首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the forming vertebrate heart, bone morphogenetic protein signaling induces expression of the early cardiac regulatory gene nkx-2.5. A similar regulatory interaction has been defined in Drosophila embryos where Dpp signaling mediated by the Smad homologues Mad and Medea directly regulates early cardiac expression of tinman. A conserved cluster of Smad consensus binding sequences was identified in early cardiac regulatory sequences of the mouse nkx-2.5 gene. The importance of the nkx-2.5 Smad consensus region in early cardiac gene expression was examined in transgenic mice and in cultured mouse embryos. In transgenic mice, deletion of the Smad consensus region delays induction of embryonic DeltaSmadnkx-2.5/lacZ gene expression during early heart formation. Induction of DeltaSmadnkx-2.5/lacZ expression is also delayed in the outflow tract myocardium and visceral mesoderm. Targeted mutation of the three Smad consensus sequences inhibited nkx-2.5/lacZ expression in the cardiac crescent, demonstrating a specific requirement for the Smad consensus sites in early cardiac gene induction. Cultured DeltaSmadnkx-2.5/lacZ transgenic mouse embryos also exhibit delayed induction of transgene expression. In the four-chambered heart, deletion of the Smad consensus region resulted in expanded DeltaSmadnkx-2.5/lacZ transgene expression. Thus, the nkx-2.5 Smad consensus region can have positive or negative regulatory function, depending on the developmental context and cellular environment.  相似文献   

2.
Genes involved in spermatogenesis tend to evolve rapidly, but we lack a clear understanding of how protein sequences and patterns of gene expression evolve across this complex developmental process. We used fluorescence-activated cell sorting (FACS) to generate expression data for early (meiotic) and late (postmeiotic) cell types across 13 inbred strains of mice (Mus) spanning ∼7 My of evolution. We used these comparative developmental data to investigate the evolution of lineage-specific expression, protein-coding sequences, and expression levels. We found increased lineage specificity and more rapid protein-coding and expression divergence during late spermatogenesis, suggesting that signatures of rapid testis molecular evolution are punctuated across sperm development. Despite strong overall developmental parallels in these components of molecular evolution, protein and expression divergences were only weakly correlated across genes. We detected more rapid protein evolution on the X chromosome relative to the autosomes, whereas X-linked gene expression tended to be relatively more conserved likely reflecting chromosome-specific regulatory constraints. Using allele-specific FACS expression data from crosses between four strains, we found that the relative contributions of different regulatory mechanisms also differed between cell types. Genes showing cis-regulatory changes were more common late in spermatogenesis, and tended to be associated with larger differences in expression levels and greater expression divergence between species. In contrast, genes with trans-acting changes were more common early and tended to be more conserved across species. Our findings advance understanding of gene evolution across spermatogenesis and underscore the fundamental importance of developmental context in molecular evolutionary studies.  相似文献   

3.
Background The remarkable similarity of animal embryos at particular stages of development led to the proposal of a developmental hourglass. In this model, early events in development are less conserved across species but lead to a highly conserved ‘phylotypic period’. Beyond this stage, the model suggests that development once again becomes less conserved, leading to the diversity of forms. Recent comparative studies of gene expression in animal groups have provided strong support for the hourglass model. How and why might such an hourglass pattern be generated? More importantly, how might early acting events in development evolve while still maintaining a later conserved stage?Scope The discovery that an hourglass pattern may also exist in the embryogenesis of plants provides comparative data that may help us explain this phenomenon. Whether the developmental hourglass occurs in plants, and what this means for our understanding of embryogenesis in plants and animals is discussed. Models by which conserved early-acting genes might change their functional role in the evolution of gene networks, how networks buffer these changes, and how that might constrain, or confer diversity, of the body plan are also discused.Conclusions Evidence of a morphological and molecular hourglass in plant and animal embryogenesis suggests convergent evolution. This convergence is likely due to developmental constraints imposed upon embryogenesis by the need to produce a viable embryo with an established body plan, controlled by the architecture of the underlying gene regulatory networks. As the body plan is largely laid down during the middle phases of embryo development in plants and animals, then it is perhaps not surprising this stage represents the narrow waist of the hourglass where the gene regulatory networks are the oldest and most robust and integrated, limiting species diversity and constraining morphological space.  相似文献   

4.
5.
The identification of noncoding functional elements within vertebrate genomes, such as those that regulate gene expression, is a major challenge. Comparisons of orthologous sequences from multiple species are effective at detecting highly conserved regions and can reveal potential regulatory sequences. The GDF6 gene controls developmental patterning of skeletal joints and is associated with numerous, distant cis-acting regulatory elements. Using sequence data from 14 vertebrate species, we performed novel multispecies comparative analyses to detect highly conserved sequences flanking GDF6. The complementary tools WebMCS and ExactPlus identified a series of multispecies conserved sequences (MCSs). Of particular interest are MCSs within noncoding regions previously shown to contain GDF6 regulatory elements. A previously reported conserved sequence at -64 kb was also detected by both WebMCS and ExactPlus. Analysis of LacZ-reporter transgenic mice revealed that a 440-bp segment from this region contains an enhancer for Gdf6 expression in developing proximal limb joints. Several other MCSs represent candidate GDF6 regulatory elements; many of these are not conserved in fish or frog, but are strongly conserved in mammals.  相似文献   

6.
7.
We describe the expression of the homeobox genes orthodenticle (Otx) and distal-less (Dlx) during the larval development of seven species representing three classes of echinoderms: Holothuroidea, Asteroidea, and Echinoidea. Several expression domains are conserved between species within a single class, including Dlx expression within the brachiolar arms of asteroid larvae and Otx expression within the ciliated bands of holothuroid larvae. Some expression domains are apparently conserved between classes, such as the expression of Dlx within the hydrocoel (left mesocoel) in all three classes. However, several substantial differences in expression domains among taxa were also evident for both genes. Some autapomorphic (unique derived) features of gene expression are phylogenetically associated with autapomorphic structures, such as Dlx expression within the invaginating rudiment of euechinoids. Other autapomorphic gene expression domains are associated with evolutionary shifts in life history from feeding to nonfeeding larval development, such as Otx expression within the ciliated bands of a nonfeeding holothuroid larva. Similar associations between evolutionary changes in morphology and life history mode with changes in regulatory gene expression have also been observed in arthropods, urochordates, and chordates. We predict that recruitment of regulatory genes to a new developmental role is commonly associated with evolutionary changes in morphology and may be particularly common in clades with complex life cycles and diversity of life history modes. Caution should be used when making generalizations about gene expression and function based on a single species, which may not accurately reflect developmental processes and life histories of the phyla to which it belongs.  相似文献   

8.
Highly conserved non-coding elements (CNEs) linked to genes involved in embryonic development have been hypothesised to correspond to cis-regulatory modules due to their ability to induce tissue-specific expression patterns. However, attempts to prove their requirement for normal development or for the correct expression of the genes they are associated with have yielded conflicting results. Here, we show that CNEs at the vertebrate Sox21 locus are crucial for Sox21 expression in the embryonic lens and that loss of Sox21 function interferes with normal lens development. Using different expression assays in zebrafish we find that two CNEs linked to Sox21 in all vertebrates contain lens enhancers and that their removal from a reporter BAC abolishes lens expression. Furthermore inhibition of Sox21 function after the injection of a sox21b morpholino into zebrafish leads to defects in lens development. These findings identify a direct link between sequence conservation and genomic function of regulatory sequences. In addition to this we provide evidence that putative Sox binding sites in one of the CNEs are essential for induction of lens expression as well as enhancer function in the CNS. Our results show that CNEs identified in pufferfish-mammal whole-genome comparisons are crucial developmental enhancers and hence essential components of gene regulatory networks underlying vertebrate embryogenesis.  相似文献   

9.
10.
The developmental processes that give rise to the animal body plan are exceedingly complex. Model systems such as Drosophila melanogaster have yielded profound insight into roles of conserved genes and genetic pathways in development. Drosophila development begins with the formation of sperm and eggs, and proceeds through several morphologically distinct stages including development of the early embryo, larval instars, formation of pupae, and differentiation of adult tissues. The nuclear transport of proteins and RNAs represents a critical step in the regulation of gene expression during every stage of development and tissue differentiation. Studies of the nuclear transport machinery in Drosophila refute the notion that nuclear transport is strictly a housekeeping process without specific regulatory roles in development. Rather, they support the idea that the basal nuclear transport machinery has adapted during the evolution of the metazoan body plan to play important regulatory roles in key developmental events.  相似文献   

11.
12.
Several cis-regulatory DNA elements are present in the 5' upstream regulatory region of the enkephalin gene (ENK) promoter. To determine their role in conferring organ-specificity of ENK expression in mice and to circumvent the position effects from random gene insertion that are known to often frustrate such analysis in transgenic mice, we used a Cre-mediated gene knock-in strategy to target reporter constructs to a "safe haven" loxP-tagged locus in the hypoxanthine phosphoribosyltransferase (HPRT) gene. Here we report reliable and reproducible reporter gene expression under the control of the 5' upstream regulatory region of the mouse ENK gene in gene-modified mice using this Cre-mediated knock-in strategy. Comparison of two 5'ENK regulatory regions (one with and the other without known cis-regulatory DNA elements) in the resulting adult mice showed that conserved far-upstream cis-regulatory DNA elements are dispensable for correct organ-specific gene expression. Thus the proximal 1.4 kb of the murine ENK promoter region is sufficient for organ-specificity of ENK gene expression when targeted to a safe-haven genomic locus. These results suggest that conservation of the far-upstream DNA elements serves more subtle roles, such as the developmental or cell-specific expression of the ENK gene.  相似文献   

13.
Understanding the complex regulatory networks underlying development and evolution of multi-cellular organisms is a major problem in biology. Computational models can be used as tools to extract the regulatory structure and dynamics of such networks from gene expression data. This approach is called reverse engineering. It has been successfully applied to many gene networks in various biological systems. However, to reconstitute the structure and non-linear dynamics of a developmental gene network in its spatial context remains a considerable challenge. Here, we address this challenge using a case study: the gap gene network involved in segment determination during early development of Drosophila melanogaster. A major problem for reverse-engineering pattern-forming networks is the significant amount of time and effort required to acquire and quantify spatial gene expression data. We have developed a simplified data processing pipeline that considerably increases the throughput of the method, but results in data of reduced accuracy compared to those previously used for gap gene network inference. We demonstrate that we can infer the correct network structure using our reduced data set, and investigate minimal data requirements for successful reverse engineering. Our results show that timing and position of expression domain boundaries are the crucial features for determining regulatory network structure from data, while it is less important to precisely measure expression levels. Based on this, we define minimal data requirements for gap gene network inference. Our results demonstrate the feasibility of reverse-engineering with much reduced experimental effort. This enables more widespread use of the method in different developmental contexts and organisms. Such systematic application of data-driven models to real-world networks has enormous potential. Only the quantitative investigation of a large number of developmental gene regulatory networks will allow us to discover whether there are rules or regularities governing development and evolution of complex multi-cellular organisms.  相似文献   

14.
15.
16.
17.
G Kollias  N Wrighton  J Hurst  F Grosveld 《Cell》1986,46(1):89-94
We have introduced the human fetal gamma- and adult beta-globin genes into the germ line of mice. Analysis of the resulting transgenic mice shows that the human gamma-globin gene is expressed like an embryonic mouse globin gene; the human beta-globin gene is expressed (as previously shown) like an adult mouse globin gene. These results imply that the regulatory signals for tissue- and developmental stage-specific expression of the globin genes have been conserved between man and mouse but that the timing of the signals has changed. Because the two genes are expressed differently, we introduced a hybrid gamma beta-globin gene construct. The combination of the regulatory sequences resulted in the expression of the hybrid gene at all stages in all the murine erythroid tissues.  相似文献   

18.
The molecular mechanisms that time development are now being deciphered in various organisms, particularly in Caenorhabditis elegans. Key recent findings indicate that certain C. elegans timekeeping genes are conserved across phyla, and their developmental expression patterns indicate that a timing function might also be conserved. Small regulatory RNAs have crucial roles in the timing mechanism, and the cellular machinery required for production of these RNAs intersects with that used to process double-stranded RNAs during RNA interference.  相似文献   

19.
The Myxococcus xanthus asg genes ( asgA, asgB , and asgC ) are necessary for production of extracellular A-signal, which is thought to function as a cell-density signal. Previous analyses of the asgA and asgB genes suggest that they perform regulatory functions. In this work, we localized asgC to a region that contains genes homologous to rpsU, dnaG , and rpoD of the Escherichia coli macromolecular synthesis (MMS) operon. Surprisingly, asgC767 was found to be a mutant allele of rpoD , the gene encoding the major sigma factor of M. xanthus . The mutation in asgC767 results in a glutamate to lysine substitution at amino acid 598, which lies within conserved region 3.1 of the major sigma factors. Previous studies have shown that the asg mutants share a number of growth and developmental phenotypes. We found that A-signal restores developmental expression of an A-signal-dependent gene (Ω4521) in the asgC767 ( rpoDEK598 ) mutant background in a manner similar to that seen in the asgA and asgB mutants. Because the asg mutants have very similar phenotypes and the asg genes encode proteins that appear to have regulatory functions, we hypothesize that the asg gene products function together in a regulatory pathway that is required for extracellular A-signal production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号