首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The taxonomic composition, abundance and biomass of heterotrophic protists (ciliates, heterotrophic flagellates (HF), rhizopods and actinopods) in the sediment and water column of shallow inlets of the Southern Baltic was studied under a variety of environmental conditions during 1996–1997. A shallow, highly eutrophic station and a deeper, less eutrophic station were compared.
2. Community biomass ranged from 0.12 to 0.34 μg C cm?3 in the water column and from 1.5 to 105 μg C cm?3 in the sediment. Heterotrophic protists dominated zooplankton biomass at both stations (73% and 84% mean contribution), while they were of minor importance within the zoobenthos. Expressed per unit area, benthic biomass contributed a significant part (44% and 49%) to the total heterotrophic protistan community at both stations.
3. Although the methodology for counting ciliates and HF was focussed on a high taxonomic resolution, the results reveal some general trends in the distribution of heterotrophic protists: protozooplankton biomass was dominated by flagellates (80% mean biomass contribution) at the shallow station and by ciliates (73% mean biomass contribution) at the deep station. In the benthos at both stations, ciliates were the dominant protozoans, followed by the hitherto little‐studied rhizopods (25% and 35% mean biomass contribution) and flagellates.
4. The degree of benthic–pelagic coupling differed between taxonomic groups. Benthic and pelagic communities of ciliates showed little taxonomic overlap. In contrast, many heterotrophic flagellate species were found both in the benthos and in the pelagic. These benthic–pelagic species contributed significantly to the biomass of HF in the water column. The planktonic rhizopod community consisted of a subset of those species found in the benthos.
5. The abundance of benthic and pelagic protists was positively correlated at the shallow station, but taxonomic data indicate that the direct exchange between benthic and pelagic communities was only partly responsible.  相似文献   

2.
2007年10月南海北部浮游纤毛虫的丰度和生物量   总被引:3,自引:0,他引:3  
张翠霞  张武昌  肖天 《生态学报》2010,30(4):867-877
报道2007年10月南海北部海域(21°25.47′N 17°24.95′N,109°28.86′E 113°13.01′E)纤毛虫丰度和生物量的水平分布及砂壳纤毛虫的种丰富度。包括了13个断面的82个站位,Rosette采水器采水,水深低于15 m的站位采0,5 m和10 m;小于30 m站位,采0,10 m和底层;大于30 m的站位,采0,10,30 m和底层。纤毛虫丰度为0 5757 ind./L,平均(848±776)ind./L。无壳纤毛虫占绝对优势,其丰度占纤毛虫总丰度的比例平均为(91.9±9)%;纤毛虫生物量为0 12.09μg C/L,平均是(1.2±1.54)μg C/L,无壳纤毛虫的生物量平均为(0.94±1.27)μg C/L,占纤毛虫总生物量的78.6%。共发现砂壳纤毛虫16个属,49种,拟铃虫最多,具有一定的季节性。纤毛虫水体(40 m到表层)丰度为6.4×1069.1×107ind./m2,平均是(3.6×106±1.4×106)ind./m2;水体生物量3.6 195.8 mg C/m2,平均(48.1±33.7)mg C/m2。纤毛虫多分布于近岸浅水区(高温低盐,高Chl a),最大丰度要高于我国其他海区,不是Chl a最高的地方纤毛虫的丰度也最大,纤毛虫丰度最大时Chl a偏低。  相似文献   

3.
孟昭翠  徐奎栋 《生态学报》2013,33(21):6813-6824
利用Ludox-QPS方法并结合沉积环境因子的综合分析,研究了2011年4月采自长江口及东海10个站位以底栖硅藻、纤毛虫和异养小鞭毛虫为代表的微型底栖生物及小型底栖生物的组成、丰度和生物量、分布及生态特点。结果表明,底栖硅藻的丰度 (5.92 ? 104 ind/10 cm2) 和生物量 (83.29 ?g C/10 cm2) 远高于纤毛虫 (丰度为1036 ind/10 cm2,生物量为3.33 ?g C/10 cm2)、异养小鞭毛虫 (丰度为4451 ind/10 cm2,生物量为2.51 ?g C/10 cm2) 和小型底栖生物 (丰度为1947 ? 849 ind/10 cm2,生物量为49.01? 22.05 ?g C/10 cm2)。在鉴定出的11个小型底栖生物类群中,线虫占小型底栖生物总丰度的90%和总生物量的37%。底栖硅藻生物量在长江口及东海海域呈由近岸向外海逐渐降低的分布特点,而底栖纤毛虫、异养小鞭毛虫及小型底栖生物的分布则正相反。在垂直分布上,76%的硅藻和80%的线虫分布在0–2 cm沉积物表层,仅1%的硅藻和6%的线虫分布在5–8 cm分层。统计分析表明,底栖硅藻的现存量与沉积物中叶绿素a含量呈极显著的正相关,与底层水温度呈弱的正相关;该海域底栖原生动物和小型底栖生物的分布受多个因子而非单一环境因子的共同作用。对比分析表明,长江口及东海单位体积沉积物中的硅藻丰度较水体中的硅藻丰度高2个数量级,沉积物中相当部分的叶绿素a含量可能系底栖硅藻所贡献;表层8 cm沉积物中纤毛虫的丰度约是上层30 m水柱中纤毛虫丰度的30倍,生物量约是后者的40倍。尽管纤毛虫在生物量上远小于小型底栖生物,但其估算的生产力约是后者的3倍;而异养小鞭毛虫由于个体更小,其周转率可能较纤毛虫更高。长江口及东海陆架区原生动物和小型底栖生物的高现存量及生产力预示着其在该海域生态系统中的重要作用。  相似文献   

4.
We investigated the community structure, diversity and trophic role of ciliates in the sediments from 48 stations in the Yellow Sea using Ludox density centrifugation and quantitative protargol stain. The ciliate abundance ranged from 1 to 221cellscm(-3) and biomass from 0.0001 to 0.47μgCcm(-3) in the upper 8cm of the sediments. On average, 77% of ciliate abundance and 81% of biomass were distributed in the 0-2cm sediment layers, while the respective proportions were only about 6% and 3% in the 5-8-cm layers. Among the 198 morphospecies, Prostomatea was the most dominant group accounting for 45% of the total abundance and 58% of the total biomass. Carnivorous ciliates constituted the primary feeding type, occupying about 64% of the total biomass, followed by bacterivores (21%), algivores (12%) and omnivores (3%). The ciliate abundance and biomass in the upper 5cm of sediments were two orders of magnitude higher than those in the upper 10m of the Yellow Sea water column. The estimated ciliate bacterivory and herbivory indicate that ciliate ingestion had little direct influence on bacterial standing stock but possibly had an important impact on diatoms in the sediments from the Yellow Sea.  相似文献   

5.
于2011年春季(5月)和秋季(11月)在东海陆架区进行浮游纤毛虫丰度和生物量的调查.春季和秋季纤毛虫的平均丰度分别为(614±861)和(934±809) ind·L-1,平均生物量分别为(1.70±3.91)和(0.93±0.99) μg C·L-1.表层纤毛虫丰度和生物量的高值区春季主要分布在近岸及远岸海区,秋季主要分布在远岸海区.春季纤毛虫的丰度和生物量在水体上层较高;秋季纤毛虫主要分布在水体上层,有时在水体底层也会出现丰度和生物量的高值.春季无壳纤毛虫群落的粒级较大,秋季较小.砂壳纤毛虫占纤毛虫丰度的平均比例春季和秋季分别为(26.9±34.3)%和(44.9±25.2)%.两个季节共鉴定出砂壳纤毛虫27属52种,春季丰度较大的种为原始筒壳虫、橄榄领细壳虫及筒状拟铃虫,秋季丰度较大的种为原始筒壳虫、小领细壳虫及矮小拟铃虫.纤毛虫丰度与温度、叶绿素a(Chl a)浓度呈显著正相关.砂壳纤毛虫丰度与盐度呈显著负相关,群落结构变化与温度显著相关.  相似文献   

6.
1. This study focused on heterotrophic microorganisms in the two main basins (north and south) of Lake Tanganyika during dry and wet seasons in 2002. Bacteria (81% cocci) were abundant (2.28–5.30 × 106 cells mL?1). During the dry season, in the south basin, bacterial biomass reached a maximum of 2.27 g C m?2 and phytoplankton biomass was 3.75 g C m?2 (integrated over a water column of 100 m). 2. Protozoan abundance was constituted of 99% of heterotrophic nanoflagellates (HNF). Communities of flagellates and bacteria consisted of very small but numerous cells. Flagellates were often the main planktonic compartment, with a biomass of 3.42–4.43 g C m?2. Flagellate biomass was in the same range and often higher than the total autotrophic biomass (1.60–4.72 g C m?2). 3. Total autotrophic carbon was partly sustained by the endosymbiotic zoochlorellae Strombidium. These ciliates were present only in the euphotic zone and usually contributed most of the biomass of ciliates. 4. Total heterotrophic ciliate biomass ranged between 0.35 and 0.44 g C m?2. In 2002, heterotrophic microorganisms consisting of bacteria, flagellates and ciliates represented a large fraction of plankton. These results support the hypothesis that the microbial food web contributes to the high productivity of Lake Tanganyika. 5. As the sole source of carbon in the pelagic zone of this large lake is phytoplankton production, planktonic heterotrophs ultimately depend on autochthonous organic carbon, most probably dissolved organic carbon (DOC) from algal excretion.  相似文献   

7.
Lytic bacteriophages and protozoan predators are the major causes of bacterial mortality in natural microbial communities, which also makes them potential candidates for biological control of bacterial pathogens. However, little is known about the relative impact of bacteriophages and protozoa on the dynamics of bacterial biomass in aqueous and biofilm phases. Here, we studied the temporal and spatial dynamics of bacterial biomass in a microcosm experiment where opportunistic pathogenic bacteria Serratia marcescens was exposed to particle‐feeding ciliates, surface‐feeding amoebas, and lytic bacteriophages for 8 weeks, ca. 1300 generations. We found that ciliates were the most efficient enemy type in reducing bacterial biomass in the open water, but least efficient in reducing the biofilm biomass. Biofilm was rather resistant against bacterivores, but amoebae had a significant long‐term negative effect on bacterial biomass both in the open‐water phase and biofilm. Bacteriophages had only a minor long‐term effect on bacterial biomass in open‐water and biofilm phases. However, separate short‐term experiments with the ancestral bacteriophages and bacteria revealed that bacteriophages crash the bacterial biomass dramatically in the open‐water phase within the first 24 h. Thereafter, the bacteria evolve phage‐resistance that largely prevents top‐down effects. The combination of all three enemy types was most effective in reducing biofilm biomass, whereas in the open‐water phase the ciliates dominated the trophic effects. Our results highlight the importance of enemy feeding mode on determining the spatial distribution and abundance of bacterial biomass. Moreover, the enemy type can be crucially important predictor of whether the rapid defense evolution can significantly affect top‐down regulation of bacteria.  相似文献   

8.
The mesohaline portion of the Chesapeake Bay is subject to annual summertime hypoxia and anoxia in waters beneath the pycnocline. This dissolved oxygen deficit is directly related to salinity-based stratification of the water column in combination with high levels of autochthonously produced organic matter and a very high abundance of metabolically active bacteria. Throughout the water column in the lower, mesohaline part of the bay, between the Potomac and Rappahannock rivers, near the southern limit of the mainstem anoxia, bacterial abundance often exceeded 10 × 106 cells per ml and bacterial production exceeded 7 × 109 cells per liter per day during summer. Bacterial biomass averaged 34% (range, 16 to 126%) of the phytoplankton biomass in summer. These values are equal to or greater than those found farther north in the bay, where the oxygen deficit is more severe. Seasonal variations in bacterial abundance and production were correlated with phytoplankton biomass (lag time, 7 to 14 days), particulate organic carbon and nitrogen, and particulate biochemical oxygen demand in spring; but during summer, they were significantly correlated only with dissolved biochemical oxygen demand. During summer, dissolved biochemical oxygen demand can account for 50 to 60% of the total biochemical oxygen demand throughout the water column and 80% in the bottom waters. There is a clear spring-summer seasonal shift in the production of organic matter and in the coupling of bacteria and autochthonous organic matter. The measurement of dissolved, microbially labile organic matter concentrations is crucial in understanding the trophic dynamics of the lower mesohaline part of the bay. The absolute levels of organic matter in the water column and the bacterial-organic carbon relationships suggest that a lower bay source of organic matter fuels the upper mesohaline bay oxygen deficits.  相似文献   

9.
The objective of this study was to analyze the flux of biomass through the communities of bacteria and phagotrophic protists in the cold and warm conditions occurring seasonally in Butrón River. Bacterial and heterotrophic protistan (flagellate and ciliate) abundance was determined by epifluorescence direct counts; protistan grazing on planktonic bacteria was measured from fluorescently labeled bacteria uptake rates; and the estimate of bacterial secondary production was obtained from [3H]thymidine incorporation rates. The abundance of bacterial, flagellate, and ciliate communities was similar during cold and warm situations. However, we observed that estimates of dynamic parameters, i.e., secondary bacterial production and protistan grazing, in both situations were noticeably different. In the warm situation, grazing rates of flagellates and ciliates (bacteria per protist per hour) were, respectively, 7 times and 18 times higher than those determined in the cold situation, and the grazing rates of the protistan communities (bacteria per protists present in 1 ml of water per hour) increased up to 5 times in the case of flagellates and 42 times in the case of ciliates. Estimates of bacterial secondary production were also higher during the warm situation, showing a ninefold increase. The percentage of bacterial production preyed upon by flagellates or ciliates was not significantly different between the two conditions. These results showed that in the different conditions of a system, the flux of biomass between the trophic levels may be quite different although this process may not be reflected in the abundance of each community of bacteria, flagellates, and ciliates. Offprint requests to: J. Iriberri.  相似文献   

10.
To examine the extent of the microbial food web in suboxic waters of a shallow subtropical coastal lagoon, the density and biomass of bacteria and protozooplankton were quantified under different dissolved oxygen (DO) levels. In addition, bottom waters of a stratified site were compared with bottom waters of a homogeneous site under periods of high and low biological oxygen production/consumption in the lagoon. At the stratified site, microbial biomass decreased with oxygen decline, from oxia to suboxia, with a recovery of the initial total biomass after a 20-day period of persistent suboxia. A peak in density and biomass of purple sulfur bacteria (PSB) (90 μg C L(-1)) occurred in the suboxic waters 20 days prior to the peak in biomass of ciliates >50 μm (Loxophyllum sp. of 150 μm) (160 μg C L(-1)), demonstrating a top down biomass control. Ciliates >50 μm were positively correlated with PSB and bacteriochlorophyll a (photosynthetic pigment of PSB). Total protozoan biomass reached 430 μg C L(-1) in the suboxic waters of the stratified site, with ciliates >50 μm accounting for 90% of the total ciliate biomass and of 55 % of biomass of protozoa. At the homogeneous site, total protozoan biomass was only 66 μg C L(-1), where flagellates and ciliates <25 μm were the dominant microorganisms. Therefore, as light is available for primary producers in the bottom waters of shallow stratified coastal lagoons or estuaries, one can expect that high primary production of PSB may favor a specialized microbial food web composed by larger microorganisms, accessible to zooplankton that tolerate low DO levels.  相似文献   

11.
The vertical and seasonal distributions of the phytoflagellate Cryptomonas spp., and its most common, the planktonic ciliate predators (Oligotrichida, Scuticociliatida, Hypotrichida and Prostomatida) were investigated in chemocline region of small saline, meromictic lake Shunet (Siberia, Russia) during 2003 and 2005. The lake has a pronounced chemocline, with abundance of purple and green sulphur bacteria. Vertical distribution of the Cryptomonas populations near the oxic/anoxic boundary layer was studied at close intervals in water sampled using a hydraulically operated thin-layer sampler. In both summer and winter, Cryptomonas peaked in water stratum 5–10 cm above anoxic zone or in the anoxic zone water column in the chemocline (about 5 m). Ciliate densities and biomass were also much higher in chemocline than in mixolimnion. The range of diurnal migration of Cryptomonas population was not very wide, and it was restricted to layers with high light intensity. The ciliates were sometimes detected above the upper border of the anoxic zone but also several centimetres below this zone.  相似文献   

12.
Seasonal changes in the species composition, abundance and biomass of planktonic ciliates were determined every 2–3 weeks at two sites of 30 m depth and one location of 105 m depth in the southwestern Gdańsk Basin between January 1987 and January 1988. A total of 40 ciliate taxa were observed during this period. Autotrophic Mesodinium rubrum dominated ciliate abundance and biomass: maximal values of 50 · 10−1 ind. 1-1 and 65 μg C 1−1 were recorded. The annual mean biomass of M. rubrum comprised 6 to 9% of the annual mean phytoplankton biomass. The highest abundances and biomasses of heterotrophic ciliates were noted at all stations in the spring and summer in the euphotic zone with maximum values of 28 · 103 ind. 1−1 and 23 μg C 1−1. Three ciliates assemblages were distinguished in the epipelagic layer: large and medium-size non-predatory ciliates, achieving peak abundance in spring and autumn; small-size microphagous ciliates and epibiotic ciliates which were abundant in summer, and large-size predacious ciliates dominating in spring. Below 60 m, a separate deep-water ciliate community composed of Prorodon-like ciliates and Metacystis spp. was found. The ciliate biomass in the 60–105 m layer was similar to the ciliate biomass in the euphotic zone. The heterotrophic ciliate community contributed 10 to 13% to the annual mean zooplankton biomass. The potential annual production of M. rubrum comprised 6 to 9% of the total primary production. Carbon demand of non-predatory ciliates, calculated on the basis of their potential production, was estimated to be equivalent to 12–15% of the gross primary production.  相似文献   

13.
Water-column mixing is known to have a decisive impact on plankton communities. The underlying mechanisms depend on the size and depth of the water body, nutrient status and the plankton community structure, and they are well understood for shallow polymictic and deep stratified lakes. Two consecutive mixing events of similar intensity under different levels of herbivory were performed in enclosures in a shallow, but periodically stratified, eutrophic lake, in order to investigate the effects of water-column mixing on bacteria abundance, phytoplankton abundance and diversity, and rotifer abundance and fecundity. When herbivory by filter-feeding zooplankton was low, water-column mixing that provoked a substantial nutrient input into the euphotic zone led to a strong net increase of bacteria and phytoplankton biomass. Phytoplankton diversity was lower in the mixed enclosures than in the undisturbed ones because of the greater contribution of a few fast-growing species. After the second mixing event, at a high biomass of filter-feeding crustaceans, the increase of phytoplankton biomass was lower than after the first mixing, and diversity remained unchanged because enhanced growth of small fast-growing phytoplankton was prevented by zooplankton grazing. Bacterial abundance did not increase after the second mixing, when cladoceran biomass was high. Changes in rotifer fecundity indicated a transmission of the phytoplankton response to the next trophic level. Our results suggest that water-column mixing in shallow eutrophic lakes with periodic stratification has a strong effect on the plankton community via enhanced nutrient availability rather than resuspension or reduced light availability. This fuels the basis of the classic and microbial food chain via enhanced phytoplankton and bacterial growth, but the effects on biomass may be damped by high levels of herbivory. Received: 3 May 1999 / Accepted: 13 April 2000  相似文献   

14.
In order to assess the factors that determine the dynamics of bacteria with high nucleic acid content in aquatic systems, we (i) conducted 24-h in situ dialysis experiments, involving different fractions of plankton and unfiltered water and (ii) examined empirical relationships between bacteria and both abiotic factors and protists, in boreal humic freshwaters (reservoir and lakes) in the James Bay region (Québec, Canada). Bacteria were subdivided into two subgroups on the basis of their nucleic acid content assessed by flow cytometry. The abundance of bacteria with the highest nucleic acid content and high light scatter (HNA-hs) was significantly correlated, across sites, to bacterial production, whereas bacteria with lower nucleic acid content (LNA) and total bacteria were not. In addition, HNA-hs growth was higher and more variable than LNA growth, indicating that HNA-hs were the most dynamic bacteria. Heterotrophic nanoflagellate and ciliate biomass represented, on average, 5 and 13% of bacterial biomass, respectively. Both in ambient waters and in experiments, ciliates were significantly and negatively correlated with bacteria, whereas heterotrophic nanoflagellates, likely under the grazing pressure from ciliates and metazooplankton, were not. Among ciliates, Cyclidium glaucoma appeared to play an important role. Its growth was significantly and negatively correlated to that of HNA-hs but not to that of LNA. In ambient waters, the abundance of this species explained 56% of the variations in HNA-hs abundance and only 27% of those for LNA. The abundances of total bacteria and LNA significantly increased with chlorophyll a, whereas those of HNA-hs did not. In addition, during the experiments, the estimated potential losses of HNA-hs significantly increased with the initial abundance of C. glaucoma. These results suggest selective removal of the most dynamic bacteria by C. glaucoma and indicate that ciliates may play an important role in the dynamics of active bacteria in natural waters. These findings suggest the existence, within the aquatic microbial food webs, of keystone species that are very important in regulating the activity structure of bacteria.  相似文献   

15.
1. Autumn circulation in lakes is currently conceived to occur very rapidly, being controlled mainly by wind‐power dynamics, decreasing irradiance and heat flux. In addition, autumn mixing is usually related to nutrient redistribution in the vertical column, resulting in its overall increase. To test these assumptions, mixing and nutrient dynamics in a Spanish small, wind‐sheltered, mesotrophic, seepage lake were studied daily during autumn circulation. 2. The seasonal erosion of the pycnocline in Las Madres Lake was the outcome of vertical and horizontal exchanges of heat and matter. The overall mixing of the water column lasted 3 months, which was an unexpected period for a rather shallow lake. Two periods of mixing could be envisaged until full circulation was attained. First, a slightly faster period of pycnocline deepening than that predicted by the heat flux and wind stress model of Fisher et al. (1979) occurred for 41 days, mixing most of the water column down to within two meters of the bottom. Then a much slower process took place promoting frequent instability of the bottom layer and resulting in entire mixing in a further 52 days. 3. Vertically, the whole mixing process was a response to weak surface cooling, resulting from the mild air temperatures of the semiarid climate of the area, and weak wind stress, because of low wind fetch and high shelter. Horizontally, a gravity current transporting cold, denser water from western shallower areas of the lake and materials produced by the decomposition of organic matter of littoral origin may produce a bottom layer of increased density, thus impinging on vertical stability. Seepage inputs of water of roughly constant temperature might also have increased bottom density. Bottom density enhancement resulted in a double diffusion process. 4. Only in‐lake nitrogen content increased until full circulation was attained, whereas carbon showed no trend and phosphorus declined. External processes, such as seepage exchange and atmospheric deposition, coupled to internal processes, such as nitrification, oxidised phosphorus precipitation and complexation with organic carbon, might have been responsible for the areal nutrient patterns observed. 5. Our study demonstrates that current models of water column mixing and nutrient redistribution in lakes during autumn circulation must be improved to encompass the effects of external inputs, including horizontal heat and matter exchange.  相似文献   

16.
We studied the dynamics of two populations of anaerobic ciliates, Plagiopyla sp. and Metopus sp., and of their potential prey, heterotrophic and phototrophic purple bacteria, in Lake Cisó throughout a 1-year cycle. The abundance of both ciliates was very low (less than 2 individuals per ml). During mixing, Plagiopyla ciliates exhibited high clearance rates (about 100 nl ciliate h), its integrated abundance increased with a net doubling time of 47 days, and its potential doubling times, as calculated from the number of bacteria consumed, ranged between 5 and 8 days. During stratification, the activity of Plagiopyla ciliates was reduced and the population decreased; this was related to the higher amounts of sulfide present. The impact of predation by the Plagiopyla population on bacterioplankton was found to be insignificant, less than 0.1% of bacterial biomass consumed per day. Thus, anaerobic ciliates cannot control the bacterioplankton in Lake Cisó because of both the low abundance over the period studied and the low feeding rates during certain periods. A review of available field studies suggests that this conclusion can be extrapolated to most other anoxic systems.  相似文献   

17.
Tomasz Mieczan 《Biologia》2007,62(2):189-194
Body size, community structure, abundance and biomass of ciliates were compared in various stands of macrophytes in a macrophyte-abundant shallow lake in Eastern Poland. Samples were collected in belts of Phragmites, Typha, Ceratophyllum, Elodea, Stratiotes and Chara. Additionally, protozooplankton was collected from the open water zone surrounding the vegetation belts. Differences in numbers of ciliate taxa between micro-sites were statistically significant. The highest numbers were found in Chara and Ceratophyllum stands, lower numbers in Stratiotes and Elodea stands and the lowest in the open water, Phragmites and Typha areas. Ciliate biomass was, like density, significantly higher in submerged macrophytes than in emergent macrophytes and open water zones. Based on differences in macrophyte structure, two groups of habitats with similar patterns of size-related ciliate distribution were distinguished. The first group consisted of two vegetated zones of sparse stem structure (Phragmites and Typha) and the open water zone, the second group comprised submerged macrophyte species, which were more dense and complex. Generally, the abundance of ciliates correlated positively with total suspension solid (TSS) and total organic carbon (TOC) concentrations. In the Chara and Ceratophyllum stands, relations between ciliate numbers, TSS and TOC were stronger.  相似文献   

18.
Bacterial abundance and the rates of sulfate reduction (SR) and total organic matter decomposition (Dtotal) were studied in the bottom sediments of nine lakes in the vicinity of Vilnius (Lithuania) during the ice-free seasons of 2006–2009. During the spring mixing of the water, aerobic processes of organic matter decomposition prevailed in the bottom sediments of most lakes, while anaerobic processes predominated (up to 80–90% Dtotal) in summer and early autumn. SR rates in the bottom sediments made up 0.16–2.6 and 0.09–2.0 mg S2?/(dm3 day) for the medium-depth and shallow lakes, respectively. The highest numbers of sulfate-reducing bacteria (up to 106 cells/cm3) and SR rates were observed in summer. SR rate in mediumdepth lakes increased with development of anaerobic conditions at the bottom and elevated sulfate concentrations (up to 96.0 mg/dm3). In shallow lakes, where O2 concentration at the bottom was at least 6.7 mg/L, SR rates increased with temperature and inflow of fresh organic matter, especially during cyanobacterial blooms. The average SR rates in the bottom sediments of the lakes of urbanized areas were 4 times higher than in the shallow lakes of protected areas. Accumulation of organic matter and its intensive decomposition during summer may enhance the processes of secondary eutrophication of these small and shallow lakes.  相似文献   

19.
1. Ophrydium versatile is a symbiotic ciliate which forms gelatinous colonies up to several centimetres in diameter in transparent temperate lakes. The ciliates are evenly spaced at the colony surface and constitute a small proportion of the surface area (7%) and volume (3.1%) of the colony, but a large proportion of organic carbon (74%) and nitrogen content (82%) (exemplified for 1 cm3 colonies). The majority of the colony volume is formed by the jelly. The biomass proportion of ciliates scales inversely with colony size, following the decline of surface area to colony volume. The largest colonies found in Danish lakes in early summer contain almost 1 million ciliates, and assuming they derive from a single ciliate undergoing exponential division, they need twenty generations and, presumably, almost a year to reach maximum size. 2. The ciliates contain numerous symbiotic zoochlorellae that constitute about 10% of ciliate volume and more than half of the carbon content. Zoochlorellae dominate oxygen metabolism of the assemblage, resulting in low light compensation points, a large diel photosynthetic surplus, and a marked dependence on light for sustained growth and ciliate metabolism. Estimated gross photosynthesis (7ng C ciliate?1 day?1) of Ophnrydium from shallow, clear waters in June greatly exceeded the estimated carbon contained in filtered bacteria and small algae (1.9ng C cilicate?1 day?1). Nitrogen and phosphorus content of the prey, however, may provide the main nutrient source consistent with the correspondence between mass-specific rates of nutrient uptake and measured relative growth rates (average 0.067 day?1, generation time 10 days). 3. The large Ophrydium colonies require increased allocation of photosynthetic carbohydrates with increasing colony size to maintain the jelly. The large colonies tend to become gas-filled, floating, mechanically destroyed and their ciliate inhabitants abandon them as swarmers. Colony formation, however, should offer protection against predators which may be more important for the natural abundance than the costs of growing in a colony.  相似文献   

20.
Field studies on the occurrence of meiobenthos in the water column above intertidal sandflats have been performed near the Island of Sylt in the northern Wadden Sea. Swimming meiobenthos was strongly dominated by harpacticoid copepods. Many of them have a semiplanktonic life-style. They rest in superficial sediment layers at low tide and swin in the water column at high tide. Swimming activity correlated negatively with light. The abundance in the water column was one order of magnitude higher during the night. Strong currents caused by storm tides significantly decreased meiobenthic abundance in the water column. Light and flow being constant, no significant changes of meiobenthic abundance per unit area occurred over a tidal cycle. Since holoplankton and meroplankton abundances correlated positively with the height of the water column, semiplanktonic meiobenthos may dominate the mesozooplankton in shallow waters. On an average, emergence of meiobenthos increased the mesozooplanktonic biomass by about 2% during diurnal high tides over the entire tidal cycle, and by about 50% during nocturnal high tides. Because of seasonal cycles of the dominant harpacticoids, this high contribution to planktonic biomass may be a summer phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号