首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Benthic macroinvertebrate distribution was examined in relation to channel characteristics (including stability), substratum, hydraulic variables, primary production (chlorophyll a ) and coarse particular organic matter (CPOM) in an alpine glacial stream, the Mutt (Upper Rhône valley, Switzerland). Co-inertia analysis and canonical correspondence analysis were used to identify the major environmental gradients influencing community variations.
2. The Mutt (length: 3.6 km, altitudinal range: 1800–3099 m a.s.l.) exhibited typical characteristics of a kryal stream. Average summer temperature remained below 2 °C immediately downstream from the snout but was on average 5 °C higher 1700 m downstream. Seasonal variations in water sources were evidenced by the high late-summer (September) contribution of groundwater with increased conductivity.
3. Sixty-six taxa were recorded from the five reaches sampled at three periods (snowmelt, ice melt and low water in late summer) in 1996 and 1997, of which 29 were Chironomidae. Three taxa of Diamesinae were the first colonizers of the stream below the glacier, but 16 taxa, including Ephemeroptera, Plecoptera and Trichoptera, were already recorded 200 m downstream. Water depth, channel slope and Pfankuch's Index of channel stability were strongly correlated with the longitudinal faunal gradient. Maximum temperature, current velocity and water conductivity were also correlated, but to a lesser extent.
4. The rapid incorporation of non-chironomid taxa into the stream community represented a departure from Milner & Petts's (1994) conceptual model of invertebrate succession downstream of glacial margins. The results confirmed that glacial stream communities are primarily driven by physical determinants.  相似文献   

2.
1. The longitudinal distribution of macroinvertebrates was investigated in June, August and September 1996 and 1997 in the Conca glacial stream and its tributary (Italian Alps; 46°N, 10°E). The principal aim was to test the 22 model that predicts the succession of faunal groups downstream of the glacial snout in relation to water temperature and channel stability. The effect of a non‐glacial tributary on the taxonomic richness and density patterns occurring in the glacial stream was also considered. 2. Channel stability showed an atypical longitudinal trend in the Conca glacial stream, being high in the upper part with Pfankuch Index values between 30 and 33. Water temperature exceeded 6 °C at all stations, with average values below 2 °C occurring only within 700 m from the glacial snout. 3. Taxonomic richness and diversity increased downstream. Taxonomic richness in the glacial stream (at about 1.5 km from the glacier) was comparable with the tributary and the reach after the confluence. Abundance also increased downstream in the glacial stream, but not as greatly as the number of taxa. 4. At higher taxonomic levels, the community structure in the tributary stations appeared to be similar to the two stations in the glacial stream just upstream of the confluence. The effect of the tributary was evident mainly at the genus or species level of the Chironomidae community. Some taxa found in the non‐glacial stream (e.g. Cricotopus fuscus, Eukiefferiella coerulescens, Metriocnemus sp., Paratrichocladius rufiventris, P. skirwitensis, Rheocricotopus effusus and Smittia sp.) were found also in the Conca stream but only after the confluence. 5. The upper glacial reach (within 700 m from the glacier snout) was dominated by the chironomid Diamesa spp. Less than 400 m from the glacier other Diamesinae (Pseudokiefferiella parva) and a few Orthocladiinae, especially Orthocladius (Euorthocladius) rivicola gr., colonized the stream. Some Diamesinae maintained relatively dense populations at mean water temperature around 5 °C, while some Orthocladiinae colonized reaches with mean water temperature <3 °C. 6. Contrary to the 22 model, Dipteran families such as Empididae and Limoniidae were more abundant in the upper stations than Simuliidae; non‐insects such as Nematoda and Oligochaeta were also numerous at some sites. Leuctridae, Taeniopterygidae and Nemouridae were the first Plecoptera to appear upstream, while Chloroperlidae were restricted to the lower reaches. Among Ephemeroptera, Heptageniidae were more abundant than Baetidae in the glacial sites. 7. In this glacial system channel stability and maximum temperature did not show the expected longitudinal trend and thus a typical kryal community was confined within 700 m from the glacier snout where summer mean water temperature was below 4 °C.  相似文献   

3.
1. Water abstraction from glacial rivers is an important characteristic of hydroelectric power schemes in Alpine regions. Streams in the Valais region of Switzerland have been particularly affected. 2. Invertebrate distributions are described in La Borgne d'Arolla, a glacial stream with icemelt-, snowmelt- and groundwater-dominated tributaries. The icemelt-dominated streams have been affected by abstractions for more than 30 years. 3. The glacial streams contain only Chironomidae (Diamesa), and are devoid of fauna for between 200 and 500 m below the glacier snouts. 4. Immediately below the water intakes the streams are intermittent, flowing only during system purges and high floods, and are devoid of fauna for short distances (<1.5km). 5. Further downstream, abstraction of glacial meltwater increases the importance of snowmelt and groundwater, increasing water temperatures, improving water clarity and increasing the length of krenal/rhithral streams at the expense of kryal streams. 6. A community including Chironomidae, Simuliidae, Baetidae, Nemouridae, Limnephilidae and Chloroperlidae occurs as soon as a permanent flow is maintained by tributary runoff, and the channel becomes stable. 7. A wide range of taxa inhabit snowmelt- and groundwater-dominated tributary streams with stable channels, often at much higher altitudes than the main river. The tributaries provide sources for rapid colonization of the main channel following ice retreat or physical disturbance. 8. Purges and high floods are important disturbances within the main channel. Recovery may be rapid because of drift from tributaries, but sites influenced by frequent disturbances have reduced faunas in comparison to stable channel sites. 9. This study supports the model proposed by Milner & Petts (1994) and shows that deterministic responses of macroinvertebrate communities may be observed to changes of temperature, turbidity, flow regime and channel stability.  相似文献   

4.
SUMMARY 1. We examined the thermal patterns of the surface waters in the catchment of the Roseg River, which is fed by the meltwaters of two valley glaciers. One of the glaciers has a lake at its terminus. The river corridor comprised a proglacial stream reach below one glacier, the glacier lake outlet stream, a 2.5‐km long complex floodplain and a constrained reach extending to the end of the catchment. 2. Temperatures were continuously measured with temperature loggers at 27 sites between 1997 and 1998. Moreover, from 1997 to 1999, spot measurements were taken at 33–165 floodplain sites (depending on water level) at monthly intervals. 3. The temperature regime of glacial streams, including the glacier lake outlet, was characterised by rapidly increasing temperatures in April and May, a moderate decline from June to September (period of glacial melt) and a subsequent fast decline in autumn. During summer, the lake increased temperatures in the outlet stream by 2–4 °C, compared with the adjacent proglacial stream reach. 4. In the main channel (thalweg) of the Roseg River, annual degree‐days (DD) ranged from 176 DD in the upper proglacial reach to 1227 DD at the end of the catchment. 5. Thermal variation among different channels within the floodplain was higher than the variation along the entire main channel. Floodplain channels lacking surface connection to the main channel accumulated up to 1661 annual DDs. 6. Thermal heterogeneity within the floodplain was linked to the glacial flow pulse. With the onset of ice melt, temperatures in the main channel and in channels surface‐connected to the main channel began to decline, whereas in surface‐disconnected channels temperatures continued to increase; as a consequence, thermal heterogeneity at the floodplain scale rose slightly until September. 7. High thermal heterogeneity was not anticipated in the harsh environment of a largely glacierised alpine catchment. The relatively wide range of thermal environments may contribute to the highly diverse zoobenthic community.  相似文献   

5.
The headwaters of karst rivers experience considerable hydrological variability, including spates and streambed drying. Extreme summer flooding on the River Lathkill (Derbyshire, UK) provided the opportunity to examine the invertebrate community response to unseasonal spate flows, flow recession and, at temporary sites, streambed drying. Invertebrates were sampled at sites with differing flow permanence regimes during and after the spates. Following streambed drying at temporary sites, dewatered surface sediments were investigated as a refugium for aquatic invertebrates. Experimental rehydration of these dewatered sediments was conducted to promote development of desiccation-tolerant life stages. At perennial sites, spate flows reduced invertebrate abundance and diversity, whilst at temporary sites, flow reactivation facilitated rapid colonisation of the surface channel by a limited number of invertebrate taxa. Following streambed drying, 38 taxa were recorded from the dewatered and rehydrated sediments, with Oligochaeta being the most abundant taxon and Chironomidae (Diptera) the most diverse. Experimental rehydration of dewatered sediments revealed the presence of additional taxa, including Stenophylax sp. (Trichoptera: Limnephilidae) and Nemoura sp. (Plecoptera: Nemouridae). The influence of flow permanence on invertebrate community composition was apparent despite the aseasonal high-magnitude flood events. Flow permanence was also critical in determining the community response to the spate flows. Following streambed drying at temporary sites, the surficial sediments overlying the karstic bedrock functioned as an effective refugium for several taxa. The development of aquatic insects following experimental rehydration indicated that these taxa survived in dewatered sediments as desiccation-resistant eggs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: Sonja Stendera  相似文献   

6.
1. Generalized additive models (GAMs) were used to predict macroinvertebrate taxonomic richness and individual taxon diversity at the reach level across seven European glacier-fed river sites from a set of 11 environmental variables. Maximum water temperature and channel stability were found to explain the most deviance in these models.
2. Using this information, and data from other recent studies of glacier-fed rivers, a modified conceptual model based on Milner & Petts (1994) is presented which predicts the occurrence of macroinvertebrate families and subfamilies as determined by maximum water temperature ( T max) and channel stability. This deterministic model only applies to the summer meltwater period when abiotic variables drive community structure.
3. Where maximum water temperature is below 2 °C, Diamesinae chironomids are typically the sole inhabitants, but where T max >2 °C but <4 °C Orthocladiinae are found and, where channels are more stable, Tipulidae and Oligochaeta also occur. Above 4 °C Perlodidae, Taeniopterygidae, Baetidae, Simuliidae and Empididae can be expected to be part of the glacier-fed river community, particularly in Europe.
4. At other times of the year when environmental conditions ameloriate, glacial rivers support higher macroinvertebrate abundance and diversity, with a number of taxa present that are not found during the summer melt period.
5. Dispersal constraints influence macroinvertebrate assemblages of many glacier-fed rivers located on islands and in some alpine areas.  相似文献   

7.
A critical component in the effort to restore the Kissimmee River ecosystem is the reestablishment of an aquatic invertebrate community typical of free‐flowing rivers of the southeastern United States. This article evaluates early responses of benthic and snag‐dwelling macroinvertebrates to restoration of flow and habitat structure following Phase I construction (interim period) of the Kissimmee River Restoration Project. Replicate benthic and snag samples were collected from remnant river channels in Pool A (Control site), and Pool C, the site of the first phase of restoration (Impact site). Samples were collected quarterly for 2 years prior to construction (baseline) and monthly or quarterly for 3 years following Phase I construction and restoration of flow. Baseline benthic data indicate a community dominated by taxa tolerant of organic pollution and low levels of dissolved oxygen, including the dipterans Chaoborus americanus (Chaoboridae) and the Chironomus/Goeldichironomus group (Chironomidae). Baseline snag data indicate a community dominated by gathering‐collectors, shredders, and scrapers. Passive filtering‐collector invertebrates were rare. Following restoration of flow, benthic invertebrate communities are numerically dominated by lotic taxa, including bivalves and sand‐dwelling chironomids (e.g. Polypedilum spp., Cryptochironomus spp., and Tanytarsini). Snags within the Phase I area support an invertebrate community dominated by passive filtering‐collectors including Rheotanytarsus spp. (Chironomidae) and Cheumatopsyche spp. (Hydropsychidae). Results indicate that restoration of flow has resulted in ecologically significant changes to the river habitat template not observed in Pool A. Observed shifts in benthic and snag macroinvertebrate community structure support previously developed hypotheses for macroinvertebrate responses to hydrologic restoration.  相似文献   

8.
1. The glacial relict, Mysis relicta, which occurs mainly in unproductive cold water habitats, shows increased mortality rates in temperatures above 16–18 °C. Using a 12‐year data set the growth, mortality and fat stores of Mysis in Lough Neagh, an increasingly hypertrophic lake which lacks a thermal refuge and which is subject to warming, were investigated. 2. Mysis showed a significant reduction in fat stores on reaching sexual maturity, contrary to studies elsewhere. 3. The contributions of temperature and eutrophication (total phosphorus, chlorophyll‐a concentrations) to growth, mortality and the timing and duration of developmental events were investigated by regression. 4. Water temperatures rose between 1994 and 2005 and the time when temperatures exceeded 16 °C doubled over this period. Juvenile and adult growth rates declined and the duration of the juvenile stage increased in warmer years. Eutrophication also affected these variables but, in general, to a lesser extent than temperature. 5. Year class strength (YCS) declined by a factor of 10 over the study period. YCS was independent of temperature up to 2000 °C degree days (>4 °C) but declined steeply above that point. Temperature was more important than eutrophication in predicting mortality and YCS. YCS was positively correlated with the length of time water temperature was below 7 °C, the upper temperature for Mysis breeding. 6. An established bioenergetic model predicted that water temperature and the timing of embryo release would have appreciable effects on Mysis viability. It also indicated that Mysis would lose mass at summer temperatures, consistent with the observed fat decline.  相似文献   

9.
1. We examined 60 clear, stained and glacial lakes in Alaska to quantify the relative importance of climate setting, morphometry, transparency, and lake typology influences on various thermal characteristics including duration of growing season, water temperature, mixing depth (MD) and heat content. We used analysis of variance (ANOVA ) to test for differences in thermal characteristics in association with lake type and employed simple and multiple regression techniques to determine functional relationships between variables. 2. Latitude accounted for 60% of the total variance in length of growing season. Although the date of maximum heat content was consistent among lake types, stained lakes had longer growing seasons compared with clear and glacially turbid lakes. 3. Maximum water temperatures were approximately 3 °C higher in stained lakes and 3 °C lower in glacial lakes compared with clear lakes. Mean water column temperature was significantly lower in glacial lakes (5.9 °C) compared with clear lakes (7.4 °C), but there was no statistical difference between clear and stained lakes (7.2 °C) or between stained and glacial lakes. Maximum surface temperatures were positively related (r2=0.51) to colour (humic stain), but negatively related (r2=0.40) to inorganic turbidity (glacial silt). 4. Only about half of the lakes in our data set underwent summer stratification. None of the glacial lakes developed a distinct thermocline, but stained lakes had shallower MDs (mean 8 m) than clear lakes (mean 12 m). Thus, the MD to total depth ratio for glacial lakes was unity compared with mean values of 0.66 for clear lakes and 0.34 for stained lakes. Fetch explained a significant fraction (51%) of the total variance in MD. Considering all lakes, MD was inversely related to transparency (Secchi depth). In contrast, considering only stratified clear and stained lakes, MD was positively related to Secchi depth (SD), the fraction of the total variance explained was 23%. The sign of the slope was dependent on the mixture of lake types. 5. Despite significant (ANOVA ) differences in water temperatures, growing season, and MDs among the three lake types, there were no statistical differences in the summer heat budget associated with lake type. In addition, heat budgets were poorly correlated with lake area, depth and volume. In contrast, mean water column temperature was strongly and inversely related (r2=0.77) to mean depth. 6. Potential explanations for the similarity in summer heat budget among lake types and weak correlation with morphometry were attributed to different patterns in vertical heat distribution associated with lake typology (colour and turbidity) differences. 7. Multiple linear regression including climatic (latitude and altitude), morphometric, and lake typology (colour and turbidity) factors demonstrated a hierarchical (climate–morphometry–typology) regulation of growing season characteristics, water temperatures, stratification and heat retention. A regional and hierarchical framework for lake thermal characteristics adds to our understanding of potential responses to climatic change and may be important for regional management objectives for fisheries.  相似文献   

10.
Many populations of shortnose sturgeon, Acipenser brevirostrum, in the southeastern United States continue to suffer from poor juvenile recruitment. High summer water temperatures, which may be exacerbated by anthropogenic activities, are thought to affect recruitment by limiting available summer habitat. However, information regarding temperature thresholds of shortnose sturgeon is limited. In this study, the thermal maximum method and a heating rate of 0.1°C min−1 was used to determine critical and lethal thermal maxima for young-of-the-year (YOY) shortnose sturgeon acclimated to temperatures of 19.5 and 24.1°C. Fish used in the experiment were 0.6 to 35.0 g in weight and 64 to 140 days post hatch (dph) in age. Critical thermal maxima were 33.7°C (±0.3) and 35.1°C (±0.2) for fish acclimated to 19.5 and 24.1°C, respectively. Critical thermal maxima significantly increased with an increase in acclimation temperature (p < 0.0001). Lethal thermal maxima were 34.8°C (±0.1) and 36.1°C (±0.1) for fish acclimated to 19.5 and 24.1°C, respectively. Lethal thermal maxima were significantly affected by acclimation temperature, the log10 (fish weight), and the interaction between log10(fish weight) and acclimation temperature (p < 0.0001). Thermal maxima were used to estimate upper limits of safe temperature, thermal preferences, and optimal growth temperatures of YOY shortnose sturgeon. Upper limits of safe temperature were similar to previous temperature tolerance information and indicate that summer temperatures in southeastern rivers may be lethal to YOY shortnose sturgeon if suitable thermal refuge cannot be found.  相似文献   

11.
SUMMARY 1. Mathematical functions developed in long‐term laboratory experiments at different constant temperatures were combined with daily water temperatures for 1991–93 in eight Austrian streams and rivers to simulate the complex life histories and reproductive capacities of two freshwater amphipods: Gammarus fossarum and G. roeseli. The functions describe brood development times, hatching success, times taken to reach sexual maturity, growth, and fecundity. The sex ratio was assumed to be 0.5 and an autumn–winter reproductive resting period was based on observations of six river populations. Simulations included summer‐cold mountain streams, summer‐warm lowland rivers, watercourses fed by groundwater or influenced by heated effluents, and varying amplitudes of change within each year. 2. A fortran 77 computer program calculated growth from birth to sexual maturity of first‐generation females born on the first day of each calendar month in 1991, and the numbers of offspring successfully released from the maternal broodpouch in successive broods. At the 1991–93 regimes of temperature, individual G. fossarum released 127–208 offspring and G. roeseli released 120–169 in seven or eight successive broods during life spans of less than 2 years in six rivers. Life spans extended into a third year in the relatively cool River Salzach (mean temperature 7.5 °C). They were not completed in the very cold River Steyr (mean 5.6, range 2.5–7.9 °C), where G. fossarum produced five broods (totalling 120 offspring) and G. roeseli only two broods (totalling 28 offspring) in the 3‐year period. Except in the Steyr, some offspring grew rapidly to maturity and produced several second‐generation broods during the simulation period; in the warmest rivers some third‐generation broods were also produced. Birth dates, early or late in the year, influenced the subsequent production of broods and young, depending on temperature regimes in particular rivers. Total numbers of offspring produced by the second and third generations represent the theoretical reproductive capacities of G. fossarum and G. roeseli. Minimum and maximum estimates mostly ranged from 100 to 17 300, were larger for G. fossarum except in the warmest river (March), where temperatures rose above 20 °C for 56–78 days in summer, and largest (maximum 37 600) in the River Voeckla heated by discharge from a power‐station (mean 11.5 °C). Results from the simulations agree with preliminary assessments of relative abundances for G. fossarum and G. roeseli in several of the study rivers, but in some one or both species appear to be absent. On a wider scale, the present study confirms that G. fossarum is potentially more successful than G. roeseli in cool rivers but indicates that neither species is likely to maintain viable populations in cold rivers strongly influenced by snow and ice‐melt. 3. The potential impacts of future river warming by increases of 1, 2 and 3 °C, due to climate change, vary according to river site, date of fertilisation, the extent of temperature increase, and the species of Gammarus. For Austrian rivers with mean temperatures in the range c. 7–10 °C, future warming would result in modest changes in the life histories and reproductive capacities of both G. fossarum and G. roeseli; the former would find improved temperature conditions in watercourses that are currently very cold throughout the year, and both would find warm rivers less tolerable. 4. The high potential reproductive capacity of gammarids, with rapid production of numerous successive broods when sexual maturity is finally achieved, indicates adaptation to high mortality during the relatively long period of growth to sexual maturity, and provides scope for an opportunistic strategy of emigration from centres of population abundance to colonise new territory when conditions are favourable. Rapid expansion of populations is desirable to combat the effects of environmental catastrophes, both frequent and short‐term floods and droughts, and more long‐term climatic changes that have occurred several times in glacial–interglacial periods during the current Ice Age.  相似文献   

12.
Investigations on invertebrate fauna were carried out at fifteen sites in some chosen streams of the Caucasus (Azerbaijan SSR) in March 1970. Seventy-five taxa of invertebrates were found in the investigated streams. Chironomidae constituted the most numerous group at all sites, Ephemeroptera, Plecoptera, and Simuliidae being other important components of the fauna. On the basis of percentage structure of dominance in the examined streams four types of faunistic communities were distinguished. The most common one was the type characteristic of high mountain streams and rivers with Diamesa sp. (gr. latitarsis) predominant. Nevertheless, in springtime this community was characterized by a greater number of taxa and a greater abundance of specimens as compared with the summer period. It may be thus assumed that the spring period in high mountain streams and rivers is more conducive to the development of the invertebrate fauna.  相似文献   

13.
1. Macroinvertebrates were collected and physico‐chemical variables measured at 16 stream sites in Western Greenland during July 1999. Eight sites were located on Disko Island in an arctic oceanic climate and eight sites in the Kangerlussuaq area close to the icecap where the climate is arctic continental. The streams had different water sources (glacial, groundwater, snowmelt and lake water). 2. The streams showed pronounced differences in water temperature (2.2–17.3 °C), concentrations of suspended solids (0–2400 mg L?1), and conductivity (10–109 μS cm?1). Principal component analysis (PCA) analysis of the physico‐chemical variables separated the Disko Island sites into a distinct group, whereas the sites in the Kangerlussuaq area were more dispersed. 3. A total of 56 macroinvertebrate species were found, including 31 species of Chironomidae, the most abundant of which was Orthocladius thienemanni. Diamesa sp. was only the sixth most abundant chironomid taxon. Species composition varied between sites, and abundance varied from about 20 individuals m?2 in a glacier fed stream to more than 16 000 m?2 in a lake outlet. 4. The macroinvertebrate communities of the 16 streams were separated into five TWINSPAN groups reflecting water source, irrespective of region. Lake outlets and ground‐water‐fed streams had the highest species richness and abundance, temperature and bed stability, while glacier‐fed streams were characterized by low species richness, abundance, temperature, bed stability and high concentrations of suspended solids. Macroinvertebrate species richness was positively correlated with water temperature and negatively with bed stability. Conductivity was positively correlated with invertebrate abundance. 5. The results of this study suggest that the source of stream water can be used to predict invertebrate community composition in Greenlandic streams and thus the effects of changes in water balance and flow regime, and to identify sites of special conservation interest.  相似文献   

14.
1. Longitudinal changes in physicochemical factors and the composition of the invertebrate community were examined in the hyporheic zone of a glacial river (Val Roseg, Switzerland) over a distance of 11 km from the glacier terminus. Multivariate analysis was used to determine the habitat preferences of taxa along an upstream‐downstream gradient of increasing temperature and groundwater contribution to river flow. 2. The hyporheos conformed to the longitudinal distribution model described for zoobenthic communities of glacial rivers in that taxonomic richness increased with distance from the glacier terminus. Spatial variation in taxonomic richness was best explained by temperature, the influence of groundwater, and the amount of organic matter. The overriding importance of these variables on the distribution of taxa was confirmed by the multivariate analysis. 3. The hyporheic zone contributed significantly to the overall biodiversity of the Roseg River. Whereas insect larvae were predominant in the benthos, hyporheic invertebrates were dominated by taxa belonging to the true groundwater fauna and the permanent hyporheos. Several permanently aquatic taxa (e.g. Nematoda, Ostracoda, Cyclopoida, Harpacticoida, Oligochaeta) appeared exclusively in the hyporheic zone or they extended farther upstream in the hyporheic layer than in the benthic layer. Leuctridae, Nemouridae, and Heptageniidae colonised hyporheic sediments where maximum water temperature was only 4 °C. 4. Despite strong seasonal changes in river discharge and physicochemistry in hyporheic water, the density and distribution of the hyporheos varied little over time. 5. Taxonomic richness increased markedly in the downstream part of a floodplain reach with an extensive upwelling zone. Upwelling groundwater not only maintained a permanent flow of water but also created several species‐rich habitats that added many species to the community of the main channel.  相似文献   

15.
We studied the distribution and seasonal abundance of benthic macroinvertebrates from July 1975 through September 1976 in a hypereutrophic lake in subtropical Florida. The benthic community was comprised principally of oligochaetes (56.1%), chironomids (37.1%), and chaoborids (5.7%). Numbers of taxa and mean densities correlated negatively with depth and positively with mean grain size of the substratum and dissolved oxygen concentration at the mud-water interface. Seasonal abundances and life history information obtained for the predominant species of Chironomidae (Polypedilum halterale, Glyptotendipes paripes, Chironomus crassicaudatus, Cryptochironomus fulvus, C. blarina, Cladotanytarsus sp., Procladius culiciformis, and Coelotanypus concinnus) indicated that all of these species are multivoltine with rapid generation times. Larval lengths of life at summer temperatures, 27–31 °C, ranged from 14–22 days indicating that sampling in subtropical lakes should be at short intervals (approximately 3 days) if the life cycles, ecology, and function of the components of the benthic community is to be understood.  相似文献   

16.
Viergutz C  Kathol M  Norf H  Arndt H  Weitere M 《Oecologia》2007,151(1):115-124
Climate models predict an increasing frequency of extremely hot summer events in the northern hemisphere for the near future. We hypothesised that microbial grazing by the metazoan macrofauna is an interaction that becomes unbalanced at high temperatures due to the different development of the grazing rates of the metazoans and the growth rates of the microbial community with increasing temperature. In order to test this hypothesis, we performed grazing experiments in which we measured the impact of increasing temperatures on the development of the grazing rates of riverine mussels in relation to the growth rates of a unicellular prey community (a natural heterotrophic flagellate community from a large river). In a first experimental series using Corbicula fluminea as a grazer and under the addition of a carbon source (yeast extract), the increase of the prey’s growth rates was considerably stronger than that of the predator’s grazing rates when temperatures were increased from 19 to over 25°C. This was also the outcome when the mussels had been acclimatized to warm temperatures. Hereafter, specific experiments with natural river water at temperatures of 25 and 30°C were performed. Again, a strong decrease of the mussels’ grazing rates in relation to the flagellate growth rates with increasing temperature occurred for two mussel species (C. fluminea and Dreissena polymorpha). When performing the same experiment using a benthic microbial predator community (biofilms dominated by ciliates) instead of the benthic mussels, an increase of the grazing rates relative to the growth rates with temperature could be observed. Our data suggest that predator–prey interactions (between metazoans and microbes) that are balanced at moderate temperatures could become unbalanced at high temperatures. This could have significant effects on the structure and function of microbial communities in light of the predicted increasing frequency of summer heat waves. Priority programme of the German Research Foundation—contribution 7.  相似文献   

17.
Hydrological connectivity and the frequency and intensity of floods are the key factors determining the structure of macroinvertebrates inhabiting wetland ecosystems in river valleys. In 2007, water and macroinvertebrate samples were collected on four occasions in the middle course of the S?upia River and in five oxbow lakes (Northern Poland) to determine the hydrological relations in a regulated lowland river environment marked by a moderate climate. The water bodies selected for the study featured different types of connections with the main river valley: two of them were completely cut off from the valley, one was connected via a single branch, one featured a forced-flow connection through drainage pipes, and one was connected by a system of drainage channels. Macroinvertebrates, mostly Chironomidae larvae, were predominant in the eutrophic waters of the river. The prevalent macroinvertebrates found in the eutrophicated oxbow lakes isolated from the river were Chironomidae larvae and Crustacea (mainly Asellus aquaticus). In unobstructed oxbow lakes, the main component of benthic fauna was Crustacea, while Ephemeroptera were found mostly in the water body connected to the river via a drainage channel. A canonical correspondence analysis (CCA) showed that hydrological connectivity was the main factor responsible for the structure of invertebrate populations, followed by the physical and chemical parameters of the local environment. A non-conformance analysis revealed that hydrological connectivity enhanced invertebrate abundance and biological diversity, while the overall abundance was marked by unimodal distribution. The developed general model indicates that in the group of measured environmental variables, nitrite concentrations were highly correlated with Shannon diversity and invertebrate composition, while sulphate levels were closely associated with invertebrate abundance in the waters of the analyzed ecosystems.  相似文献   

18.
1. Environmental variables, benthic algal biomass and macroinvertebrate fauna were examined from September 1999 to January 2000 (austral summer) along two glacier-fed rivers in South Island, New Zealand.
2. The rivers were characterized by high flow variability, high turbidity and physically disturbed beds. Water temperature ranged from <1 °C near the glacier margin to 10 °C further downstream.
3. Epilithic algal biomass was very low (<0.1 mg m–2) in months characterized by heavy rainfall, but ranged from 1.1 to 14.4 mg m–2 following an extended period with negligible precipitation.
4. Abundance and diversity of invertebrates in both rivers was low. Dominant taxa were Chironomidae (Orthocladiinae, Podonominae, Diamesinae), although mayfly species ( Deleatidium : Leptophlebiidae) also occurred at most sites. A species of Eukiefferiella (Orthocladiinae) was collected at all sites and was the most abundant invertebrate close to the glacier margins. No meiofauna were found in either river.
5. Faunal diversity increased at the lowermost stations where species of Plecoptera, Trichoptera, Coleoptera and non-chironomid Diptera also occurred.
6. The faunas of the two New Zealand rivers conformed to the conceptual model of Milner & Petts (1994) in that taxon richness increased downstream with water temperature. However, invertebrate abundance increased downstream in only one of the two rivers. Also in contrast to the model predictions, Leptophlebiidae and Orthocladiinae, rather than Diamesinae, dominated the fauna at the coldest sites.  相似文献   

19.
The upper thermal limits of two cold-water stenotherms: the mayfly, Lestagella penicillata (Teloganodidae), and the stonefly, Aphanicerca capensis (Notonemouridae), were determined from six rivers in the Western Cape, South Africa. Limits were estimated using the Critical Thermal Method (expressed as Critical Thermal maximum) and the Incipient Lethal Temperature method (expressed as Incipient Lethal Upper Limit). Hourly water temperatures recorded in these rivers were used to characterise thermal signatures. Median CTmax and 96 h ILUT varied significantly amongst rivers for both species (≤5.7°C for CTmax and ≤4.0°C for 96 h ILUT) and variation was similar for both species. Differences in water temperature amongst rivers during the experimental period (spring) were insufficient (<2.0°C) to confirm the relationship between upper thermal limits and thermal history, expressed as an averaging statistic derived from in situ water temperatures. Greatest thermal range was over the warm summer period (>8.0°C) and it is likely that this is when thermal history may influence thermal limits. Maximum Weekly Allowable Temperature thresholds averaged for all rivers were lower for A. capensis (17.0°C) compared to L. penicillata (19.0°C). Both species have life cycles that allow them to avoid the thermally stressful summer period.  相似文献   

20.
Aquatic species living in running waters are widely acknowledged to be vulnerable to climate‐induced, thermal and hydrological fluctuations. Climate changes can interact with other environmental changes to determine structural and functional attributes of communities. Although such complex interactions are most likely to occur in a multiple‐stressor context as frequently encountered in large rivers, they have received little attention in such ecosystems. In this study, we aimed at specifically addressing the issue of relative long‐term effects of global and local changes on benthic macroinvertebrate communities in multistressed large rivers. We assessed effects of hydroclimatic vs. water quality factors on invertebrate community structure and composition over 30 years (1979–2008) in the Middle Loire River, France. As observed in other large European rivers, water warming over the three decades (+0.9 °C between 1979–1988 and 1999–2008) and to a lesser extent discharge reduction (?80 m3 s?1) were significantly involved in the disappearance or decrease in taxa typical from fast running, cold waters (e.g. Chloroperlidae and Potamanthidae). They explained also a major part of the appearance and increase of taxa typical from slow flowing or standing waters and warmer temperatures, including invasive species (e.g. Corbicula sp. and Atyaephyra desmarestii). However, this shift towards a generalist and pollution tolerant assemblage was partially confounded by local improvement in water quality (i.e. phosphate input reduction by about two thirds and eutrophication limitation by almost one half), explaining a significant part of the settlement of new pollution‐sensitive taxa (e.g. the caddisfly Brachycentridae and Philopotamidae families) during the last years of the study period. The regain in such taxa allowed maintaining a certain level of specialization in the invertebrate community despite climate change effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号