKΔC cells, which are stably transfected with a kinase domain deleted mutant of PERK (PERKΔC), are more resistant to UV-induced apoptosis than parental MCF-7 cells. Overexpression of wild-type PERK sensitizes MCF-7 cells to UV-induced apoptosis without directly inducing cell death. These results suggest that the level of eIF2α phosphorylation impacts PARP expression upon UV-irradiation. The eIF2α kinases may mediate UV-induced apoptosis via an eIF2α dependent or independent signaling pathway.  相似文献   

12.
The family of eukaryotic initiation factor 2alpha (eIF2alpha) protein kinases plays an important role in regulating cellular protein synthesis under stress conditions. The mammalian kinases PKR and HRI and the yeast kinase GCN2 specifically phosphorylate Ser-51 on the alpha subunit of the translation initiation factor eIF2. By using an in vivo assay in yeast, the substrate specificity of these three eIF2alpha kinases was examined by substituting Ser-51 in eIF2alpha with Thr or Tyr. In yeast, phosphorylation of eIF2 inhibits general translation but derepresses translation of the GCN4 mRNA. All three kinases phosphorylated Thr in place of Ser-51 and were able to regulate general and GCN4-specific translation. In addition, both PKR and HRI were found to phosphorylate eIF2alpha-S51Y and stimulate GCN4 expression. Isoelectric focusing analysis of eIF2alpha followed by detection using anti-eIF2alpha and anti-phosphotyrosine-specific antibodies demonstrated that PKR and HRI phosphorylated eIF2alpha-S51Y on Tyr in vivo. These results provide new insights into the substrate recognition properties of the eIF2alpha kinases, and they are intriguing considering the potential for alternate substrates for PKR in cellular signaling and growth control pathways.  相似文献   

13.
Dar AC  Dever TE  Sicheri F 《Cell》2005,122(6):887-900
In response to binding viral double-stranded RNA byproducts within a cell, the RNA-dependent protein kinase PKR phosphorylates the alpha subunit of the translation initiation factor eIF2 on a regulatory site, Ser51. This triggers the general shutdown of protein synthesis and inhibition of viral propagation. To understand the basis for substrate recognition by and the regulation of PKR, we determined X-ray crystal structures of the catalytic domain of PKR in complex with eIF2alpha. The structures reveal that eIF2alpha binds to the C-terminal catalytic lobe while catalytic-domain dimerization is mediated by the N-terminal lobe. In addition to inducing a local unfolding of the Ser51 acceptor site in eIF2alpha, its mode of binding to PKR affords the Ser51 site full access to the catalytic cleft of PKR. The generality and implications of the structural mechanisms uncovered for PKR to the larger family of four human eIF2alpha protein kinases are discussed.  相似文献   

14.
Type 2 diabetes is a disorder of hyperglycemia resulting from failure of beta cells to produce adequate insulin to accommodate an increased metabolic demand. Here we show that regulation of mRNA translation through phosphorylation of eukaryotic initiation factor 2 (eIF2alpha) is essential to preserve the integrity of the endoplasmic reticulum (ER) and to increase insulin production to meet the demand imposed by a high-fat diet. Accumulation of unfolded proteins in the ER activates phosphorylation of eIF2alpha at Ser51 and inhibits translation. To elucidate the role of this pathway in beta-cell function we studied glucose homeostasis in Eif2s1(tm1Rjk) mutant mice, which have an alanine substitution at Ser51. Heterozygous (Eif2s1(+/tm1Rjk)) mice became obese and diabetic on a high-fat diet. Profound glucose intolerance resulted from reduced insulin secretion accompanied by abnormal distension of the ER lumen, defective trafficking of proinsulin, and a reduced number of insulin granules in beta cells. We propose that translational control couples insulin synthesis with folding capacity to maintain ER integrity and that this signal is essential to prevent diet-induced type 2 diabetes.  相似文献   

15.
Translational control by specific eIF2alpha phosphorylation on serine 51 has been characterized in all eukaryotes with the significant exception of plants. In order to evaluate the capability of plant eIF2alpha to functionally control translation, the wild type (51S) and a nonphosphorylatable mutant (51A) of wheat eIF2alpha were expressed in a yeast genetic system. Expression of either wheat protein did not handicap growth under conditions that repress the eIF2alpha phosphorylation pathway. However, under conditions that induce specific eIF2alpha phosphorylation only strains expressing wheat 51S were able to grow between 2 and 4 days. Growth was dependent upon activity of yeast eIF2alpha kinase GCN2 and resulted in the increased translation of GCN4. The association between plant eIF2alpha and yeast eIF2B is supported by their specific coimmunoprecipitation from transgenic yeast cells. These data support the similarity among eukaryotic translational initiation processes and strengthen the concept that plants may contain an eIF2alpha phosphorylation pathway.  相似文献   

16.
Phosphorylation of eukaryotic translation initiation factor 2alpha (eIF2alpha) on serine 51 is effected by specific stress-activated protein kinases. eIF2alpha phosphorylation inhibits translation initiation promoting a cytoprotective gene expression program known as the integrated stress response (ISR). Stress-induced activation of GADD34 feeds back negatively on this pathway by promoting eIF2alpha dephosphorylation, however, GADD34 mutant cells retain significant eIF2alpha-directed phosphatase activity. We used a somatic cell genetic approach to identify a gene encoding a novel regulatory subunit of a constitutively active holophosphatase complex that dephosphorylates eIF2alpha. RNAi of this gene, which we named constitutive repressor of eIF2alpha phosphorylation (CReP, or PPP1R15B), repressed the constitutive eIF2alpha-directed phosphatase activity and activated the ISR. CReP RNAi strongly protected mammalian cells against oxidative stress, peroxynitrite stress, and more modestly against accumulation of malfolded proteins in the endoplasmic reticulum. These findings suggest that therapeutic inhibition of eIF2alpha dephosphorylation by targeting the CReP-protein-phosphatase-1 complex may be used to access the salubrious qualities of the ISR.  相似文献   

17.
Exposure to ultraviolet light can cause inflammation, premature skin aging, and cancer. UV irradiation alters the expression of multiple genes that encode functions to repair DNA damage, arrest cell growth, and induce apoptosis. In addition, UV irradiation inhibits protein synthesis, although the mechanism is not known. In this report, we show that UV irradiation induces phosphorylation of eukaryotic translation initiation factor 2 on the alpha-subunit (eIF2alpha) and inhibits protein synthesis in a dosage- and time-dependent manner. The UV-induced phosphorylation of eIF2alpha was prevented by the overexpression of a non-phosphorylatable mutant of eIF2alpha (S51A). PERK is an eIF2alpha protein kinase localized to the endoplasmic reticulum that is activated by the accumulation of unfolded proteins in the endoplasmic reticulum. Expression of trans-dominant-negative mutants of PERK also prevented eIF2alpha phosphorylation upon UV treatment and protected from the associated translation attenuation. The luminal domain of dominant-negative mutant PERK formed heterodimers with endogenous PERK to inhibit the PERK signaling pathway. In contrast, eIF2alpha phosphorylation was not inhibited by overexpression of a trans-dominant-negative mutant kinase, PKR, supporting the theory that UV-induced eIF2alpha phosphorylation is specifically mediated by PERK. These results support a novel mechanism by which UV irradiation regulates translation via an endoplasmic reticulum-stress signaling pathway.  相似文献   

18.
Hypoxia profoundly influences tumor development and response to therapy. While progress has been made in identifying individual gene products whose synthesis is altered under hypoxia, little is known about the mechanism by which hypoxia induces a global downregulation of protein synthesis. A critical step in the regulation of protein synthesis in response to stress is the phosphorylation of translation initiation factor eIF2alpha on Ser51, which leads to inhibition of new protein synthesis. Here we report that exposure of human diploid fibroblasts and transformed cells to hypoxia led to phosphorylation of eIF2alpha, a modification that was readily reversed upon reoxygenation. Expression of a transdominant, nonphosphorylatable mutant allele of eIF2alpha attenuated the repression of protein synthesis under hypoxia. The endoplasmic reticulum (ER)-resident eIF2alpha kinase PERK was hyperphosphorylated upon hypoxic stress, and overexpression of wild-type PERK increased the levels of hypoxia-induced phosphorylation of eIF2alpha. Cells stably expressing a dominant-negative PERK allele and mouse embryonic fibroblasts with a homozygous deletion of PERK exhibited attenuated phosphorylation of eIF2alpha and reduced inhibition of protein synthesis in response to hypoxia. PERK(-/-) mouse embryo fibroblasts failed to phosphorylate eIF2alpha and exhibited lower survival after prolonged exposure to hypoxia than did wild-type fibroblasts. These results indicate that adaptation of cells to hypoxic stress requires activation of PERK and phosphorylation of eIF2alpha and suggest that the mechanism of hypoxia-induced translational attenuation may be linked to ER stress and the unfolded-protein response.  相似文献   

19.
Multiple herpes simplex virus type 1 functions control translation by regulating phosphorylation of the initiation factor eIF2 on its alpha subunit. Both of the two known regulators, the gamma(1)34.5 and Us11 gene products, are produced late in the viral life cycle, although the gamma(1)34.5 gene is expressed prior to the gamma(2) Us11 gene, as gamma(2) genes require viral DNA replication for their expression while gamma(1) genes do not. The gamma(1)34.5 protein, through a GADD34-related domain, binds a cellular phosphatase (PP1alpha), maintaining pools of active, unphosphorylated eIF2. Infection of a variety of cultured cells with a gamma(1)34.5 mutant virus results in the accumulation of phosphorylated eIF2alpha and the inhibition of translation prior to the completion of the viral lytic program. Ectopic, immediate-early Us11 expression prevents eIF2alpha phosphorylation and the inhibition of translation observed in cells infected with a gamma(1)34.5 mutant by inhibiting activation of the cellular kinase PKR and the subsequent phosphorylation of eIF2alpha; however, a requirement for the Us11 protein, produced in its natural context as a gamma(2) polypeptide, remains to be demonstrated. To determine if Us11 regulates late translation, we generated two Us11 null viruses. In cells infected with a Us11 mutant, elevated levels of activated PKR and phosphorylated eIF2alpha were detected, viral translation rates were reduced 6- to 7-fold, and viral replication was reduced 13-fold compared to replication in cells infected with either wild-type virus or a virus in which the Us11 mutation was repaired. This establishes that the Us11 protein is critical for proper late translation rates. Moreover, it demonstrates that the shutoff of protein synthesis observed in cells infected with a gamma(1)34.5 mutant virus, previously ascribed solely to the gamma(1)34.5 mutation, actually results from the combined loss of gamma(1)34.5 and Us11 functions, as the gamma(2) Us11 mRNA is not translated in cells infected with a gamma(1)34.5 mutant.  相似文献   

20.
Tristetraprolin (TTP) regulates the expression of AU-rich element-containing mRNAs through promoting the degradation and repressing the translation of target mRNA. While the mechanism for promoting target mRNA degradation has been extensively studied, the mechanism underlying translational repression is not well established. Here, we show that TTP recruits eukaryotic initiation factor 4E2 (eIF4E2) to repress target mRNA translation. TTP interacted with eIF4E2 but not with eIF4E. Overexpression of eIF4E2 enhanced TTP-mediated translational repression, and downregulation of endogenous eIF4E2 or overexpression of a truncation mutant of eIF4E2 impaired TTP-mediated translational repression. Overexpression of an eIF4E2 mutant that lost the cap-binding activity also impaired TTP''s activity, suggesting that the cap-binding activity of eIF4E2 is important in TTP-mediated translational repression. We further show that TTP promoted eIF4E2 binding to target mRNA. These results imply that TTP recruits eIF4E2 to compete with eIF4E to repress the translation of target mRNA. This notion is supported by the finding that downregulation of endogenous eIF4E2 increased the production of tumor necrosis factor alpha (TNF-α) protein without affecting the mRNA levels in THP-1 cells. Collectively, these results uncover a novel mechanism by which TTP represses target mRNA translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号