首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of triacylglycerols in leaves   总被引:2,自引:0,他引:2  
Wuling Lin  David J. Oliver   《Plant science》2008,175(3):233-237
Triacylglycerol (TAG) levels of up to 5 mg (g fresh weight)−1 were identified in leaves of 13 plants. The fatty acid composition of the leaf TAG was distinct from the total leaf fatty acids that predominately arose from galactolipids in the thylakoid membranes and was very similar to the TAG found in the seeds. The exception was in senescent crabapple leaves where the TAG composition was more similar to that of the total leaf suggesting that this TAG might arise from fatty acids released from membrane lipids. In crabapple leaves the TAG was metabolically active with higher levels at the end of the photoperiod than the beginning. 14C-acetate was also incorporated into leaf TAG more rapidly in the light than dark. The rate of TAG accumulation in the light was about 6% of the net photosynthetic rate. These observations suggest that TAG serves along with carbohydrates as a diurnal photosynthetic store in these plants.  相似文献   

2.
Dietary triacylglycerols (TAGs) are the major lipid components in the human diet and they are carriers of energy as well as important fatty acids. Many factors affect the digestion and absorption of TAGs. Evidence is accumulating that, in addition to the overall fatty acid profile, the TAG structure and the species composition are of importance when considering the nutritional effects of a dietary fat. There is good evidence that in addition to its short-term effects in the intestine on absorption of fatty acids the TAG structure also has long-term effects resulting from differences in the profile of absorbed fatty acids. Observations on the different atherogenic potential of dietary fats have given us a clear indication of the importance of the TAG structure for absorption of saturated fatty acids. In this context, one may focus on the effects of the structure of dietary fats as such, or one may speculate additionally on the possibilities of modifying the structure of fats to affect their absorption and the distribution of the fatty acids in the body after digestion and uptake. In this review we will summarize diverse aspects of TAG digestion and absorption, as well as the influences of the fatty acid composition and the intramolecular structure of dietary TAGs on their digestion and absorption.  相似文献   

3.
The chemical synthesis of pure triacylglycerol (TAG) regioisomers, that contain long chain polyunsaturated fatty acids, such as arachidonic acid (AA) or docosahexaenoic acid (DHA), and saturated fatty acids, such as lauric acid (La) or palmitic acid (P), at defined positions, is described. A single step methodology using (benzotriazol-1-yloxy)-tripyrrolidinophosphonium hexafluorophosphate (PyBOP), an activator of carboxyl group commonly used in peptide synthesis and occasionally used in carboxylic acid esterification, has been developed for structured TAG synthesis. Identification of the fatty acyl chains for each TAG species was confirmed by atmospheric pressure chemical ionisation mass spectrometry (APCI-MS) and fatty acid positional distribution was determined by (1)H and (13)C NMR spectra. The generic described procedures can be applied to a large variety of substrates and was used for the production of specific triacylglycerols of defined molecular structures, with high regioisomeric purity. Combination of MS and NMR was shown to be an efficient tool for structural analysis of TAG. In particular, some NMR signals were demonstrated to be regioisomer specific, allowing rapid positional analysis of LC-PUFA containing TAG.  相似文献   

4.
The fatty acid distribution in triacylglycerols (TAGs) is a factor that contributes to the intrinsic properties of oils from different species variants. Many hypotheses have been proposed to explain the specific distribution of fatty acids in the different naturally occurring oils. Currently, the 1,3-random-2-random theory is more or less accepted, but it has been widely shown that most vegetable oils do not behave randomly in the sn-1 and sn-3 stereochemical positions. For this reason, complex methodologies have been developed to analyze the fatty acid composition of the three stereochemical positions in TAGs. In this article, we propose that by calculating the asymmetric alpha coefficient, the stereochemical asymmetry of fatty acids in TAG molecular species can be defined. This coefficient reflects the relative content of fatty acids at the sn-1 and sn-3 positions and may overcome the problems found mainly with complex sn-1, sn-2, and sn-3 stereochemical analysis of fatty acids in TAG. The alpha coefficient is calculated from the fatty acid, sn-2 fatty acid, and TAG composition of the oil. Indeed, through this coefficient, it has been possible to show that, despite having the same overall content, the stearic acid distribution in the sn-1 and sn-3 positions is not random in some oils.  相似文献   

5.
Triacylglycerol (TAG) storage and turnover rates in the intact, beating rat heart were determined for the first time using dynamic mode (13)C- NMR spectroscopy to elucidate profound differences between hearts from diabetic rats (DR, streptozotocin treatment) and normal rats (NR). The incorporation of [2,4,6,8,10,12,14,16-(13)C(8)]palmitate into the TAG pool was monitored in isolated hearts perfused with physiological (0.5 mM palmitate, 5 mM glucose) and elevated substrate levels (1.2 mM palmitate, 11 mM glucose) characteristic of the diabetic condition. Surprisingly, although the normal hearts were enriched at a near-linear profile for >or=2 h before exponential characterization, exponential enrichment of TAG in diabetic hearts reached steady state after only 45 min. Consequently, TAG turnover rate was determined by fitting an exponential model to enrichment data rather than conventional two-point linear analysis. In the high-substrate group, both turnover rate (DR 820+/- 330, NR 190 +/-150 nmol.min(-1).g(-1) dry wt; P< 0.001) and [TAG] content (DR 78 +/-10, NR 32+/- 4 micromol/g dry wt; P< 0.001) were greater in the diabetic group. At lower substrate concentrations, turnover was greater in diabetics (DR 530+/-300, NR 160+/- 30; P<0.05). However, this could not be explained by simple mass action, because [TAG] content was similar between groups [DR 34+/- 7, NR 39+/- 9 micromol/g dry wt; not significant (NS)]. Consistent with exponential enrichment data, (13)C fractional enrichment of TAG was lower in diabetics (low- substrate groups: DR 4+/-1%, NR 10+/- 4%, P<0.05; high-substrate groups: DR 8+/- 3%, NR 14+/- 9%, NS), thereby supporting earlier speculation that TAG is compartmentalized in the diabetic heart.  相似文献   

6.
Plant triacylglycerols (TAGs), or vegetable oils, provide approximately 25% of dietary calories to humans and are becoming an increasingly important source of renewable bioenergy and industrial feedstocks. TAGs are assembled by multiple enzymes in the endoplasmic reticulum from building blocks that include an invariable glycerol backbone and variable fatty acyl chains. It remains a challenge to elucidate the mechanism of synthesis of hundreds of different TAG species in planta. One reason is the lack of an efficient analytical approach quantifying individual molecular species. Here we report a rapid and quantitative TAG profiling approach for Arabidopsis seeds based on electrospray ionization tandem mass spectrometry with direct infusion and multiple neutral loss scans. The levels of 93 TAG molecular species, identified by their acyl components, were determined in Arabidopsis seeds. Quantitative TAG pattern analyses revealed that the TAG assembly machinery preferentially produces TAGs with one elongated fatty acid. The importance of the selectivity in oil synthesis was consistent with an observation that an Arabidopsis mutant overexpressing a patatin‐like phospholipase had enhanced seed oil content with elongated fatty acids. This quantitative TAG profiling approach should facilitate investigations aimed at understanding the biochemical mechanisms of TAG metabolism in plants.  相似文献   

7.
Maternal diabetes has been demonstrated to adversely affect oocyte quality in mouse oocytes. However, the potential molecular mechanisms are poorly understood. Here, we established a type I diabetic mouse model and detected the increased reactive oxygen species (ROS) levels and decreased Sirt3 expression in oocytes from diabetic mice. Furthermore, we found that forced expression of Sirt3 in diabetic oocytes significantly attenuates such an excessive production of ROS. The acetylation status of lysine 68 of superoxide dismutase (SOD2K68) is dependent on Sirt3 in oocytes. In line with this, SOD2K68 acetylation levels were markedly increased in diabetic oocytes, and Sirt3 overexpression could effectively suppress this tendency. Importantly, the deacetylation-mimetic mutant SOD2K68R is capable of partly preventing the oxidative stress in oocytes from diabetic mice. In conclusion, our findings support a model where Sirt3 plays a protective role against oxidative stress in oocytes exposed to maternal diabetes through deacetylating SOD2K68.  相似文献   

8.
Herein we describe a rapid, simple, and reliable method for the quantitative analysis and molecular species fingerprinting of triacylglycerides (TAG) directly from chloroform extracts of biological samples. Previous attempts at direct TAG quantitation by positive-ion electrospray ionization mass spectrometry (ESI/MS) were confounded by the presence of overlapping peaks from choline glycerophospholipids requiring chromatographic separation of lipid extracts prior to ESI/MS analyses. By exploiting the rapid loss of phosphocholine from choline glycerophospholipids, in conjunction with neutral-loss scanning for individual fatty acids, overlapping peaks in the ESI mass spectrum were deconvoluted generating a detailed molecular species fingerprint of individual TAG molecular species directly from chloroform extracts of biological samples. This method readily detects as little as 0.1 pmol of each TAG molecular species from chloroform extracts and is linear over a 1000-fold dynamic range. The sensitivity of individual TAG molecular species to ESI/MS/MS analyses correlated with the unsaturation index and inversely correlated with total aliphatic chain length of TAG. An algorithm was developed which identifies sensitivity factors, thereby allowing the rapid quantitation and molecular species fingerprinting of TAG molecular species directly from chloroform extracts of biological samples.  相似文献   

9.
Very-low-density lipoprotein (VLDL) and chylomicrons (CM) are major sources of fatty acid supply to the heart, but little is known about their metabolism in diabetic myocardium. To investigate this, working hearts isolated from control rats and diabetic rats 2 wk following streptozotocin (STZ) injection were perfused with control and diabetic lipoproteins. Analysis of the diabetic lipoproteins showed that both VLDL and CM were altered compared with control lipoproteins; both were smaller and had different apolipoprotein composition. Heparin-releasable lipoprotein lipase (HR-LPL) activity was increased in STZ-induced diabetic hearts, but tissue residual LPL activity was decreased; moreover, diabetic lipoproteins stimulated HR-LPL activity in both diabetic and control hearts. Diabetic hearts oxidized lipoprotein-triacylglycerol (TAG) to a significantly greater extent than controls (>80% compared with deposition as tissue lipid), and the oxidation rate of exogenous lipoprotein-TAG was increased significantly in diabetic hearts regardless of TAG source. Significantly increased intracardiomyocyte TAG accumulation was found in diabetic hearts, although cardiac mechanical function was not inhibited, suggesting that lipotoxicity precedes impaired cardiac performance. Glucose oxidation was significantly decreased in diabetic hearts; additionally, however, diabetic lipoproteins decreased glucose oxidation in diabetic and control hearts. These results demonstrate increased TAG-rich lipoprotein metabolism concomitant with decreased glucose oxidation in type 1 diabetic hearts, and the alterations in cardiac lipoprotein metabolism may be due to the properties of diabetic TAG-rich lipoproteins as well as the diabetic state of the myocardium. These changes were not related to cardiomyopathy at this early stage of diabetes.  相似文献   

10.
Organisms of the microalgal genus Nannochloropsis produce high levels of triacylglycerols (TAGs), an efficient raw material for biofuels. A complete understanding of the TAG-breakdown pathway is critical for improving the productivity of TAGs to meet future needs. Among a number of lipases annotated as TAG lipase in the genomes of every organism, Arabidopsis SUGAR-DEPENDENT 1 (AtSDP1) lipases are characterized as a type of crucial TAG lipase in plants, similar to ScTgl3–5 in Saccharomyces cerevisiae. Homologs of the AtSDP1 TAG lipases are universally found in the genomes of plants, fungi, and algae. Here we identified two homologs of AtSDP1 TAG lipases in the oleaginous microalga species Nannochloropsis oceanica, NoTGL1 and NoTGL2. We generated single- and double-knockout strains for these lipases by homologous recombination. Whereas overall TAG content in the NoTGL2 single-knockout mutant was identical to that of wild type, the NoTGL1 knockout showed a two-fold increase in TAG content per cell in early log phase under nutrient-sufficient conditions without affecting growth. Homologs of AtSDP1 in S. cerevisiae are localized to the surface of lipid droplets, and AtSDP1 is transported from peroxisomes to the surface of lipid droplets. In contrast, NoTGL1 localized to the endoplasmic reticulum in both Nannochloropsis and yeast. We suggest that homologs of AtSDP1 lipases in Nannochloropsis modulate de novo TAG biosynthesis in the endoplasmic reticulum, unlike the roles of these lipases in other organisms. These results provide important insights into the mechanisms of TAG metabolism catalyzed by homologs of AtSDP1 lipase, which are highly conserved across species.  相似文献   

11.
Su X  Han X  Mancuso DJ  Abendschein DR  Gross RW 《Biochemistry》2005,44(13):5234-5245
Diabetic cardiomyopathy is the result of maladaptive changes in energy homeostasis. However, the biochemical mechanisms underlying dysfunctional lipid metabolism in diabetic myocardium are incompletely understood. Herein, we exploit shotgun lipidomics to demonstrate a 4-fold increase in acylcarnitines in diabetic myocardium, which was reversible upon insulin treatment. Analysis of acylcarnitine molecular species in myocardium unexpectedly identified acylcarnitine molecular species containing a mass shift of 16 amu in comparison to the anticipated molecular species. Synthesis of 3-hydroxy acylcarnitine identified the natural products as the 3-hydroxylated acylcarnitines through comparisons of diagnostic fragmentation patterns of synthetic and naturally occurring constituents using tandem mass spectrometry. Diabetes induced an increase of both calcium-independent phospholipase A(2) (iPLA(2)) mRNA and iPLA(2) activity in rat myocardium. Cardiac ischemia in myocardium genetically engineered to overexpress iPLA(2) dramatically increased the amount of acylcarnitine present in myocardium. Moreover, mechanism-based inactivation of iPLA(2) in either wild-type or transgenic myocardium ablated a substantial portion of the acylcarnitine increase. Collectively, these results identify discrete insulin remediable abnormalities in mitochondrial fatty acid processing in diabetic myocardium and identify iPLA(2) as an important enzymatic contributor to the pool of fatty acids that can be used for acylcarnitine synthesis and energy production in myocardium.  相似文献   

12.
Han X  Cheng H  Mancuso DJ  Gross RW 《Biochemistry》2004,43(49):15584-15594
Herein, we utilize the power of shotgun lipidomics to demonstrate that modest caloric restriction results in phospholipid depletion, membrane remodeling, and triacylglycerol (TAG) accumulation in murine myocardium. After brief periods of fasting (4 and 12 h), substantial decreases occurred in the choline and ethanolamine glycerophospholipid pools in murine myocardium (collectively, a decrease of 39 nmol of phospholipid per milligram of protein at 12 h representing approximately 25% of total phospholipid mass and approximately 20 cal of Gibbs free energy per gram wet weight of tissue). Remarkably, the selective loss of long-chain polyunsaturated molecular species was present in the major phospholipid classes thereby altering the physical properties of myocardial membranes. No decrease in TAG mass was present in myocardium during fasting, but rather myocardial TAG increased during 12 h of refeeding nearly 3-fold returning to baseline levels only after 24 h of refeeding. No alterations in other examined lipid classes were present during fasting. In contrast to these lipid alterations in myocardium, no decreases in phospholipid mass were present in skeletal muscle myocytes and a dramatic decrease in skeletal muscle (or skeletal muscle associated) TAG mass was prominent after 12 h of fasting. These results identify phospholipids as a rapidly mobilizable energy source during modest caloric deprivation in murine myocardium, while triacylglycerols are a major source of energy reserve in skeletal muscle. Collectively, these results demonstrate dramatic alterations in the membrane composition of mildly fasted mammalian myocardium that identify the unanticipated plasticity of myocardial phospholipids to adapt to modest chemical and physical perturbations.  相似文献   

13.
BACKGROUND: Insulin resistance is an important determinant of circulating leptin concentrations in humans, but its independent contribution on plasma leptin levels are controversial. In the present study, we characterized plasma leptin levels and their regulation in women with 2 different insulin resistance states: type 2 diabetes and myotonic dystrophy disease, and in controls. MATERIAL AND METHODS: We studied 3 groups of women: 21 type 2 diabetic patients, 20 myotonic dystrophic patients and a control group of 20 normoglycemic subjects, matched in age and body mass index. Body composition, fasting glucose and insulin, IGF-I, IGF-binding protein-3 and leptin were studied. Body composition was measured using a bioelectrical impedance analyser. Insulin sensitivity (in percentage) was modeled according to a computer-based homeostasis model assessment model. Data are expressed in mean +/- SEM. RESULTS: In both groups of patients, glucose concentrations were higher in type 2 diabetic patients than in myotonic dystrophic patients, and insulin concentrations and insulin sensitivity were similar in the 2 groups of patients (82.4 +/- 18.6% in type 2 diabetic patients vs. 69.7 +/- 9.7% in myotonic dystrophic patients, p = 0.2) and lower than in controls. Serum leptin and leptin/fat mass ratio were higher in myotonic dystrophic patients than in type 2 diabetic patients (30 +/- 4.9 ng/ml vs. 17.7 +/- 2.6 ng/ml, p = 0.03 and 2.32 +/- 0.69 ng/ml/kg vs. 1.07 +/- 0.2 ng/ml/kg, p = 0.02, respectively) or those found in controls. In type 2 diabetic patients, leptin concentrations were correlated with body mass index and body fat, and in myotonic dystrophic patients leptin concentrations were correlated with age, body mass index, fasting insulin and lower insulin sensitivity, whereas leptin concentrations were not correlated with body fat. CONCLUSIONS: These findings suggest that leptin concentrations and regulation in myotonic dystrophic patients are different from type 2 diabetes.  相似文献   

14.
This article discusses the methods most commonly employed in the analysis of the triacylglycerols (TAGs) in natural fats and considers the main advantages and disadvantages of each and the techniques for optimising analytical conditions. Complete analysis of the composition of a natural fat calls for a method of extracting and purifying the triglyceride fraction, normally by preparatory thin-layer and column chromatography. Determination of the individual components of triglyceride mixtures still entails certain difficulties, namely, the separation and identification of the TAGs in natural fats. High-performance liquid chromatography (HPLC) offers significant advantages over gas and thin-layer chromatography. Many workers have developed non-aqueous, reversed-phase HPLC systems capable of successfully resolving complex mixtures of TAGs, and combining reversed-phase (RP) HPLC and argentation chromatography may improve the results. Identification of the TAGs separated by HPLC becomes an extremely complex task if many different fatty acids are involved and if the sn-stereoscopic positions on the glycerol are to be determined. Enzymatic analysis and chiral-phase chromatography are capable of localising fatty acids on the TAG molecule. In closing, some of the most interesting biomedical applications of TAG analysis are summarised.  相似文献   

15.
Morphological, ultrastructural, and immunocytochemical studies of nerves containing vasoactive intestinal peptide (VIP) are described in diabetic pancreas of rats after streptozotocin treatment. The observations covered 48 hours and 6 months following streptozotocin treatment. At the ultrastructural level, degenerative changes were already observed in axons of nerve ganglia in the pancreas 48 hours (early stage) after streptozotocin treatment. These changes were hardly detected at the light microscopic level and VIP-like immunoreactivities were seen in nerves and fibers in such pancreas. The nerve ganglia were almost absent in the diabetic pancreas 6 months after streptozotocin treatment (late stage). Associated with the absence of nerve ganglia, nerves and fibers containing VIP-like immunoreactivities were also absent at this late stage. The findings indicated that the changes in the diabetic pancreas were neuropathic caused by metabolic disturbance after long standing diabetes and resulting absence of VIP-like immunoreactive nerves occurred. It was suggested from the present study that the changes in nerve ganglia began as damage at the ultrastructural level due to acute toxicity of the chemical at an early stage and then developed destruction and absence at a late stage.  相似文献   

16.
The structure of different components from lumbar ganglia of the cat sympathetic trunk were studied in norm and 6h after intramuscular administration of prednisolone (5 mg/kg). Paraffin sections were stained with azocramine after Heidenhain, Wallart and Houette, azure II -- eosin. Biometry of different ganglial structures was performed by G.G. Avtandilov's dotted method. It was demonstrated that as a response to prednisolone administration, certain morphological changes appeared in all ganglial components. The walls of capillaries grew thicker, endothelial nuclei protruded into their lumen. Collagenous fibres of the connective tissue capsule and ganglial stroma grew thicker and acquired twisted appearance, the amount of the basilar substance increased. Simultaneously, there was a sharp increase of the nuclear section area in perineuronal ganglia. The total area of neuronal sections in the ganglia also increased at the expense of both increasing area of neuronal cytoplasm and hypertrophy of their nuclei.  相似文献   

17.
Triacylglycerol profiling of marine microalgae by mass spectrometry   总被引:1,自引:0,他引:1  
We present a method for the determination of triacylglycerol (TAG) profiles of oleaginous saltwater microalgae relevant for the production of biofuels, bioactive lipids, and high-value lipid-based chemical precursors. We describe a technique to remove chlorophyll using quick, simple solid phase extraction (SPE) and directly compare the intact TAG composition of four microalgae species (Phaeodactylum tricornutum, Nannochloropsis salina, Nannochloropsis oculata, and Tetraselmis suecica) using MALDI time-of-flight (TOF) mass spectrometry (MS), ESI linear ion trap-orbitrap (LTQ Orbitrap) MS, and 1H NMR spectroscopy. Direct MS analysis is particularly effective to compare the polyunsaturated fatty acid (PUFA) composition for triacylglycerols because oxidation can often degrade samples upon derivatization. Using these methods, we observed that T. suecica contains significant PUFA levels with respect to other microalgae. This method is applicable for high-throughput MS screening of microalgae TAG profiles and may aid in the commercial development of biofuels.  相似文献   

18.
Triacylglycerols (TAG) are important energy storage molecules for nearly all eukaryotic organisms. In this study, we found that two gene products (Plh1p and Dga1p) are responsible for the terminal step of TAG synthesis in the fission yeast Schizosaccharomyces pombe through two different mechanisms: Plh1p is a phospholipid diacylglycerol acyltransferase, whereas Dga1p is an acyl-CoA:diacylglycerol acyltransferase. Cells with both dga1+ and plh1+ deleted (DKO cells) lost viability upon entry into the stationary phase and demonstrated prominent apoptotic markers. Exponentially growing DKO cells also underwent dramatic apoptosis when briefly treated with diacylglycerols (DAGs) or free fatty acids. We provide strong evidence suggesting that DAG, not sphingolipids, mediates fatty acids-induced lipoapoptosis in yeast. Lastly, we show that generation of reactive oxygen species is essential to lipoapoptosis.  相似文献   

19.

Background

Diabetic cardiomyopathy (DCM) contributes to cardiac failure in diabetic patients. It is characterized by excessive lipids accumulation, with increased triacylglycerol (TAG) stores, and fibrosis in left ventricle (LV). The mechanisms responsible are incompletely known and no specific treatment is presently defined. We evaluated the possible usefulness of two molecules promoting lipid oxidation, fenofibrate and metformin, in an experimental model of DCM, the Zucker diabetic rat (ZDF).

Methods

ZDF and controls (C) rats were studied at 7, 14 and 21 weeks. After an initial study at 7 weeks, ZDF rats received no treatment, metformin or fenofibrate until final studies (at 14 or 21 weeks). C rats received no treatment. Each study comprised measurements of metabolic parameters (plasma glucose, TAG, insulin levels) and sampling of heart for histology and measurements of TAG content and relevant mRNA concentration.

Results

ZDF rats were insulin-resistant at 7 weeks, type 2 diabetic at 14 weeks and diabetic with insulin deficiency at 21 weeks. Their plasma TAG levels were increased. ZDF rats had at 7 weeks an increased LV TAG content with some fibrosis. LV TAG content increased in untreated ZDF rats at 14 and 21 weeks and was always higher than in C. Fibrosis increased also moderately in untreated ZDF rats. Metformin and fenofibrate decreased plasma TAG concentrations. LV TAG content was decreased by metformin (14 and 21 weeks) and by fenofibrate (14 weeks). Fibrosis was reduced by fenofibrate only and was increased by metformin. Among the mRNA measured, fenofibrate increased Acyl-CoA Oxidase mRNA level, metformin decreased Acyl-CoA Synthase and increased AdipoR1 and pro-inflammatory mRNA levels.

Conclusion

Fenofibrate had favourable actions on DCM. Metformin had beneficial effect on TAG content but not on fibrosis. PPARα agonists could be useful for the prevention and treatment of DCM.  相似文献   

20.
Recently, in a supplementation study over six months, it has been demonstrated that re-esterified omega-3 fatty acid triacylglycerols (n3-FA-rTAGs) led to a higher increase in omega-3-index compared to identical doses of n3-FA ethyl-esters (n3-FA-EEs), suggesting a better long-term bioavailability. The aim of this study was to examine whether differences occur between the two forms in affecting fasting serum lipid levels. 150 dyslipidemic statin-treated participants were randomized to corn oil as a placebo or fish oil either as rTAG or EE in identical doses (1.01 g EPA+0.67 g DHA). No changes in total cholesterol, HDL or LDL levels were observed. In the rTAG-group, but not in the EE-group, fasting serum TAG levels were significantly reduced from baseline after three and six months. There was no significant difference between the two n3-FA-groups. However, serum TAG levels were significantly lowered after six months in the rTAG-group compared to the placebo-group in contrast to the EE-group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号