首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Intravaginal (IVAG) inoculation of wild-type herpes simplex virus type 2 (HSV-2) in mice causes epithelial infection followed by lethal neurological illness, while IVAG inoculation of attenuated HSV-2 causes epithelial infection followed by development of protective immunity against subsequent IVAG challenge with wild-type virus. The role of T cells in this immunity was studied by in vivo depletion of these cells with monoclonal antibodies. Three groups of mice were used for each experiment: nonimmune/challenged mice, immune/challenged mice, and immune depleted mice [immune mice depleted of a T-cell subset(s) shortly before challenge with HSV-2]. Mice were assessed for epithelial infection 24 h after challenge, virus protein in the vaginal lumen 3 days after challenge, and neurological illness 8 to 14 days after challenge. Monoclonal antibodies to CD4, CD8, or Thy-1 markedly reduced T cells in blood, spleen, and vagina, but major histocompatibility complex class II antigens were still partially upregulated in the vaginal epithelium after virus challenge, indicating that virus-specific memory T-cell function was not entirely eliminated from the vagina. Nevertheless, immune mice depleted of CD4+ and CD8+ T cells, Thy-1+ T cells, or CD8+ T cells alone had greater viral infection in the vaginal epithelium than nondepleted immune mice, indicating that T cells contribute to immunity against vaginal HSV-2 infection. All immune depleted mice retained substantial immunity to epithelial infection and were immune to neurological illness, suggesting that other immune mechanisms such as virus-specific antibody may also contribute to immunity.

Herpes simplex virus type 2 (HSV-2) is a sexually transmitted pathogen that infects the human genital tract. The prevalence of this infection is increasing worldwide, and at present over 20% of the adult U.S. population is infected with the virus (12). The virus spreads from the genital tract to the nervous system, and latent virus can persist in infected ganglia for long periods after primary infection is resolved. Activation of latent virus causes recurrent lesions in the genital tract and adjacent tissues (3). Infections are particularly severe in immunocompromised individuals and in infants who are infected during delivery through an infected birth canal. Oral treatment with acyclovir can reduce the severity of infections, but vaccination to prevent or control HSV-2 infections is highly desirable. Development of an effective vaccine to prevent genital HSV-2 infection in women is problematic at present because we do not clearly understand how to elicit strong protective immunity in the mucosa of the female genital tract. Investigations of immunity to genital HSV-2 infection in animal models are likely to play an important part in the development of a vaccine for human use. An added advantage of such investigations is that the basic information so obtained may be applicable to vaccines for other human sexually transmitted diseases.Experimental studies of host resistance to genital herpes have been carried out by using a mouse model (79). In this model, intravaginal (IVAG) inoculation of wild-type, thymidine kinase-expressing HSV-2 (TK+HSV-2) into young BALB/c mice caused epithelial infection followed by lethal neurological illness. The investigators also constructed an attenuated strain of the virus, ΔTKHSV-2, that contained a partial deletion of the thymidine kinase gene (9). Unlike its wild-type counterpart, the attenuated virus inoculated IVAG caused mild inflammation in the vagina and was incapable of lethal neurological spread. Importantly, IVAG inoculation of BALB/c mice with ΔTKHSV-2 induced a protective immunity to subsequent lethal challenge with TK+HSV-2 (9).Studies of immunity to vaginal HSV-2 infection in the young-mouse model were constrained by the relationship between vaginal infection and age (9, 21). Approximately 100% of weaned mice were susceptible to vaginal HSV-2 infection, but infection declined exponentially with increasing host age; fewer than 10% of mice were susceptible to HSV-2 at 14 to 16 weeks of age (9). However, several studies have shown that adult female mice treated with progesterone or sequentially with estradiol and Depo-Provera (E/DP-treated mice) became uniformly susceptible to vaginal HSV-2 infection (1, 13, 16). Vaginal infection of E/DP-treated mice with attenuated HSV-2 produced immunity that protected the mice against later infection by wild-type virus (16). Interestingly, 35 of 36 nonimmune mice showed immunostaining of virus proteins in the vaginal epithelium 24 h after IVAG inoculation of HSV-2, while only 1 of 9 immune mice challenged with the virus showed epithelial infection at this time (16). This indicates that virus infection or replication in the vaginal epithelium was rapidly and severely inhibited in the immune mice and suggests that local immune mechanisms in the vaginal mucosa were important in protection against challenge infection.One local immune mechanism that could prevent infection of the vaginal epithelium is neutralization of challenge virus by secreted antibody in the vaginal lumen. McDermott et al. (7) and Milligan and Bernstein (11) demonstrated immunoglobulin G (IgG) antibodies specific for HSV-2 in vaginal secretions of young immune mice; antiviral IgA either was not detected or was detected only at very low titers in vaginal fluids in these mice. More recently, Parr et al. (14) found IgG viral antibody in vaginal secretions of adult immune mice at a mean titer of 6,200, whereas the mean titer of viral secretory IgA (S-IgA) in the same secretions was only 1.9. The protective role of IgG and S-IgA in vaginal secretions of adult immune mice has also been studied (15). Unfractionated vaginal antibodies from immune and nonimmune mice and affinity-purified IgG and S-IgA from immune vaginal secretions were adjusted to their in vivo concentrations in the vagina. Neutralization of HSV-2 was studied by incubating the virus in the antibody preparations in vitro, followed by inoculation into vaginas of nonimmune test mice. Virus was neutralized by unfractionated immune antibody and by purified immune IgG but not by unfractionated nonimmune antibody or by purified immune S-IgA. To determine whether immune IgG alone could protect against vaginal HSV-2 infection in vivo, purified serum IgG from immune and nonimmune donors was passively transferred to nonimmune recipients 72 h prior to virus challenge in the vagina. Passively transferred immune IgG reduced virus infection of vaginal epithelium, shed virus protein concentrations in the vaginal lumen, and illness scores, even though the viral antibody titers in serum and vaginal secretions of recipient mice were only 29 and 8%, respectively, of those in standards prepared from actively immunized mice. Collectively, the data indicated that IgG viral antibody in vaginal secretions of immune mice provided early protection against vaginal challenge infection, probably by neutralizing virus in the vaginal lumen before it could infect the epithelium. In contrast, viral S-IgA antibody contributed relatively little to immune protection of the vagina in this model.Another immune mechanism that might reduce infection of the vaginal epithelium after viral challenge is T-cell-mediated immunity. Adoptive transfer of lymphocytes from the genital lymph nodes of immune mice protected nonimmune mice against neurological illness after vaginal challenge with wild-type HSV-2 (8). This observation indicates that virus-specific T cells, if present in sufficient numbers, can protect against neurological illness, but it remains unknown whether the T cells that are actually present in immune mice protect against either vaginal epithelial infection or neurological illness. Few T cells were present in the vaginas of normal mice (17), but the numbers of CD4+, CD8+, and Thy-1.2+ T cells increased markedly in the vaginas of immune mice after challenge with wild-type virus (16). Similarly, we have shown that T cells with the memory phenotype continuously recirculate through the vaginal epithelium and that the number of recirculating memory cells was markedly increased when immune mice were challenged in the vagina with HSV-2 (5). The presence of specific HSV-2 memory T cells in the vaginal epithelium of immune mice is also indicated by the rapid (less than 24 h) upregulation of major histocompatibility complex (MHC) class II antigen expression in the epithelium after vaginal challenge with HSV-2. In comparison, upregulation of MHC class II antigens was not detected in the vaginal epithelium until 3 days after a primary vaginal HSV-2 infection in nonimmune mice (16). In the present study, we used the adult mouse model to examine the effects of acute in vivo depletion of T-cell subsets in immune mice on vaginal epithelial infection and neurological illness after vaginal challenge with wild-type HSV-2.  相似文献   

2.
This investigation evaluated immunity to vaginal herpes simplex virus type 2 (HSV-2) infection after local or parenteral immunization with attenuated HSV-2. Vaginal immunization induced sterilizing immunity against challenge with a high dose of wild-type virus, whereas parenteral immunizations protected against neurologic disease but did not entirely prevent infection of the vagina. Vaginal immunization caused 86- and 31-fold increases in the numbers of immunoglobulin G (IgG) plasma cells in the vagina at 6 weeks and 10 months after immunization, whereas parenteral immunizations did not increase plasma cell numbers in the vagina. Vaginal secretion/serum titer ratios and specific antibody activities in vaginal secretions and serum indicated that IgG viral antibody was produced in the vagina and released into vaginal secretions at 6 weeks and 10 months after vaginal immunization but not after parenteral immunizations. In contrast to the case for plasma cells, the numbers of T and B lymphocytes in the vagina were similar in vaginally and parenterally immunized mice. Also, lymphocyte numbers in the vagina were markedly but similarly increased by vaginal challenge with HSV-2 in both vaginally and parenterally immunized mice. Lymphocyte recruitment to the vagina after virus challenge appeared to involve memory lymphocytes, because it was not observed in nonimmunized mice. Thus, local vaginal immunization with attenuated HSV-2 increased the number of IgG plasma cells in the vagina and increased vaginal secretion/serum titer ratios to 3.0- to 4.7-fold higher than in parenterally immunized groups but caused little if any selective homing of T and B lymphocytes to the vagina.  相似文献   

3.
Recombinant vesicular stomatitis virus (rVSV) vectors offer an attractive approach for the induction of robust cellular and humoral immune responses directed against human pathogen target antigens. We evaluated rVSV vectors expressing full-length glycoprotein D (gD) from herpes simplex virus type 2 (HSV-2) in mice and guinea pigs for immunogenicity and protective efficacy against genital challenge with wild-type HSV-2. Robust Th1-polarized anti-gD immune responses were demonstrated in the murine model as measured by induction of gD-specific cytotoxic T lymphocytes and increased gamma interferon expression. The isotype makeup of the serum anti-gD immunoglobulin G (IgG) response was consistent with the presence of a Th1-CD4+ anti-gD response, characterized by a high IgG2a/IgG1 IgG subclass ratio. Functional anti-HSV-2 neutralizing serum antibody responses were readily demonstrated in both guinea pigs and mice that had been immunized with rVSV-gD vaccines. Furthermore, guinea pigs and mice were prophylactically protected from genital challenge with high doses of wild-type HSV-2. In addition, guinea pigs were highly protected against the establishment of latent infection as evidenced by low or absent HSV-2 genome copies in dorsal root ganglia after virus challenge. In summary, rVSV-gD vectors were successfully used to elicit potent anti-gD Th1-like cellular and humoral immune responses that were protective against HSV-2 disease in guinea pigs and mice.  相似文献   

4.
Large numbers of polymorphonuclear leukocytes (PMNs) infiltrated the murine vaginal mucosa within 24 h after intravaginal inoculation with an attenuated strain of herpes simplex virus type 2 (HSV-2). The role of these cells in resolution of a primary genital infection and in protection of HSV-immune animals against challenge with a fully virulent HSV-2 strain was investigated. Depletion of greater than 95% of the PMNs at the vaginal mucosal surface prior to intravaginal inoculation with an attenuated HSV-2 strain resulted in significantly higher virus titers on days 3 to 7 but only slightly delayed resolution of the primary genital infection. These results suggest that neutrophils helped control the infection but that other immune mechanisms ultimately cleared the virus. Interestingly, depletion of PMNs from HSV-immune mice prior to challenge with a fully virulent HSV-2 strain resulted in a rise in virus titers to levels comparable to those of nonimmune mice and a more pronounced diminution of virus clearance from the vaginal mucosa despite the presence of HSV-specific B and T cells. Levels of gamma interferon (IFN-gamma) and HSV-specific antibody were comparable in neutrophil-depleted and control-treated immune mice following HSV-2 challenge, suggesting that RB6-8C5 treatment did not impair T- and B-cell function. Therefore, these results suggest that neutrophils play a role in limiting and clearing HSV-2 vaginal infections and that they are, in association with HSV-specific B and T cells, an important component in immune protection of the vaginal mucosa.  相似文献   

5.
The temporal relationships among the humoral and cellular immune responses were defined in BALB/c mice after vaginal or systemic infection with herpes simplex virus type 2 (HSV-2). After vaginal infection, mice showed evidence of clinical vaginitis on days 4 to 6 and HSV-2 replication was detected locally in the vaginal secretions, cervix, vagina, and uterus before the virus subsequently spread to the central nervous system. Death from encephalitis occurred between 7 and 10 days after infection. Vaginal infection was associated with significant delayed type hypersensitivity and splenic proliferative cell-mediated immune responses which appeared during the acute infection and waned by 3 weeks. There was almost no evidence of a systemic neutralizing antibody response at any time after vaginal infection. In contrast to the local vaginal infection, systemic i.v. HSV-2 infection induced a humoral response as well as the two cellular immune responses. Although both cellular immune responses appeared during the acute infection (days 6 to 14) and persisted for approximately 5 weeks, the humoral response appeared in surviving animals and persisted for at least 4 months. Thus, vaginal HSV-2 infection was associated primarily with transient cellular immune responses, whereas i.v. HSV-2 infection induced prolonged systemic humoral and cellular immune responses.  相似文献   

6.
We describe a novel function of the Fc receptor of herpes simplex virus type 1 (HSV-1), its ability to participate in antibody bipolar bridging. This refers to the binding of a single immunoglobulin G (IgG) molecule by its Fab end to its antigenic target and by its Fc end to an Fc receptor (FcR). We demonstrate that various immune IgG antibodies, including polyclonal rabbit antibodies to HSV-1 glycoproteins gC1 and gD1 and monoclonal human antibody to gD1 blocked rosetting of IgG-coated erythrocytes at IgG concentrations 100- to 2,000-fold lower than required for rosette inhibition with nonimmune IgG. Steric hindrance did not account for the observed differences between immune and nonimmune IgG since rabbit anti-gC1 F(ab')2 fragments did not block rosetting. Murine anti-gC1 or anti-gD1 IgG, a species of IgG incapable of binding by its Fc end to the HSV-1 FcR, also did not block rosetting. When cells were infected with a gC1-deficient mutant, anti-gC1 IgG inhibited rosetting to the same extent as nonimmune IgG. This indicates that binding by the Fab end of the IgG molecule was required for maximum inhibition of rosetting. Bipolar bridging was shown to occur even when small concentrations of immune IgG were present in physiologic concentrations of nonimmune IgG. The biologic relevance of antibody bipolar bridging was evaluated by comparing antibody- and complement-dependent virus neutralization of an FcR-negative mutant and its parent HSV-1 strain. By engaging the Fc end of antiviral IgG, the parent strain resisted neutralization mediated by the classical complement pathway. These observations provide insight into the role of the HSV-1 FcR in pathogenesis and may help explain the function of FcR detected on other microorganisms.  相似文献   

7.
The present study was undertaken to examine the effect of the hormonal environment on immunization with an attenuated strain of herpes simplex virus type 2 (HSV-2 TK(-)) and subsequent protection against challenge. Ovariectomized mice were administered saline (S; control), estradiol (E(2)), progesterone (P(4)), or a combination of estradiol and progesterone (E+P) and immunized intravaginally (IVAG) with HSV-2 TK(-). Three weeks later, the immunized mice were challenged IVAG with wild-type HSV-2. Mice that were immunized following E treatment were not protected, whereas complete protection against the challenge was seen in mice from the S- and P(4)-treated groups. In the P(4)-treated group, 15% of mice developed chronic pathology following TK(-) immunization. Interestingly, about 40% of the E+P-treated mice were also protected. Upon examination of viral shedding in the vaginal secretions, it was clear that protection against challenge was dependent on the ability of the TK(-) virus to cause productive genital infection under different hormonal conditions. In the protected mice (the S and P groups and part of the E+P group), induced vagina-associated lymphoid tissues composed of CD11c(+) dendritic cells and CD3(+) and CD4(+) T cells were formed transiently in the vaginal lamina propria from day 2 to day 5 postchallenge. These aggregates were absent in the unprotected mice (the E group and part of the E+P group). Significant HSV-2-specific activation of lymphocytes was observed in the local draining lymph nodes of protected mice. This response was absent in the unprotected groups. High titers of gB-specific local immunoglobulin A (IgA) antibodies were present in the vaginal secretions of S- and P(4)-treated immunized mice following HSV-2 challenge. The S-treated group of mice also had high gB-specific IgG titers. These studies show that sex hormones modify the induction of protective immune responses following IVAG immunization.  相似文献   

8.
Chlamydia trachomatis and Herpes simplex virus type 2 (HSV-2) genital infections pose a considerable public health challenge worldwide. Considering the high incidence of coinfections by the two pathogens, a combination vaccine that can be administered as a single regimen would be highly desirable. Recombinant Vibrio cholerae ghosts (rVCG) offer an attractive approach for the induction of humoral and cellular immune responses against human and animal pathogens. In this study, we evaluated a bivalent combination vaccine formulation comprising rVCG expressing chlamydial MOMP and HSV-2 glycoprotein D in mice for immunogenicity and protective efficacy against genital challenge with either pathogen. Mice immunized with the combination vaccine elicited secretory IgA and IgG2a antibodies to both chlamydial and HSV-2 antigens in serum and vaginal secretions. Robust antigen-specific mucosal and systemic T helper type 1 responses were induced in mice as measured by increased interferon-gamma levels produced by immune T cells in response to restimulation with target antigen in vitro. In addition, mice immunized with the combination vaccine were prophylactically protected from genital challenge with high doses of live Chlamydia and HSV-2. Thus, the combination vaccine regimen delivered by rVCG elicited adequate immune effectors that simultaneously protected against the individual pathogens.  相似文献   

9.
Depo-Provera (Depo) is a long-acting progestational formulation that is a popular form of contraception for women. In animal models of sexually transmitted diseases, it is used to facilitate infection. Here we report that treatment with Depo, in a mouse model of genital herpes simplex virus type 2 (HSV-2), altered immune responses depending on the length of time that animals were exposed to Depo prior to immunization. Mice immunized intravaginally (i.vag.) with an attenuated strain (TK(-)) of HSV-2 following longer (15 days) exposure to Depo (Depo 15 group) failed to show protection when challenged with wild-type HSV-2. In contrast, mice that were immunized shortly after Depo treatment (5 days; Depo 5 group) were fully protected and showed no genital pathology after HSV-2 challenge. High viral titers were detected in the vaginal washes of the Depo 15 group up to 6 days postchallenge. In contrast, no viral shedding was observed beyond day 3 postchallenge in the Depo 5 group. Following i.vag. TK(-) immunization, high levels of gamma interferon (IFN-gamma) were detected locally in vaginal washes of the Depo 5 group but not the Depo 15 group. After HSV-2 challenge, an early peak of IFN-gamma in the Depo 5 group coincided with clearance of the virus. In Depo 15 animals IFN-gamma was present throughout the 6 days postinfection. HSV-2-specific T-cell cytokine responses measured in the lymph node cells of Depo 5 TK(-)-immunized mice indicated a significantly higher Th1 response than that of Depo 15 TK(-)-immunized mice. The protection after HSV-2 challenge in the Depo 5 group correlated with increased local HSV-2 glycoprotein B (gB)-specific immunoglobulin G (IgG) and IgA responses seen in the vaginal secretions. The Depo 15 group had poor gB-specific antibody responses in the genital tract after HSV-2 challenge. These results indicate that longer exposure to Depo leads to poor innate and adaptive immune responses to HSV-2 that fail to protect mice from subsequent genital challenges.  相似文献   

10.
Herpes simplex virus type 1 (HSV-1) glycoprotein gE functions as an immunoglobulin G (IgG) Fc receptor (FcgammaR) that promotes immune evasion. When an IgG antibody binds by the F(ab')(2) domain to an HSV antigen, the Fc domain of some of the same antibody molecules binds to the FcgammaR, which blocks Fc-mediated functions. gE is a type 1 membrane glycoprotein with a large ectodomain that is expressed on the virion envelope and infected-cell surface. Our goal was to determine if immunizing with gE protein fragments could produce antibodies that bind by the F(ab')(2) domain to gE and block the FcgammaR, as measured by competitively inhibiting nonimmune human IgG binding to the FcgammaR. Three gE peptides were constructed in baculovirus spanning almost the entire ectodomain and used to immunize mice and rabbits. Two fragments were highly effective at producing antibodies that bind by the F(ab')(2) domain and block the FcgammaR. The most potent of these two antibodies was far more effective at blocking the FcgammaR than antibodies that are only capable of binding by the Fc domains to the FcgammaR, including anti-gC, anti-gD, and nonimmune IgG. These results suggest that immunizing with gE fragments has potential for preventing immune evasion by blocking activities mediated by the HSV-1 FcgammaR.  相似文献   

11.
The potential of therapeutic vaccination of animals latently infected with herpes simplex virus type 1 (HSV-1) to enhance protective immunity to the virus and thereby reduce the incidence and severity of recurrent ocular disease was assessed in a mouse model. Mice latently infected with HSV-1 were vaccinated intranasally with a mixture of HSV-1 glycoproteins and recombinant Escherichia coli heat-labile enterotoxin B subunit (rEtxB) as an adjuvant. The systemic immune response induced was characterized by high levels of virus-specific immunoglobulin G1 (IgG1) in serum and very low levels of IgG2a. Mucosal immunity was demonstrated by high levels of IgA in eye and vaginal secretions. Proliferating T cells from lymph nodes of vaccinated animals produced higher levels of interleukin-10 (IL-10) than were produced by such cells from mock-vaccinated animals. This profile suggests that vaccination of latently infected mice modulates the Th1-dominated proinflammatory response usually induced upon infection. After reactivation of latent virus by UV irradiation, vaccinated mice showed reduced viral shedding in tears as well as a reduction in the incidence of recurrent herpetic corneal epithelial disease and stromal disease compared with mock-vaccinated mice. Moreover, vaccinated mice developing recurrent ocular disease showed less severe signs and a quicker recovery rate. Spread of virus to other areas close to the eye, such as the eyelid, was also significantly reduced. Encephalitis occurred in a small percentage (11%) of mock-vaccinated mice, but vaccinated animals were completely protected from such disease. The possible immune mechanisms involved in protection against recurrent ocular herpetic disease in therapeutically vaccinated animals are discussed.  相似文献   

12.
R Ashley  A Wald    L Corey 《Journal of virology》1994,68(8):5284-5286
Herpes simplex virus (HSV)-specific immunoglobulin A, immunoglobulin G, and secretory-component-containing immunoglobulins were identified in cervical and salivary secretions from six subjects with oral HSV type 1 (HSV-1) infections. Anamnestic cervical and salivary antibody responses were detected in two HSV-1-seropositive women with newly acquired genital HSV-2 infections. These data implicate the common mucosal immune system in antibody responses to HSV.  相似文献   

13.
T-cell costimulation molecules B7-1 and B7-2 play an important role in activation of T cells to cytolytic effector function and production of cytokines. Interaction with B7 also causes T cells to upregulate surface molecules, such as CD40L, that effectively stimulate antibody responses in conjunction with cytokines. We have shown that mice lacking both B7-1 and B7-2 (B7KO mice), when infected intravaginally with virulent herpes simplex virus type 2 (HSV-2), developed more severe disease and higher mortality than their wild-type counterparts. We have now investigated the effects of B7 costimulation deficiency on induction of immune responses to HSV-2 infection of the genital tract. Fewer gamma interferon (IFN-gamma)-producing T cells were present in the genital lymph nodes of B7KO mice compared to wild-type mice, either acutely after primary infection or in recall responses. Less IFN-gamma and especially interleukin-10 were produced by B7KO mice, and cytolytic T-lymphocyte activity was also attenuated. Reduced expression of CD25 on CD4(+) T cells after infection of B7KO mice was consistent with deficits in T-cell activation to effector functions. Although HSV-specific immunoglobulin M (IgM) titers were comparable for both B7KO mice and wild-type mice, B7KO mice had significant deficits in HSV-specific serum IgG responses, with markedly reduced levels of IgG2a and IgG1. In addition, significantly less IgG was detected in the vaginal secretions of B7KO mice than in those from wild-type mice. CD4(+) T-cell expression of CD40L was depressed in B7KO mice in vivo and in vitro. Together with reduced cytokine production, these results suggest a mechanism for decreased IgG class switching or production. Thus, in the absence of B7 costimulation, na?ve T cells fail to undergo proper activation in response to HSV-2, which limits T-cell cytokine production, cytotoxic T lymphocyte activity, and provision of help for class-switched antibody responses.  相似文献   

14.
Herpes simplex type virus 2 (HSV-2) is a sexually transmitted pathogen that causes genital lesions and spreads to the nervous system to establish acute and latent infections. Systemic but not mucosal cellular and humoral immune responses are elicited by immunization of mice with a replication-defective mutant of HSV-2, yet the mice are protected against disease caused by subsequent challenge of the genital mucosa with virulent HSV-2. In this study, we investigated the role of immune serum antibody generated by immunization with a replication-defective HSV-2 vaccine prototype strain in protection of the genital mucosa and the nervous system from HSV-2 infection. Passive transfer of replication-defective virus-immune serum at physiologic concentrations to SCID or B-cell-deficient mice had no effect on replication of challenge virus in the genital mucosa but did significantly reduce the incidence and severity of genital and neurologic disease. In contrast, B-cell-deficient mice immunized with replication-defective HSV-2 were able to control replication of challenge virus in the genital mucosa, but not until 3 days postchallenge, and were not completely protected against genital and neurologic disease. Passive transfer of physiologic amounts of immune serum to immunized, B-cell-deficient mice completely restored their capacity to limit replication of challenge virus in the genital mucosa and prevented signs of genital and systemic disease. In addition, the numbers of viral genomes in the lumbosacral dorsal root ganglia of immunized, B-cell-deficient mice were dramatically reduced by transfer of immune serum prior to challenge. These results suggest that there is an apparent synergism between immune serum antibody and immune T cells in achieving protection and that serum antibody induced by vaccination with replication-defective virus aids in reducing establishment of latent infection after genital infection with HSV-2.  相似文献   

15.
HSV-2 vaccine is needed to prevent genital disease, latent infection, and virus transmission. A replication-deficient mutant virus (dl5-29) has demonstrated promising efficacy in animal models of genital herpes. However, the immunogenicity, protective efficacy, and non-replicative status of the highly purified clinical vaccine candidate (HSV529) derived from dl5-29 have not been evaluated. Humoral and cellular immune responses were measured in mice and guinea pigs immunized with HSV529. Protection against acute and recurrent genital herpes, mortality, latent infection, and viral shedding after vaginal HSV-2 infection was determined in mice or in naïve and HSV-1 seropositive guinea pigs. HSV529 replication and pathogenicity were investigated in three sensitive models of virus replication: severe combined immunodeficient (SCID/Beige) mice inoculated by the intramuscular route, suckling mice inoculated by the intracranial route, and vaginally-inoculated guinea pigs. HSV529 immunization induced HSV-2-neutralizing antibody production in mice and guinea pigs. In mice, it induced production of specific HSV-2 antibodies and splenocytes secreting IFNγ or IL-5. Immunization effectively prevented HSV-2 infection in all three animal models by reducing mortality, acute genital disease severity and frequency, and viral shedding. It also reduced ganglionic viral latency and recurrent disease in naïve and HSV-1 seropositive guinea pigs. HSV529 replication/propagation was not detected in the muscles of SCID/Beige mice, in the brains of suckling mice, or in vaginal secretions of inoculated guinea pigs. These results confirm the non-replicative status, as well as its immunogenicity and efficacy in mice and guinea pigs, including HSV-1 seropositive guinea pigs. In mice, HSV529 produced Th1/Th2 characteristic immune response thought to be necessary for an effective vaccine. These results further support the clinical investigation of HSV529 in human subjects as a prophylactic vaccine.  相似文献   

16.
Depo-provera, a long-acting progestational formulation, is widely used to facilitate infection of sexually transmitted diseases in animal models. We have previously reported that hormone treatments change susceptibility and immune responses to genital tract infections. In this study we compared the changes in susceptibility of mice to genital herpes simplex virus type 2 (HSV-2) after Depo-provera or a saline suspension of progesterone (P-sal). We found that following Depo-provera-treatment, mice had prolonged diestrus that lasted more than 4 weeks. This coincided with a 100-fold increase in susceptibility to genital HSV-2 compared to that of untreated mice. Mice given P-sal were in diestrous stage for 4 to 6 days before returning to irregular reproductive cycles. When these mice were infected at diestrus they showed a 10-fold increase in susceptibility compared to that of normal, untreated mice. P-sal-treated mice infected at estrus were susceptible to HSV-2, depending on the infectious dose. Normal, untreated mice in estrus were not susceptible to HSV-2, even at a high infectious dose of 10(7) PFU. In addition to alterations in susceptibility, Depo-provera treatment had inhibitory effects on immune responses to HSV-2. Mice immunized with HSV-2 protein (gB) and treated with Depo-provera showed significant lowering of local HSV-2-specific immunoglobulin G (IgG) and IgA in their vaginal washes. Mice immunized with an attenuated strain of HSV-2 2 weeks after Depo-provera treatment failed to develop protection when challenged intravaginally with wild-type HSV-2. In contrast, mice given progesterone and immunized at diestrus or estrus were completely protected from intravaginal challenge. These studies show that Depo-provera treatment changes susceptibility and local immune responses to genital HSV-2 infection. Animal models and vaccine strategies for sexually transmitted diseases need to consider the effect of hormone treatments on susceptibility and immune responses.  相似文献   

17.
Although sexually transmitted pathogens are capable of inducing pathogen-specific immune responses, vaginal administration of nonreplicating antigens elicits only weak, nondisseminating immune responses. The present study was undertaken to examine the potential of CpG-containing oligodeoxynucleotide (CpG ODN) for induction of chemokine responses in the genital tract mucosa and also as a vaginal adjuvant in combination with glycoprotein D of herpes simplex virus type 2 (HSV-2) for induction of antigen-specific immune responses. We found that a single intravaginal administration of CpG ODN in mice stimulates a rapid and potent response of CC chemokines macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, and RANTES as well as of CXC chemokines MIP-2 and IP-10 in the vagina and/or the genital lymph nodes. Importantly, intravaginal vaccination with recombinant gD2 in combination with CpG ODN gave rise to a strong antigen-specific Th1-like immune response in the genital lymph nodes as well as the spleens of the vaccinated mice. Further, such an immunization scheme conferred both systemic and mucosal immunoglobulin G antibody responses as well as protection against an otherwise lethal vaginal challenge with HSV-2. These results illustrate the potential of CpG ODN for induction of potent chemokine responses in the genital tract and also as a vaginal adjuvant for generation of Th1-type mucosal and systemic immune responses towards a nonreplicating antigen derived from a sexually transmitted pathogen. These data have implications for the development of a mucosal vaccine against genital herpes and possibly other sexually transmitted diseases.  相似文献   

18.
Ruan  Ping  Yang  Chun  Su  Jianjia  Cao  Ji  Ou  Chao  Luo  Chengpiao  Tang  Yanping  Wang  Qi  Yang  Fang  Shi  Junlin  Lu  Xiaoxu  Zhu  Linqun  Qin  Hong  Sun  Wen  Lao  Yuanzhi  Li  Yuan 《Virology journal》2013,10(1):1-11
Herpes simplex virus type-1(HSV-1) and HSV-2 are important human pathogens that cause significant ocular and urogenital complications, respectively. We have previously shown that HSV-1 virions lacking glycoprotein K (gK) are unable to enter into neurons via synaptic axonal membranes and be transported in either retrograde or anterograde manner. Here, we tested the ability of HSV-1 (F) gK-null to protect against lethal challenge with either highly virulent ocular HSV-1 (McKrae strain), or genital HSV-2 (G strain). The gK-null virus vaccine efficiently protected mice against lethal vaginal infection with either HSV-1(McKrae) or HSV-2 (G). Female mice were immunized via a single intramuscular injection with 106 PFU of the gK-null virus. Immunized mice were treated with Depo-Provera fourteen days after vaccination and were challenged via the vaginal route one week later. Ninety percent of mice vaccinated with the gK-null virus survived HSV-1 (McKrae) challenge, while 70% of these mice survived after HSV-2 (G) challenge. Moreover, all vaccinated mice exhibited substantially reduced disease symptoms irrespective of HSV-1 or HSV-2 challenge as compared to the mock vaccinated challenge group. T-cell memory immune responses to specific glycoprotein B (gB) and glycoprotein D (gD) peptide epitopes were detectable at 7 months post vaccination. These results suggest that the highly attenuated, non-neurotropic gK-null virus may be used as an effective vaccine to protect against both virulent HSV-1 and HSV-2 genital infections and induce lasting immune responses.  相似文献   

19.
Herpes simplex virus 2 (HSV-2) 0ΔNLS is a live HSV-2 ICP0 - mutant vaccine strain that is profoundly attenuated in vivo due to its interferon-hypersensitivity. Recipients of the HSV-2 0ΔNLS vaccine are resistant to high-dose HSV-2 challenge as evidenced by profound reductions in challenge virus spread, shedding, disease and mortality. In the current study, we investigated the requirements for HSV-2 0ΔNLS vaccine-induced protection. Studies using (UV)-inactivated HSV-2 0ΔNLS revealed that self-limited replication of the attenuated virus was required for effective protection from vaginal or ocular HSV-2 challenge. Diminished antibody responses in recipients of the UV-killed HSV-2 vaccine suggested that antibodies might be playing a critical role in early protection. This hypothesis was investigated in B-cell-deficient μMT mice. Vaccination with live HSV-2 0ΔNLS induced equivalent CD8+ T cell responses in wild-type and μMT mice. Vaccinated μMT mice shed ~40-fold more infectious HSV-2 at 24 hours post-challenge relative to vaccinated wild-type (B-cell+) mice, and most vaccinated μMT mice eventually succumbed to a slowly progressing HSV-2 challenge. Importantly, passive transfer of HSV-2 antiserum restored full protection to HSV-2 0ΔNLS-vaccinated μMT mice. The results demonstrate that B cells are required for complete vaccine-induced protection against HSV-2, and indicate that virus-specific antibodies are the dominant mediators of early vaccine-induced protection against HSV-2.  相似文献   

20.
Many microorganisms encode immune evasion molecules to escape host defenses. Herpes simplex virus type 1 glycoprotein gC is an immunoevasin that inhibits complement activation by binding complement C3b. gC is expressed on the virus envelope and infected cell surface, which makes gC potentially accessible to blocking antibodies. Mice passively immunized with gC monoclonal antibodies prior to infection were protected against herpes simplex virus challenge only if the gC antibodies blocked C3b binding. Mice treated 1 or 2 days postinfection with gC monoclonal antibodies that block C3b binding had less severe disease than control mice treated with nonimmune immunoglobulin G (IgG). Mice immunized with gC protein produced antibodies that blocked C3b binding to gC. Immunized mice were significantly protected against challenge by wild-type virus, but not against a gC mutant virus lacking the C3b binding domain, suggesting that protection was mediated by antibodies that target the gC immune evasion domain. IgG and complement from subjects immunized with an experimental herpes simplex virus glycoprotein gD vaccine neutralized far more mutant virus defective in immune evasion than wild-type virus, supporting the importance of immune evasion molecules in reducing vaccine potency. These results suggest that it is possible to block immune evasion domains on herpes simplex virus and that this approach has therapeutic potential and may enhance vaccine efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号