首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In order to clarify the characteristics of the basic units responsible for the blue coloring of iodine/iodide in amylose, we made a resonance Raman spectroscopic study at several KI concentrations using excitation by Ar+, He-Ne, and Kr+ lasers and amyloses with the degrees of polymerization (DP) of 30, 100, 300, and 1000. Similar Raman spectra were observed, regardless of the KI and I2 concentrations, DP, and excitation wavelengths. Four Raman lines appearing at 159, 111, 55, and 27 cm?1 were obviously fundamental tones, with a degree of depolarization ρ of ca. 1/3 for every spectrum. However, the internal ratios of the intensities of the 159, 55, and 27 cm?1 lines to that of the 111-cm?1 line decreased with increasing KI concentration. Based on the value of ρ, the assignment of the fundamental lines was made by taking a schematic model of the true motions as a projection in separately analyzing the modes of stretching and bending vibrations for a pseudolinear polyiodide chain, which we found to be perturbed by the external forces of the amylose lattice. In accordance with the variation of the force constants from the assignment of the spectra associated with the change in the composition of the bound species, it was concluded that the basic unit changed from I to I through I with decreasing KI concentration.  相似文献   

3.
Intact cells of freshwater algae Cladophora aegagropila (L). Rabenh. (synonymous to Aegagropila linnaei Kutz.) were investigated by resonance Raman spectroscopy. It was found that incubation in the dark (up to 24 h) leads to changes in the Raman spectroscopy spectrum of this species, namely to changes in the ratio of amplitudes of the I1523/I1155 and I960/I1004 bands and in the half width of band in the region of 1523 cm–1. We suggested that the adaptation of algae to the dark alters the conformation of the molecule of the carotenoid by delocalization of π-electrons in the polyene chain of the molecule and changes the orientation of the ring. Moreover, the composition of carotenoids, as well as their location in the cell and microenvironment in the pigment–protein complexes can change: in the absence of illumination, the distribution of carotenoids in algal cells is more uniform. These changes are probably caused either by changes in the location of cell organelles or by carotenoid redistribution between photosynthetic membranes, plastoglobules, and lipophilic formations in the cytoplasm.  相似文献   

4.
5.
6.
7.
8.
9.
Electrophysiological effects produced by selective activation of M3 cholinoreceptors were studied in isolated left atrium preparations from rat using the standard sharp glass microelectrode technique. The stimulation of M3 receptors was obtained by application of muscarinic agonist pilocarpine (10?5 M) in the presence of selective M2 antagonist methoctramine (10?7 M). Stimulation of M3 receptors induced marked reduction of action potential duration by 14.4 ± 2.4% and 16.1 ± 2.5% of control duration measured at 50 and 90% of repolarization, respectively. This effect was completely abolished by selective M3 blocker 4-DAMP (10?8 M). In isolated myocytes obtained from the rat left atrium, similar pharmacological stimulation of M3 receptors led to suppression of peak L-type calcium current by 13.9 ± 2.6% of control amplitude (measured at +10 mV), but failed to affect K+ currents I to, I Kur, and I Kir. In the absence of M2 blocker methoctramine, pilocarpine (10?5 M) produced stronger attenuation of I CaL and induced an increase in I Kir. This additive inward rectifier current could be abolished by highly selective blocker of Kir3.1/3.4 channels tertiapin-Q (10?6 M) and therefore was identified as I KACh. Thus, in the rat atrial myocardium activation of M3 receptors leads to shortening of action potentials via suppression of I CaL, but does not enhance the major potassium currents involved in repolarization. Joint stimulation of M2 and M3 receptors produces stronger action potential shortening due to M2-mediated activation of I KACh.  相似文献   

10.
11.
12.
13.
Ion transport in the giant celled marine alga, Valonia ventricosa, was studied during internal perfusion and short-circuiting of the vacuole potential. The perfusing and bathing solutions were similar to natural Valonia sap and contained the following concentrations of major ions: Na 51, K 618, and Cl 652 mM. The average short-circuit current (I sc) was 97 pEq/cm2 sec (inward positive current), and the average open-circuit potential difference (PD) was 74 mv (vacuole positive to external solution). Perfused and short-circuited cells showed a small net influx of Na (2.0 pEq/cm2 sec) and large net influxes of K (80 pEq/cm2 sec) and Cl (50 pEq/cm2 sec). Unidirectional K influx was proportional to I sc, but more than one-half of the I sc remained unaccounted for. Both the I sc and PD were partly light-dependent, declining rapidly during the first 1–2 min of darkness. Ouabain (5 x 10-4 M) had little effect on the influx of Na or K and had no effect on I inf or PD. Fluid was absorbed at a rate of about 93 pliter/cm2 sec. Reversing the direction of fluid movement by adding mannitol to the outside solution had little effect on ion movements. The ionic and electrical properties of normal and perfused cells of Valonia are compared.  相似文献   

14.
Diatoms are photosynthetic unicellular microalgae and are nature’s hidden source of several biosynthetic metabolites with their use in biofuel, food and drug industries. They mainly contain various lipids, sterols, isoprenoids and toxins with their use in apoptotic, fertility controlling and cancer drugs. Chemical studies on diatoms are limited due to various limitations such as variation of nutrients, contaminants and change in seasonal factors in the environment. To overcome these limitations, we obtained axenic cultures of 12 fresh-water diatom strains on the 22nd day of inoculation having a dry weight of 1 mg each and performed their Fourier transform infrared (FTIR) study for the detection of functional groups responsible for their chemical moiety. The spectral mapping showed a varied level of polyunsaturated fatty acids, amides, amines, ketone bodies and esters for their applications in various pharmacological, food and biofuel industries in the exponential phase of their growth in f/2 media. The FTIR study of the 12 diatom strains showed various similarities in the form of some common peak patterns ranging from 3000 to 3600 cm?1 for νO–H absorption. The symmetric stretching vibration frequency of Diadesmis confervaceae (V2) type species showed different behaviour than others in the spectral region starting from 1600 to 1700 cm?1. The absorption between 1500 and 1575 cm?1 reflects the presence of the –N–H group. Infrared (IR) absorptions falling between 1600 and 1700 cm?1 reflect the presence of amide’s νC=O in all species. Placoneis elginensis (V8) type species showed an additional absorption band which is centred around 1735–1750 cm?1 which perhaps reflects the presence of ester’s νC=O. Diadesmis confervaceae (V2), Nitzschia palea (V4), Placoneis elginensis (V8), Nitzschia palea var. debilis (V6), Nitzschia inconspicua (V10), Gomphonema parvulum (V11) and Sellaphora (V12) showed distinct structural features with important key functionalities that can make them essential drug markers in the pharmaceutical industry.  相似文献   

15.
In this paper, we use NMR spectroscopy and molecular modeling to examine four new vasopressin analogs modified with α-2-indanylglycine (Igl) at position 2, [L-Igl2]AVP (I), [D-Igl2]AVP (II), [Mpa1,L-Igl2]AVP (III) and [Mpa1,D-Igl2]AVP (IV), embedded in a sodium dodecyl sulfate (SDS) micelle. All the analogs display antiuterotonic activity. In addition, the analogs with D-Igl reveal antipressor properties.Each analog exhibits the tendency to adopt β-turns at positions 2, 3 and/or 3, 4, which is characteristic of oxytocin-like peptides. Mutual arrangement of aromatic residues at positions 2 and 3 has been found to be crucial for binding antagonists with the OT and V1a receptors. The orientation of the Gln4 side chain seems to be important for the V1a receptor affinity. In each of the peptides studied, the Gln4 side chain is folded back over the ring moiety. However, it lies on the opposite face of the tocin moiety in analogs with L and D enantiomers of Igl.  相似文献   

16.
Dipalmitoylphosphatidylcholine (DPPC) dispersed in perdeuterated glycerol was investigated in order to determine the effects on the Raman spectra of hydrocarbon chain interdigitation in gel-phase lipid bilayers. Interdigitated DPPC bilayers formed from glycerol dispersions in the gel phase showed a decrease in the peak height intensity I2850/I2880 ratio, for the symmetric and asymmetric methylene CH stretching modes, respectively, as compared to non-interdigitated DPPC/water gel-phase dispersions. The decrease in this spectral ratio is interpreted as an increase in chain-chain lateral interactions. Spectra recorded in the 700–740 cm?1 CN stretching mode region, the 1000–1200 cm?1 CC stretching mode region and the 1700–1800 cm? CO stretching mode region were identical for both the interdigitated and non-interdigitated hydrocarbon chain systems. At low temperatures the Raman peak height intensity ratios I2935/I2880 were identical for the DPPC/glycerol and DPPC/water dispersions, indicating that this specific index for monitoring bilayer behavior is insensitive to acyl chain interdigitation. The increase, however, in the change of this index at the gel-liquid crystalline phase transition temperature for the DPPC/glycerol dispersions implies a larger entropy of transition in comparison to the non-interdigitated DPPC/water bilayer system.  相似文献   

17.
Spray-dried ipratropium bromide (IPB) microspheres for oral inhalation were engineered using Quality by Design. The interrogation of material properties, process parameters, and critical product quality attributes interplay enabled rational product design. A 27–3 screening design exhibited the Maillard reaction between L-leucine (LL) and lactose at studied outlet temperatures (OT) >130°C. A response surface custom design was used in conjunction with multicriteria optimization to determine the operating design space to achieve inhalable microparticles. Statistically significant predictive models were developed for volume median diameter (p?=?0.0001, adjusted R 2? =?0.9938), span (p?=?0.0278, adjusted R 2? =?0.7912), yield (p?=?0.0020, adjusted R 2? =?0.9320), and OT (p?=?0.0082, adjusted R 2? =?0.8768). An independent verification batch confirmed the model’s predictive capability. The prediction and actual values were in good agreement. Particle size and span were 3.32?±?0.09 μm and 1.71?±?0.18, which were 4.7 and 5.3% higher than the predicted values. The process yield was 50.3%, compared to the predicted value of 65.3%. The OT was 100°C versus the predicted value of 105°C. The label strength of IPB microparticles was 99.0 to 105.9% w/w suggesting that enrichment occurred during the spray-drying process. The present study can be utilized to initiate the design of the first commercial IPB dry powder inhaler.  相似文献   

18.
Using Raman and infrared spectroscopy it has been found that during the normal life of algae (pH changes from 8.0 to 9.0) the content of carotenoids increases and the molecules change their conformation: the contribution of–C=C–bonds of the polyene chain of a carotenoid molecule (Raman spectroscopy) is reduced and the contribution of methyl groups (~2940 cm–1) and aromatic C–H-plane deformation vibrations (band at 1050 cm–1) of carotenoid molecules (infrared spectroscopy) decreases as well. It is the opinion of the authors that a change in the extracellular pH within the normal range has no influence on the content of chlorophyll a and b, but tends to increase the content and alter the conformation or structure of carotenoid molecules.  相似文献   

19.
Four fundamental Raman lines were observed at 159, 111, 55 and 27 cm-1 corresponding to the I bound (I) in amyloses with DP from 20 to 100, regardless of the degree of polymerization of I and the excitation wavelength. The spectral resolution was based on the molar extinction coefficient and molar ellipticity spectra of I. Eight bands, named, S1, S2, ?, S8 from long to short wavelength, were isolated. These were found regardless of the DP. By a resonance excitation Raman study, the characteristics of S3 and S4, comprising the shoulder around 480 nm, were found to be different from those of S1 and S2, comprising the blue band. The assignment of the spectra was based on the electronic states of the monomeric I in the exciton-coupled dimeric unit. It was concluded that the blue band (S1,S2) belonged to the long-axis transitions and the shoulder band (S3,S4) to the short-axis ones on the monmeric coordinate system.  相似文献   

20.
MP2(full)/aug-cc-pVDZ(-PP) computations predict that new triangular bonding complexes (where X? is a halide and H–C refers to a protic solvent molecule) consist of one halogen bond and two hydrogen bonds in the gas phase. Carbon tetrabromide acts as the donor in the halogen bond, while it acts as an acceptor in the hydrogen bond. The halide (which commonly acts as an acceptor) can interact with both carbon tetrabromide and solvent molecule (CH3CN, CH2Cl2, CHCl3) to form a halogen bond and a hydrogen bond, respectively. The strength of the halogen bond obeys the order CBr4???Cl? > CBr4???Br? > CBr4???I?. For the hydrogen bonds formed between various halides and the same solvent molecule, the strength of the hydrogen bond obeys the order C-H???Cl? > C-H???Br? > C-H???I?. For the hydrogen bonds formed between the same halide and various solvent molecules, the interaction strength is proportional to the acidity of the hydrogen in the solvent molecule. The diminutive effect is present between the hydrogen bonds and the halogen bond in chlorine and bromine triangular bonding complexes. Complexes containing iodide ion show weak cooperative effects.
Figure
The triangular bonding complexes consisting of halogen bond and hydrogen bonds were predict in the gas phase by computational quantum chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号