首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Superoxide ions (O2-) oxidized oxyhaemoglobin to methaemoglobin and reduced methaemoglobin to oxyhaemoglobin. The reactions of superoxide and H2O2 with oxyhaemoglobin or methaemoglobin and their inhibition by superoxide dismutase or catalase were used to detect the formation of superoxide or H2O2 on autoxidation of oxyhaemoglobin. The rate of autoxidation was decreased at about 35% in the presence of both enzymes. The copper-catalysed autoxidation of Hb (haemoglobin) was also shown to involve superoxide production. Superoxide was released on autoxidation of three unstable haemoglobins and isolated alpha and beta chains, at rates faster than with Hb A. Reactions of superoxide with Hb Christchurch and Hb Belfast were identical with those with Hb A, and occurred at the same rate. Hb Koln contrasted with the other haemoglobins in that the thiol groups of residue beta-93 as well as the haem groups reacted with superoxide. Haemichrome formation from methaemoglobin occurred very rapidly with Hb Christchurch and Hb Belfast, as well as the isolated chains, compared with Hb A. The process did not involve superoxide production or utilization. The relative importance of autoxidation and superoxide production compared with haemichrome formation in the haemolytic process associated with these abnormal haemoglobins and thalassaemia is considered.  相似文献   

2.
3.
The relationship between catabolism of glycerol and metabolism of hexosephosphate derivatives in Pseudomonas aeruginosa was studied by comparing the growth on glycerol and enzymatic constitution of strain PAO with these characteristics of glucose-catabolic mutants and revertants. Growth of strain PAO on glycerol induced a catabolic oxidized nicotinamide adenine dinucleotide-linked glyceraldehyde-phosphate dehydrogenase and seven glucose-catabolic enzymes. The results indicated that these enzymes were induced by a six-carbon metabolite of glucose. All strains possessed a constitutive anabolic Embden-Meyerhof-Parnas pathway allowing limited conversion of glycerol-derived triosephosphate to hexosephosphate derivatives, which was consistent with induction of these enzymes by glycerol. Phosphogluconate dehydratase-deficient mutants grew on glycerol. However, mutants lacking both phosphogluconate dehydrogenase and phosphogluconate dehydratase were unable to grow on glycerol, although these strains possessed all of the enzymes needed for degradation of glycerol. These mutants apparently were inhibited by hexosephosphate derivatives, which originated from glycerol-derived triosephosphate and could not be dissimilated. This conclusion was supported by the fact that revertants regaining only a limited capacity to degrade 6-phosphogluconate were glycerol positive but remained glucose negative.  相似文献   

4.
The rate of autoxidation of native oxymyoglobin to metmyoglobin has been examined over the pH range of 4.8--12.6 in 0.1 M buffer at 25 degrees C, and some 40 values of the observed first-order rate constant, kobs, are plotted against pH of the solution. In order to understand the kobs--pH profile thus obtained, some mechanistic models are proposed for the autoxidation reaction. The fitting of their rate equations as a function of pH has been examined to the experimental kobs-pH plot by a least-squares method with the use of a digital computer. The complicated pH-profile can be best explained by the 'acid-base catalyzed three states model', which reveals not only the catalytic role of hydrogen ions and hydroxyl ions, but also the involvement of two dissociation groups of myoglobin molecule in the autoxidation reaction.  相似文献   

5.
Several polyketide secondary metabolites are shown by feeding experiments to incorporate glycerol-derived 3-carbon starter units, 2-carbon extender units, or 3-carbon branches into their hydrocarbon chains. In recent years, genetic studies have begun to elucidate the mechanisms by which this occurs. In this article we review the incorporation of glycerol-derived precursors into polyketides and propose new mechanisms for the incorporation processes. Laura J. Walton, Christophe Corre contributed equally to this article  相似文献   

6.
Accompanying the autoxidation of hydroxylamine at pH 10.2, nitroblue tetrazolium was reduced and nitrite was produced in the presence of EDTA. The rate of autoxidation was negligible below pH 8.0, but sharply increased with increasing pH. The reduction of nitroblue tetrazolium was inhibited by superoxide dismutase, indicating the participation of superoxide anion radical in the autoxidation. Hydrogen peroxide stimulated the autoxidation and superoxide dismutase inhibited the hydrogen peroxide-induced oxidation, results which suggest the participation of hydrogen peroxide in autoxidation and in the generation of superoxide radical. An assay for superoxide dismutase using autoxidation of hydroxylamine is described.  相似文献   

7.
Aldehydes or dicarbonyls in non-enzymic glycosylation of proteins.   总被引:5,自引:3,他引:2       下载免费PDF全文
The non-enzymic post-translational glycosylation of certain proteins has been implicated in the production of diabetic sequelae. In the present paper the possibility that it is not the glucose aldehyde that binds to proteins but a dicarbonyl autoxidation product is investigated. Earlier experiments may not have distinguished between these two possibilities. The rate of binding of 2-deoxyglucose (a non-autoxidizable sugar) to lens alpha-crystallin is compared with that of glucose (an autoxidizable sugar). The stabilized Schiff-base adducts was investigated by using proton n.m.r. and fast-atom-bombardment mass spectroscopy to distinguish whether they are the product of aldehyde or dicarbonyl addition. We conclude that it is the open-chain aldehyde of glucose that binds initially to amino groups and that there is no participation of dicarbonyl autoxidation products in the initial non-enzymic protein glycosylation reaction.  相似文献   

8.
The rate and mechanism of autoxidation of soluble ferrocytochrome b5, prepared from liver microsomal suspensions, appear to reflect an intrinsic property of membrane-bound cytochrome b5. The first-order rate constant for autoxidation of trypsin-cleaved ferrocytochrome b5, prepared by reduction with dithionite, was 2.00 X 10(-3) +/- 0.19 X 10(-3) S-1 (mean +/- S.E.M., n =8) when measured at 30 degrees C in 10 mM-phosphate buffer, pH 7.4. At 37 degrees C in aerated 10 mM-phosphate buffer (pH 7.4)/0.15 M-KCl, the rate constant was 5.6 X 10(-3) S-1. The autoxidation reaction was faster at lower pH values and at high ionic strengths. Unlike ferromyoglobin, the autoxidation reaction of which is maximal at low O2 concentrations, autoxidation of ferrocytochrome b5 showed a simple O2-dependence with an apparent Km for O2 of 2.28 X 10(-4) M (approx. 20kPa or 150mmHg)9 During autoxidation, 0.25 mol of O2 was consumed per mol of cytochrome oxidized. Cyanide, nucleophilic anions, EDTA and catalase each had little or no effect on autoxidation rates. Adrenaline significantly enhanced autoxidation rates, causing a tenfold increase at 0.6 mM. Ferrocytochrome b5 reduced an excess of cytochrome c in a biphasic manner. An initial rapid phase, independent of O2 concentration, was unaffected by superoxide dismutase. A subsequent slower phase, which continued for up to 60 min, was retarded at low O2 concentrations and inhibited by 65% by superoxide dismutase at a concentration of 3 mug/ml. It is concluded that autoxidation is responsible for a significant proportion of electron flow between cytochrome b5 and O2 in liver endoplasmic membranes, this reaction being capable of generating superoxide anions. A biological role for the reaction is discussed.  相似文献   

9.
Several studies on lipid stability of freeze-dried fish pointed out the relationship between relative humidity (RH) and autoxidation of highly unsaturated fatty acids. The present study shows the changes of tissue lipids in two different fish, freeze-dried and stored under various RH conditions. Fillets of Scomber scomber L and Sardina pilchardus sardina were freeze-dried and stored for 1, 3, 6 and 9 months. periodically, the sample of both fish were analyzed to evaluate the autoxidation of lipids. The results show that the autoxidation of lipids is quicker during 1st-3rd month of storage, while in a high humidity environment the tissue lipids change slower. According to these results both time of storage and relative humidity must be controlled to maintain the nutritive value of freeze-dried fish.  相似文献   

10.
The cork suberin polyester was partially depolymerized by a methanolysis reaction catalyzed by calcium hydroxide. The methanolisate was analysed by ESI-MS/MS in the form of [M+Li](+) adduct-ions. This reaction solubilized a mixture of monomers and oligomers, including a set of glycerol-derived dimeric and trimeric esters. Four types of glycerol esters were identified: monoacylglycerols of alpha,omega-diacids, of omega-hydroxyacids and of monoacids; diglycerol diesters of alpha,omega-diacids; diacylglycerols of alpha,omega-diacids; monoacylglycerols of linear dimeric esters of alpha,omega-diacids and omega-hydroxyacids. The alpha,omega-diacids and omega-hydroxyacids found as monomer residues in the glycerol esters are the main ones found as cork suberin monomers. It is concluded that suberin is a glycerol-derived lipid of polymeric dimensions. Due to the protective and insulating role that it plays in plants, suberin should be considered together with the other known glycerolipids that build up biological membranes.  相似文献   

11.
The instability of oxygenated aqueous solutions of bilirubin in the dark is due to several distinguishable processes: autoxidation, surface phenomena and precipitation-aggregation. Autoxidation occurs in aqueous solutions over a pH range 7.4–13.2 in the presence of even traces of oxygen. Several autoxidation products have been isolated and identified. At pH 7.4–8.8 bilirubin precipitates from 2.5 × 10?5 M solutions and adsorbs to the walls of the glass container. In ammoniacal methanol, chloroform and dimethyl sulfoxide aggregation phenomena do not occur and autoxidation is very slow.  相似文献   

12.
Kinetic analysis and mechanistic aspects of autoxidation of catechins   总被引:3,自引:0,他引:3  
A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H(2)O(2)) and a Clark-type oxygen electrode were applied to continuous monitoring and kinetic analysis of the autoxidation of catechins. Four major catechins in green tea, (-)-epicatechin, (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epigallocatechin gallate, were used as model compounds. It was found that dioxygen (O(2)) is quantitatively reduced to H(2)O(2). The initial rate of autoxidation is suppressed by superoxide dismutase and H(+), but is independent of buffer capacity. Based on these results, a mechanism of autoxidation is proposed; the initial step is the one-electron oxidation of the B ring of catechins by O(2) to generate a superoxide anion (O(2)(*-)) and a semiquinone radical, as supported in part by electron spin resonance measurements. O(2)(*-) works as a stronger one-electron oxidant than O(2) against catechins and is reduced to H(2)O(2). The semiquinone radical is more susceptible to oxidation with O(2) than fully reduced catechins. The autoxidation rate increases with pH. This behavior can be interpreted in terms of the increase in the stability of O(2)(*-) and the semiquinone radical with increasing pH, rather than the acid dissociation of phenolic groups. Cupric ion enhances autoxidation; most probably it functions as a catalyst of the initial oxidation step of catechins. The product cuprous ion can trigger a Fenton reaction to generate hydroxyl radical. On the other hand, borate ion suppresses autoxidation drastically, due to the strong complex formation with catechins. The biological significance of autoxidation and its effectors are also discussed.  相似文献   

13.
The formation of dimers in the initial stage of methyl linoleate (ML) autoxidation was demonstrated. The oxidation profile of freshly prepared ML was followed by TLC during autoxidation by aeration at 30°C for 192 hr. After 24 hr of autoxidation, the peroxide value of ML was still 0.6, and two unknown polar spots appeared besides intact ML and methyl linoleate hydroperoxides (MLHPO). These two spots were identified as dimers by successive gel and high performance liquid Chromatographic separations and by molecular weight determination. The ratio of dimers/MLHPO reached a maximum (0.74) after 96 hr of autoxidation. This result indicates that the formation of dimers in the initial stage of autoxidation was slightly less than that of MLHPO. The dimers were linked through ?C?O?O?C? bonds and contained hydroperoxy and/or carbonyl groups and conjugated dienes.  相似文献   

14.
Abstract

A new synthetic approach to (S)-1-[3-hydroxy-2-(phosphonyl-methoxy)propyl]cytosine (3, (S)-HPMPC) is based on coupling of the heterocyclic moiety with a glycerol-derived side chain, followed by introduction of the phosphonylmethyl ether group.  相似文献   

15.
Low apparent aldose reductase activity, as measured by NADPH oxidation, can be produced by the spontaneous autoxidation of monosaccharides. NADPH is oxidized to metabolically active NADP+ in a solution of autoxidizing DL-glyceraldehyde at rates of up to 15 X 10(-4) A340/min. The close parallelism between the effects of buffer salt type and concentration, monosaccharide structure and temperature activation on autoxidation and NADPH oxidation imply that autoxidation is a prerequisite for the NADPH oxidation, probably via the hydroperoxy radical. Nucleotide-binding proteins enhanced NADPH oxidation induced by DL-glyceraldehyde, up to 10.6-fold with glucose-6-phosphate dehydrogenase. Glutathione reductase-catalysed NADPH oxidation in the presence of autoxidizing monosaccharide showed many characteristics of the aldose reductase reaction. Aldose reductase inhibitors acted as antioxidants in inhibiting this NADPH oxidation. These results indicate that low apparent aldose reductase activities may be due to artifacts of monosaccharide autoxidation, and could provide an explanation for the non-linear steady-state kinetics observed with DL-glyceraldehyde and aldose reductase.  相似文献   

16.
Thiol-containing preparations of streptolysin O (SLO) and pure cysteine generate superoxide radicals in alkaline buffer on autoxidation of the thiol groups. Autoxidation is stimulated by cupric ions. Reconstituted SLO preparations accumulate hydrogen peroxide with a concomitant loss of activity on storage at room temperature. Short-term protection of hemolytic activity was achieved by inclusion of catalase in the preparation; no apparent protection was observed by superoxide dismutase, whereas 1,10-O-phenanthroline offered long-term protection of the hemolysin.  相似文献   

17.
Short chain sugars such as glycolaldehyde are produced at the initial stages of nonenzymatic glycosylation. Because their carbonyl groups cannot be blocked by cyclization, such compounds tautomerize to enediols, which are prone to autoxidation. Superoxide radical serves as an initiator and a propagator of this autoxidation. The biological importance of the involvement of superoxide in sugar autoxidation in vivo was examined using superoxide dismutase (SOD)-deficient and SOD-replete strains of Escherichia coli. Glycolaldehyde, glyceraldehyde, and dihydroxyacetone greatly enhanced the mutation rates in SOD-deficient E. coli. The effect was oxygen-dependent and was suppressed by SOD or by a SOD mimetic. The mutagenic effect of glycolaldehyde coincided with intracellular accumulation of glyoxal, a product of glycolaldehyde autoxidation.  相似文献   

18.
The pH of the solution along with chelation and consequently coordination of iron regulate its reactivity. In this study we confirmed that, in general, the rate of Fe(II) autoxidation increases as the pH of the solution is increased, but chelators that provide oxygen ligands for the iron can override the affect of pH. Additionally, the stoichiometry of the Fe(II) autoxidation reaction varied from 2:1 to 4:1, dependent upon the rate of Fe(II) autoxidation, which is dependent upon the chelator. No partially reduced oxygen species were detected during the autoxidation of Fe(II) by ESR using DMPO as the spin trap. However, upon the addition of ethanol to the assay, the DMPO:hydroxyethyl radical adduct was detected. Additionally, the hydroxylation of terephthalic acid by various iron-chelator complexes during the autoxidation of Fe(II) was assessed by fluorometric techniques. The oxidant formed during the autoxidation of EDTA:Fe(II) was shown to have different reactivity than the hydroxyl radical, suggesting that some type of hypervalent iron complex was formed. Ferrous iron was shown to be able to directly reduce some quinones without the reduction of oxygen. In conclusion, this study demonstrates the complexity of iron chemistry, especially the chelation of iron and its subsequent reactivity.  相似文献   

19.
The role of hemoglobin solutions as oxygen carriers in biotechnology are numerous, such as in the oxygen supply to biocatalysts or in the preparation of blood substitutes. However, the major barrier to the successful use of hemoglobin in biological and medical engineering is the autoxidation of heme iron during preparation, storage, and utilization. Fifty-six solvents, chosen among the group of Parker's classification, were studied with regard to the autoxidation kinetics of oxyhemoglobin under nondenaturant conditions. Among these solvents 27 present a concentration range in which the autoxidation rates were reduced compared to autoxidation in water. Three groups of solvent have been observed: one exhibiting only a destabilizing effect regardless of the solvent proportion, a second showing a strong stabilizing effect (k(H2O)/k(solvent) greater than 20) and a third showing a low stabilization (k(H2O)/k(solvent) less than 20). The most effective stabilizing solvents were glycerol, glycols, and alcohols. The effect of hydroorganic solvents could be explained by taking into account the globin solvation by water molecules. The solvents that enhance the structure of the water and form few hydrophobic interactions with globin prevent oxyhemoglobin autoxidation.  相似文献   

20.
Sporidesmin (SDMS2), the mycotoxin responsible for 'facial eczema' in ruminants, contains a disulphide group which appears to be intimately involved in its toxic action. The reduced (dithiol) form of sporidesmin has been shown readily to undergo autoxidation in vitro in a reaction which generates superoxide radical (O2-). The autoxidation reaction, which takes place over a wide pH range, is strongly catalysed by trace amounts of copper, although the reaction was inhibited at high concentrations of this metal. Inhibition of the autooxidation of reduced sporidesmin (SDM(SH)2) was also observed in the presence of nickel, cobalt and manganese. Superoxide radical is also generated from SDMS2 itself in a cyclic reduction/autoxidation reaction with glutathione and other thiols; in view of the known toxicity of superoxide and its derivatives, it is suggested that oxygen-free-radicals may be involved in the initiation of the deleterious effects of the mycotoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号