首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M J Kime  P B Moore 《Biochemistry》1983,22(11):2622-2629
The downfield (9-15 ppm) proton spectrum of Escherichia coli 5S RNA has been examined at 500 MHz by using nuclear Overhauser methods. The data confirm the existence of the terminal and procaryotic loop helices within the molecule [Fox, G. E., & Woese, C. R. (1975) Nature (London) 256, 505-506]. Very little stable, double-helical structure is detectable in the third loop of the molecule, the one comprising bases 12-68. The downfield spectrum of 5S RNA is perturbed in a highly specific manner upon addition of protein L25 to the system. The changes seen strongly suggest that the binding site for L25 on 5S RNA includes the procaryotic loop helix, but not the terminal stem helix. Similar complexes formed between L25 and the 5S RNA fragment consisting of bases 1-11, 69-87, and 89-120 show exactly the same spectral alterations. A number of downfield resonances appear in the spectra of these complexes which have no counterparts in the free RNA, suggesting the stabilization of new RNA structures by the protein. There are some indications of protein-nucleic acid nuclear Overhauser effects.  相似文献   

2.
The effects of ribosomal proteins L18, L25 and L5 on the conformation of 5S RNA have been studied by circular dichroism and temperature dependent ultraviolet absorbance. The circular dichroism spectrum of native 5S RNA is characterized in the near ultraviolet by a large positive band at 267 nm and a small negative band at 298 nm. The greatest perturbation in the spectrum was produced by protein L18 which induced a 20% increase in the 267 nm band and no change in the 298 nm band. By contrast, protein L25 caused a small decrease in both bands. No effect was observed with protein L5. Simultaneous binding of proteins L18 and L25 resulted in CD changes equivalent to the sum of their independent effects. The UV absorbance thermal denaturation profile of the 5S RNA L18 complex lacked the pre-melting behavior characteristic of 5S RNA. Protein L25 had no effect on the 5S RNA melting profile. We concluded that protein L18 increases the secondary, and possible the tertiary structure of 5S RNA, and exerts a minor stabilizing effect on its conformation while protein L25 causes a small decrease in 5S RNA secondary structure. The implications of these findings for ribosome assembly and function are discussed.  相似文献   

3.
Pancreatic RNase partial digests of 32P-labelled 5 S RNA-protein complexes have been fractionated by electrophoresis on polyacrylamide gels. Specific fragments of the 5 S RNA molecule have been recovered from electrophoresis bands containing polynucleotide-protein complexes. These digestion-resistant complexes are only found if RNase treatment is carried out in the presence of at least one of the two 50 S subunit proteins L18 and L25, which are able to bind to 5 S RNA individually and specifically. The sequences of the isolated fragments have been determined. From the results, it can be concluded that sequence 69 to 120 and, possibly, sequence 1 to 11, are involved in the 5 S RNA-protein interactions which are responsible for the insertion of 5 S RNA in the 50 S subunit structure. Sequence 12 to 68, on the other hand, has no strong interactions with proteins L18 and L25. Each protein certainly binds to several nucleotide residues, which are not contiguous in the primary structure. In particular, good experimental evidence has been obtained in favour of the binding of protein L25 to two distant regions of the 5 S RNA molecule, which must have a bihelical secondary structure. The importance of the 5 S RNA conformation for its proper insertion in the 50 S subunit is thus confirmed.  相似文献   

4.
N B Leontis  P Ghosh  P B Moore 《Biochemistry》1986,25(23):7386-7392
The imino proton nuclear magnetic resonance spectrum of Escherichia coli 5S ribonucleic acid (RNA) changes when the Mg2+ ion concentration drops below physiological levels. The transition between the physiological and low magnesium spectral forms of 5S RNA has a midpoint at approximately 0.3 mM Mg2+. Many of the most conspicuous changes observed in the downfield spectrum of 5S RNA as the magnesium concentration is reduced are due to adjustments in the structures of helices I and IV and the disappearance of resonances originating in helix V. The binding of ribosomal protein L25 to 5S RNA in the absence of magnesium stabilizes helix V structures.  相似文献   

5.
A library of random mutations in Xenopus ribosomal protein L5 was generated by error-prone PCR and used to delineate the binding domain for 5S rRNA. All but one of the amino acid substitutions that affected binding affinity are clustered in the central region of the protein. Several of the mutations are conservative substitutions of non-polar amino acid residues that are unlikely to form energetically significant contacts to the RNA. Thermal denaturation, monitored by circular dichroism (CD), indicates that L5 is not fully structured and association with 5S rRNA increases the t(m) of the protein by 16 degrees C. L5 induces changes in the CD spectrum of 5S rRNA, establishing that the complex forms by a mutual induced fit mechanism. Deuterium exchange reveals that a considerable amount of L5 is unstructured in the absence of 5S rRNA. The fluorescence emission of W266 provides evidence for structural changes in the C-terminal region of L5 upon binding to 5S rRNA; whereas, protection experiments demonstrate that the N terminus remains highly sensitive to protease digestion in the complex. Analysis of the amino acid sequence of L5 by the program PONDR predicts that the N and C-terminal regions of L5 are intrinsically disordered, but that the central region, which contains three essential tyrosine residues and other residues important for binding to 5S rRNA, is likely to be structured. Initial interaction of the protein with 5S rRNA likely occurs through this region, followed by induced folding of the C-terminal region. The persistent disorder in the N-terminal domain is possibly exploited for interactions between the L5-5S rRNA complex and other proteins.  相似文献   

6.
The conformation of ribosomal protein S4 from Escherichia coli has been studied by circular dichroism (CD) and shown to possess unique conformation free in solution. The near ultraviolet spectrum suggests the existence of unique tertiary structural environment for the aromatic amino acid residues. The far ultraviolet spectrum gives an estimation of its secondary structure which is 32% alpha-helix and 14% beta-structure in reconstitution buffer at 25 degrees C. The conformation of S4 has been predicted from its sequence, and two models are presented here. An attempt is made to correlate these two molecular models with the available physicochemical data concerning the shape, conformation, and possible RNA binding site of protein S4.  相似文献   

7.
Of the three proteins, L5, L18 and L25, which bind to 5S RNA, the former two effect the interaction of 5S RNA with 23S RNA. We have used trypsin as a probe to investigate the roles of the proteins in this RNA-RNA assembly, with the following results: (1) In complexes with 5S RNA, the highly basic N-terminal region of L18 is accessible to trypsin. This accessibility is unaffected by L25. However, its presence is essential for stimulating L5 binding. (2) In 5S RNA-protein-23S RNA complexes proteins L5 and L18 are both strongly resistant to proteolysis. (3) No 5S RNA-23S RNA complex formation occurs in the presence of L5 and the C-terminal L18 fragment. Two possible models for the mechanism of RNA-RNA assembly are proposed.  相似文献   

8.
Physical studies on a nucleoprotein from the ribosome of E. coli   总被引:2,自引:0,他引:2  
Bacterial 5S RNA and its cognate proteins constitute an attractive system to study nucleoprotein interactions. The molecular weights of the components involved are modest and they can be prepared in the quantities necessary to permit the application of material-intensive techniques like NMR and X-ray crystallography. 5S RNA is being examined by proton NMR at 500 MHz with special attention paid to the downfield NH proton region. A substantial number of assignments can be suggested in this region based on nuclear Overhauser results. The binding of protein L25 (E. coli) to the RNA gives rise to a highly characteristic set of perturbations in the spectrum of the RNA. The data suggest a localized and assignable alteration in RNA structure upon formation of the complex. In addition we have grown large crystals of RNAs related to 5S RNA and their complexes with a cognate protein. The properties of these crystals and the progress made in analyzing their structure are discussed.  相似文献   

9.
A fragment of ribosomal protein L18 was prepared by limited trypsin digestion of a specific complex of L18 and 5S RNA. It was characterised for sequence and the very basic N-terminal region of the protein was found to be absent. No smaller resistant fragments were produced. 5S RNA binding experiments indicated that the basic N-terminal region, from amino acid residues 1 to 17, was not important for the L18-5S RNA association. Under milder trypsin digestion conditions three resistant fragments were produced from the free protein. The largest corresponded to that isolated from the complex. The smaller ones were trimmed slightly further at both N- and C-terminal ends. These smaller fragments did not reassociate with 5S RNA. It was concluded on the basis of the trypsin protection observations and the 5S RNA binding results that the region extending from residues 18 to 117 approximates to the minimum amount of protein required for a specific and stable protein-RNA interaction. The accessibility of the very basic N-terminal region of L18, in the L18-5S RNA complex, suggests that it may be involved, in some way, in the interaction of 5S RNA with 23S RNA.  相似文献   

10.
Ribosomal protein L25 from the large subunit of E. coli ribosomes has been purified using a new procedure involving a 2M LiCl extraction followed by phosphocellulose chromatography in 6 M urea elution buffer. The conformation of purified L25 was studied employing circular dichroism and ultraviolet absorption spectroscopy in reconstitution buffer. The analysis of the far u.v. circular dichroism spectrum of L25 indicates L25 contains approximately 16% alpha-helix and approximately 19% beta-structure. The conformation of L25 was also studied using the predictive methods of Chou & Fasman and Maxfield & Scheraga. Both of these methods predict approximately three times the percent alpha-helix present in L25 as compared with that determined from the analysis of the circular dichroism spectrum. A structure for L25 is predicted which contains two positively charged binding domains and is consistent with published binding data on the interaction of 5S RNA and L25. The large difference in the % alpha-helix as determined from the analysis of the circular dichroism spectrum and the predictive techniques is suggested to result from the denaturing effects of 6 M urea used in the preparation of ribosomal proteins.  相似文献   

11.
Abstract

Bacterial 5S RNA and its cognate proteins constitute an attractive system to study nucleoprotein interactions. The molecular weights of the components involved are modest and they can be prepared in the quantities necessary to permit the application of material-intensive techniques like NMR and X-ray crystallography.

5S RNA is being examined by proton NMR at 500 MHz with special attention paid to the downfield NH proton region. A substantial number of assignments can be suggested in this region based on nuclear Overhauser results. The binding of protein L25 (E. coli) to the RNA gives rise to a highly characteristic set of perturbations in the spectrum of the RNA. The data suggest a localized and assignable alteration in RNA structure upon formation of the complex.

In addition we have grown large crystals of RNAs related to 5S RNA and their complexes with a cognate protein. The properties of these crystals and the progress made in analyzing their structure are discussed.  相似文献   

12.
Among the three Escherichia coli 50 S subunit proteins L5, L18 and L25, which have an affinity for 5 S RNA, only protein L18 exerts a strong effect on the fluorescence of 5 S RNA-ethidium bromide complexes, without changing the quantum yield of the fluorescence. Proteins L5 and L25, although they have little effect on the fluorescence, have a strong stabilizing influence on the 5 S RNA-L18 complex. The results are discussed in terms of the secondary and tertiary structures of 5 S RNA in relation to ribosomal protein binding.  相似文献   

13.
The nature of the interaction between the RNA and the protein component in the yeast 5 S rRNA-L1a complex was assessed using fluorescence and controlled proteolytic and RNase digestion. (a) Influence of L1a on the RNA conformation was monitored by ethidium fluorescence and controlled RNase T1 digestion. The complex was digested with alpha-chymotrypsin, Staphylococcus aureus protease V8, subtilisin, or trypsin. Both termini of L1a in the complex were readily accessible to proteases. Proteolytic digestion of the complex resulted in a reduction in fluorescence intensity if ethidium was added after proteolysis. No change was observed when ethidium was allowed to react with the complex prior to proteolysis. Neither the rate of proteolysis nor the resultant peptide pattern was affected by the presence of ethidium. T1 digestion of intact RNP and trypsin-treated RNP produced different oligonucleotide patterns. Both the fluorescence and the T1 digestion data suggest that the conformation of the RNA moiety was influenced by the protein. (b) Influence of the RNA molecule on L1a conformation in the complex was monitored by limited proteolysis. Whereas the protein in the complex was relatively sensitive to proteases, free protein was completely resistant to digestion under identical conditions. The trypsin sensitivity of L1a in complexes containing different truncated 5 S RNA molecules was studied also. Upon removal of residues 31-49 of the 5 S RNA molecule, L1a in the complex became resistant to proteolysis. These results are interpreted in a model in which specific regions of both the RNA and the protein are involved in the interaction.  相似文献   

14.
15.
The binding sites of ribosomal proteins L18 and L25 on 5S RNA from Escherichia coli were probed with ribonucleases A, T1, and T2 and a double helix specific cobra venom endonuclease. The results for the protein-RNA complexes, which were compared with those for the free RNA [Douthwaite, S., & Garrett, R. A. (1981) Biochemistry 20, 7301--7307], reveal an extensive interaction site for protein L18 and a more localized one for L25. Generally comparable results, with a few important differences, were obtained in a study of the binding sites of the two E. coli proteins on Bacillus stearothermophilus 5S RNA. Several protein-induced changes in the RNA structures were identified; some are possibly allosteric in nature. The two prokaryotic 5S RNAs were also incubated with total 50S subunit proteins from E. coli and B. stearothermophilus ribosomes. Homologous and heterologous reconstitution experiments were performed for both RNAs. The effects of the bound proteins on the ribonuclease digestion of the RNAs could generally be correlated with the results obtained with the E. coli proteins L18 and L25, although there was evidence for an additional protein-induced conformational change in the B. stearothermophilus 5S RNA, which may have been due to a third ribosomal protein L5.  相似文献   

16.
17.
The effects of amino acid replacements in the RNA-binding sites of homologous ribosomal proteins TL5 and L25 (members of the CTC family) on ability of these proteins to form stable complexes with ribosomal 5S RNA were studied. It was shown that even three simultaneous replacements of non-conserved amino acid residues by alanine in the RNA-binding site of TL5 did not result in noticeable decrease in stability of the TL5-5S rRNA complex. However, any replacement among five conserved residues in the RNA-binding site of TL5, as well as of L25 resulted in serious destabilization or complete impossibility of complex formation. These five residues form an RNA-recognition module in TL5 and L25. These residues are strictly conserved in proteins of the CTC family. However, there are several cases of natural replacements of these residues in TL5 and L25 homologs in Bacilli and Cyanobacteria, which are accompanied by certain changes in the CTC-binding site of 5S rRNAs of the corresponding organisms. CTC proteins and specific fragments of 5S rRNA of Enterococcus faecalis and Nostoc sp. were isolated, and their ability to form specific complexes was tested. It was found that these proteins formed specific complexes only with 5S rRNA of the same organism. This is an example of coevolution of the structures of two interacting macromolecules.  相似文献   

18.
19.
The ribosomal 5S RNA gene from E. coli was altered by oligonucleotide-directed mutagenesis at positions A66 and U103. The mutant genes were cloned into an expression vector and selectively transcribed in an UV-sensitive E. coli strain using a modified maxicell system. The mutant 5S RNA genes were found to be transcribed and processed normally. The 5S RNA molecules were assembled into 50S ribosomal subunits. Under in vitro conditions the stability of the mutant 70S ribosomes seemed, however, to be reduced, since they dissociated into their subunits more easily than those of the wild type. The isolated mutated 5S RNAs with base changes in the ribosomal protein binding sites for L18 and L25, together with a point mutant at G41 (G to C), constructed earlier, were tested for their capacity to bind the 5S RNA binding proteins L5, L18 and L25. The following effects were observed: The base change A66 to C within the L18 binding site did not affect the binding of the ribosomal protein L18 but enhanced the stability of the L25-5S RNA complex considerably. The base changes U103 to G and G41 to C slightly reduced the binding of L5 and L25 whereas the binding of L18 to the mutant 5S RNAs was not altered. In addition 70S ribosomes with the single point mutations in their 5S RNAs were tested in their tRNA binding capacity. Mutants containing a C41 in their 5S RNA showed a reduction in the poly(U)-dependent Phe-tRNA binding, whereas the mutations to C66 and G 103 lead to completely inactive ribosomes in the same assay. Based on previous results a spatial model of the 5S RNA molecule is presented which is consistent with the findings reported in this paper.  相似文献   

20.
The binding of ribosomal proteins L25, L18, and L5 to 5 S RNA results in a conformational change and a destabilization of the 5 S RNA molecule. The changes observed in the near ultraviolet circular dichroism (CD) spectra and in the melting profiles indicate an increase in base stacking uith an accompanying increase in asymmetry of the bases and a decrease in the conformational stability of the 5 S RNA. These results are consistent with the interpretation that the binding of these proteins increases the stacking of specific single-stranded bases in 5 S RNA and aligns them in helical arrays, resulting in a conformation which facilitates base-pairing with nucleotide segment(s) of the ribosomal 23 S RNA or the transfer RNA (or both). The simple and precise difference CD method described here is potentially useful for studying subtle conformational changes of other nucleic acid-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号