首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corynebacterium glutamicum is able to biotransform demeton-S-methyl, an organophosphorus compound, during cometabolism with more readily metabolizable substrates. Among the cosubstrates used, fructose is the growth substrate that is most favorable for demeton-S-methyl biotransformation. The reaction mechanism of demeton-S-methyl biotransformation involves reductive cleavage of an S-C bond, which leads to accumulation of dimethyl thiophosphate in the culture medium.  相似文献   

2.
《Phytochemistry》1987,26(4):1001-1004
Spirodela oligorrhiza hydrolyses benzyl acetate and enantiospecifically hydrolyses the acetates of racemic mixtures of 1-phenyl-ethanol, 1-(1-naphthyl)-ethanol, 1-(2-naphthyl)-ethanol, and 2-phenyl-butanol. The R alcohols are formed faster. Two of the resulting alcohols, 1-phenyl-ethanol and 1-(2-naphthyl)-ethanol, undergo an enantiospecific oxidation. Here, the S enantiomers react faster.  相似文献   

3.
Substrate specificity of a human-specific esterase   总被引:1,自引:0,他引:1  
A human species-specific esterase has been identified in tissues, cell cultures, and urine. It is the most slowly migrating (i.e., cathodal) of the esterase isoenzymes in agarose electrophoresis; it is not a choline estrase, a pseudocholine esterase, an acetyl phenylalanine-3-naphthyl esterase or N-benzoyl-arginine-3-naphthyl esterase. Hydrolysis of N-methyl indoxyl acetate caused by this esterase is not inhibited by eserine, eserine sulfate, or EDTA. Phenylmethylsulfonyl fluoride, however, did inhibit hydrolysis. Furthermore, this cathodal esterase does not show any chymotrypsin, trypsin, or leucine aminopeptidase enzyme activity.  相似文献   

4.
The Streptomyces coelicolor A3(2) gene SCI11.14c was overexpressed and purified as a His-tagged protein from heterologous host, Streptomyces lividans. The purification procedure resulted in 34.1-fold increase in specific activity with an overall yield of 21.4%. Biochemical and physical properties of the purified enzyme were investigated and it was shown that it possesses (aryl)esterase and a true lipase activity. The enzyme was able to hydrolyze p-nitrophenyl-, α- and β-naphthyl esters and poly(oxyethylene) sorbitan monoesters (Tween 20–80). It showed pronounced activity towards p-nitrophenyl and α- and β-naphthyl esters of C12–C16. Higher activity was observed with α-naphthyl esters. The enzyme hydrolyzed triolein (specific activity: 91.9 U/mg) and a wide range of oils with a preference for those having higher content of linoleic or oleic acid (C18:2; C18:1, cis). The active-site serine specific inhibitor 3,4-dichloroisocoumarin (DCI) strongly inhibited the enzyme, while tetrahydrofurane and 1,4-dioxane significantly increased (2- and 4- fold, respectively) hydrolytic activity of lipase towards p-nitrophenyl caprylate. The enzyme exhibited relatively high temperature optimum (55 °C) and thermal stability. CD analysis revealed predominance of α-helical structure (54% α-helix, 21% β-sheet) and a Tm value at 66 °C.  相似文献   

5.
1. 2-Chloro-1-(2,4,5-trichlorophenyl)vinyl dimethyl phosphate (tetrachlorvinphos) is demethylated by mammalian liver supernatant (100000g) protein in the presence of GSH. 2. GSH acts as an acceptor of the transferred methyl group to form S-methyl glutathione. 3. The enzyme that catalyses this reaction is present in the soluble fraction of liver from mouse, rat, rabbit and pig at similar activity. The enzyme was purified 45-fold from pig liver, dimethyl 1-naphthyl phosphate being used as assay substrate. 4. Methyl groups are readily removed from most of the substrates studied; ethyl groups are removed at one-fiftieth to one-hundredth of the rate for methyl groups. It is likely that the enzyme plays an important role in the detoxification of the phosphate triester pesticides containing CH(3)-O-P groups.  相似文献   

6.
Despite directed evolution being a practical and efficient method of improving the properties of enzymes, a trade-off between the targeted property and other essential properties often exists which hinders the efficiency of directed evolution. In our previous work, mutant CVH of an esterase from Rhodobacter sphaeroides with high enantioselectivity was obtained by directed evolution, unfortunately its activity cannot catch another mutant YH. To compensate the trade-off of mutant CVH, site-directed saturation mutagenesis was conducted on four residues, three (Asn62, Met121, and Leu145) were hot spots determined from directed evolution, and one (Tyr27) was introduced to make up the large distance between a mutation (Asn62) and the substrate. A new mutant (HMVY) with high enantioselectivity and comparable activity to YH was obtained. According to the kinetic analysis and molecular dynamics simulations, it was understood that the high enantioselectivity and poor activity of mutant CVH was caused by different decrement of efficiency constants to two isomers, (R)-, (S)-methyl mandelate, and the high enantioselectivity and activity of mutant HWVY was caused by improved activity towards the preferred substrate ((S)-methyl mandelate), which provided the interpretation of the trade-off compensation. This work could provide a way to compensate the trade-off of enantioselectivity and activity in the process of enzyme evolution.  相似文献   

7.
Catechol-O-methyl transferase (COMT) activity can be monitored continuously using a coupled enzyme assay in which the inhibitory product S-adenosylhomocysteine (SAH) is converted to S-inosylhomocysteine (SIH). A simple spectrophotometric assay for COMT is described based on the difference in the ultraviolet absorption spectra between SAH and SIH.  相似文献   

8.
A sensitive, rapid, quantitative method for the determination of the activities of the bifunctional enzyme, mushroom tyrosinase (o-diphenol: O2 oxido-reductose, EC 1.10.3.1) has been developed. The spectrophotometric method utilizes p-cresol and 4-methyl catechol as substrates at pH 4.8. By maintaining this low pH value, the rates of the nonenzymic reactions are negligible during the course of the assay. Preliminary analysis of the rates of enzyme-catalyzed reactions gave typical results for both substrates: Lineweaver-Burk plots yielded straight lines and the initial velocities for the reactions were proportional to enzyme concentration. Tyrosinase preparations judged to be as pure as those previously reported could be assayed to enzyme concentrations as low as 1 mg/liter with p-cresol while catechol allowed lower concentrations to be assayed (0.3 mg/liter). The precise specific activities towards p-cresol and 4-methyl catechol were found to vary between enzyme solutions and were used to characterize enzyme preparations.  相似文献   

9.
Several oxidizing agents were examined for their ability to demethylthiolate adenosine- and cytidine 5′-S-methyl phosphorothiolates.

Iodine dissolved in an aqueous potassium iodide solution or in dimethyl sulfoxide (DMSO) was the most effective demethylthiolating agent of those tested in the present study, rapidly giving the demethylthiolated products in quantitative yields. The iodine-DMSO solution demethyl-thiolated the ribonucleoside 5′-S-methyl phosphorothiolates to give ribonucleoside 5′-monophosphates even under anhydrous conditions, DMSO acting as an oxygen donor in this reaction.

Hydrogen peroxide has high demethylthiolating ability in spite of its low reaction rate. Isoamyl nitrite, an effective demethylthiolating agent for O-alkyl S-methyl phosphorothiolates, was not effective for the demethylthiolation of ribonucleoside 5′-S-methyl phosphorothiolates, because the unprotected amino groups of the S-methyl nucleotides were attacked by the reagent to give deaminated products. N-Chlorosuccinimide had no effect on the demethylthiolation of S-methyl phosphorothiolates.  相似文献   

10.
Rhodococcus erythropolis WZ010 was capable of producing optically pure (2S,3S)-2,3-butanediol in alcoholic fermentation. The gene encoding an acetoin(diacetyl) reductase from R. erythropolis WZ010 (ReADR) was cloned, overexpressed in Escherichia coli, and subsequently purified by Ni-affinity chromatography. ReADR in the native form appeared to be a homodimer with a calculated subunit size of 26,864, belonging to the family of the short-chain dehydrogenase/reductases. The enzyme accepted a broad range of substrates including aliphatic and aryl alcohols, aldehydes, and ketones. It exhibited remarkable tolerance to dimethyl sulfoxide (DMSO) and retained 53.6 % of the initial activity after 4 h incubation with 30 % (v/v) DMSO. The enzyme displayed absolute stereospecificity in the reduction of diacetyl to (2S,3S)-2,3-butanediol via (S)-acetoin. The optimal pH and temperature for diacetyl reduction were pH 7.0 and 30 °C, whereas those for (2S,3S)-2,3-butanediol oxidation were pH 9.5 and 25 °C. Under the optimized conditions, the activity of diacetyl reduction was 11.9-fold higher than that of (2S,3S)-2,3-butanediol oxidation. Kinetic parameters of the enzyme showed lower K m values and higher catalytic efficiency for diacetyl and NADH in comparison to those for (2S,3S)-2,3-butanediol and NAD+, suggesting its physiological role in favor of (2S,3S)-2,3-butanediol formation. Interestingly, the enzyme showed higher catalytic efficiency for (S)-1-phenylethanol oxidation than that for acetophenone reduction. ReADR-catalyzed asymmetric reduction of diacetyl was coupled with stereoselective oxidation of 1-phenylethanol, which simultaneously formed both (2S,3S)-2,3-butanediol and (R)-1-phenylethanol in great conversions and enantiomeric excess values.  相似文献   

11.
The microtubule-targeting maytansinoids accumulate in cells and induce mitotic arrest at 250- to 1000-fold lower concentrations than those required for their association with tubulin or microtubules. To identify the mechanisms of this intracellular accumulation and exceptional cytotoxicity of maytansinoids we studied interaction of a highly cytotoxic maytansinoid, S-methyl DM1 and several other maytansinoids with cells. S-methyl DM1 accumulated inside the cells with a markedly higher apparent affinity than to tubulin or microtubules. The apparent affinities of maytansinoids correlated with their cytotoxicities. The number of intracellular binding sites for S-methyl DM1 in MCF7 cells was comparable to the number of tubulin molecules per cell (~ 4–6 × 107 copies). Efflux of 3 [H]-S-methyl DM1 from cells was enhanced in the presence of an excess of non-labeled S-methyl DM1, indicating that re-binding of 3 [H]-S-methyl DM1 to intracellular binding sites contributed to its intracellular retention. Liposomes loaded with non-polymerized tubulin recapitulated the apparent high-affinity association of S-methyl DM1 to cells. We propose a model for the intracellular accumulation of maytansinoids in which molecules of the compounds diffuse into a cell and associate with tubulin. Affinities of maytansinoids for individual tubulin molecules are weak, but the high intracellular concentration of tubulin favors, after dissociation of a compound-tubulin complex, their re-binding to a tubulin molecule, or to a tip of a microtubule in the same cell, over their efflux. As a result, a significant fraction of microtubule tips is occupied with a maytansinoid when added to cells at sub-nanomolar concentrations, inducing mitotic arrest and cell death.  相似文献   

12.
In a continuing investigation into the pharmacophores and structure–activity relationship (SAR) of (3′R,4′R)-3′,4′-di-O-(S)-camphanoyl-(+)-cis-khellactone (DCK) as a potent anti-HIV agent, 2′-monomethyl substituted 1′-oxa, 1′-thia, 1′-sulfoxide, and 1′-sulfone analogs were synthesized and evaluated for inhibition of HIV-1 replication in H9 lymphocytes. Among them, 2′S-monomethyl-4-methyl DCK (5a)3 and 2′S-monomethyl-1′-thia-4-methyl DCK (7a) exhibited potent anti-HIV activity with EC50 values of 40.2 and 39.1 nM and remarkable therapeutic indexes of 705 and 1000, respectively, which were better than those of the lead compound DCK in the same assay. In contrast, the corresponding isomeric 2′R-monomethyl-4-methyl DCK (6) and 2′R-monomethyl-1′-thia-4-methyl DCK (8) showed much weaker inhibitory activity against HIV-1 replication. Therefore, the bioassay results suggest that the spatial orientation of the 2′-methyl group in DCK analogs can have important effects on anti-HIV activity of this compound class.  相似文献   

13.
14.
Evidence is presented for a cell free system from Conium maculatum which catalyses the transfer of a methyl group from S-adenoysl-l-methionine to coniine with the formation of N-methyl coniine. Maximum enzyme activity which occurred in the unripe fruits was enhanced by dithiothreitol, and evidence for the role of sulphydryl groups of the enzyme was obtained from inhibition with p-CMB, iodoacetamide and N-methyl maleimide. A divalent metal cation dependency was not detected.  相似文献   

15.
Phosphotriesterases catalyze the hydrolytic detoxification of phosphotriester pesticides and chemical warfare nerve agents with various efficiencies. The directed evolution of phosphotriesterases to enhance the breakdown of poor substrates is desirable for the purposes of bioremediation. A limiting factor in the identification of phosphotriesterase mutants with increased activity is the ability to effectively screen large mutant libraries. To this end, we have investigated the possibility of coupling phosphotriesterase activity to cell growth by using methyl paraoxon as the sole phosphorus source. The catabolism of paraoxon to phosphate would occur via the stepwise enzymatic hydrolysis of paraoxon to dimethyl phosphate, methyl phosphate, and then phosphate. The Escherichia coli strain DH10B expressing the phosphotriesterase from Agrobacterium radiobacter P230 (OpdA) is unable to grow when paraoxon is used as the sole phosphorus source. Enterobacter aerogenes is an organism capable of growing when dimethyl phosphate is the sole phosphorus source. The enzyme responsible for hydrolyzing dimethyl phosphate has been previously characterized as a nonspecific phosphohydrolase. We isolated and characterized the genes encoding the phosphohydrolase operon. The operon was identified from a shotgun clone that enabled E. coli to grow when dimethyl phosphate is the sole phosphorus source. E. coli coexpressing the phosphohydrolase and OpdA grew when paraoxon was the sole phosphorus source. By constructing a short degradative pathway, we have enabled E. coli to use phosphotriesters as a sole source of phosphorus.  相似文献   

16.
1-Aminocyclopropanecarboxylate synthase, a key enzyme in ethylene biosynthesis   总被引:40,自引:0,他引:40  
1-Aminocyclopropanecarboxylate (ACC) synthase, which catalyzes the conversion of S-adenosylmethionine (SAM) to ACC and methylthioadenosine, was demonstrated in tomato extract. Methylthioadenosine was then rapidly hydrolyzed to methylthioribose by a nucleosidase present in the extract. ACC synthase had an optimum pH of 8.5, and a Km of 20 μm with respect to SAM. S-Adenosylethionine also served as a substrate for ACC synthase, but at a lower efficiency than that of SAM. Since S-adenosylethionine had a higher affinity for the enzyme than SAM, it inhibited the reaction of SAM when both were present. S-Adenosylhomocysteine was, however, an inactive substrate. The enzyme was activated by pyridoxal phosphate at a concentration of 0.1 μm or higher, and competitively inhibited by aminoethoxyvinylglycine and aminooxyacetic acid, which are known to inhibit pyridoxal phosphate-mediated enzymic reactions. These results support the view that ACC synthase is a pyridoxal enzyme. The biochemical role of pyridoxal phosphate is catalyzing the formation of ACC by α,γ-elimination of SAM is discussed.  相似文献   

17.
The possibility that dimethyl selenide production depletes liver S-adenosylmethionine was explored as a biochemical basis for selenite toxicity. Toxic doses of selenite (25 nmol/ g body weight) were found to rapidly decrease mouse liver S-adenosylmethionine and increase S-adenosylhomocysteine, indicative of an increased rate of transmethylation. However, S-adenosylmethionine levels remained depressed beyond the time when dimethyl selenide synthesis ceased, suggesting that selenite inactivated methionine adenosyltransferase. This was found to be the case in vivo by measuring the effect of graded doses of selenite on the conversion of the methionine analog, ethionine, to S-adenosylethionine. In vitro studies also indicated inactivation of this enzyme by selenite. Liver homogenates from mice injected with 25 nmol of selenite/g, as above, were found to have less than 50% of the methionine adenosyltransferase activity of saline-injected controls.  相似文献   

18.
Methamidophos is one of the most widely used organophosphorus insecticides usually detectable in the environment. A facultative methylotroph, Hyphomicrobium sp. MAP-1, capable of high efficiently degrading methamidophos, was isolated from methamidophos-contaminated soil in China. It was found that the addition of methanol significantly promoted the growth of strain MAP-1 and enhanced its degradation of methamidophos. Further, this strain could utilize methamidophos as its sole carbon, nitrogen and phosphorus source for growth and could completely degrade 3,000 mg l−1 methamidophos in 84 h under optimal conditions (pH 7.0, 30°C). The enzyme responsible for methamidophos degradation was mainly located on the cell inner membrane (90.4%). During methamidophos degradation, three metabolites were detected and identified based on tandem mass spectrometry (MS/MS) and gas chromatography-mass spectrometry (GC–MS) analysis. Using this information, a biochemical degradation pathway of methamidophos by Hyphomicrobium sp. MAP-1 was proposed for the first time. Methamidophos is first cleaved at the P–N bond to form O,S-dimethyl hydrogen thiophosphate and NH3. Subsequently, O,S-dimethyl hydrogen thiophosphate is hydrolyzed at the P–O bond to release –OCH3 and form S-methyl dihydrogen thiophosphate. O,S-dimethyl hydrogen thiophosphate can also be hydrolyzed at the P–S bond to release –SCH3 and form methyl dihydrogen phosphate. Finally, S-methyl dihydrogen thiophosphate and methyl dihydrogen phosphate are likely transformed into phosphoric acid.  相似文献   

19.
Two new 3-hydroxyisoflavanones, (S)-3,4′,5-trihydroxy-2′,7-dimethoxy-3′-prenylisoflavanone (trivial name kenusanone F 7-methyl ether) and (S)-3,5-dihydroxy-2′,7-dimethoxy-2″,2″-dimethylpyrano[5″,6″:3′,4′]isoflavanone (trivial name sophoronol-7-methyl ether) along with two known compounds (dalbergin and formononetin) were isolated from the stem bark of Dalbergia melanoxylon. The structures were elucidated using spectroscopic techniques. Kenusanone F 7-methyl ether showed activity against Mycobacterium tuberculosis, whereas both of the new compounds were inactive against the malaria parasite Plasmodium falciparum at 10 μg/ml. Docking studies showed that the new compounds kenusanone F 7-methyl ether and sophoronol-7-methyl ether have high affinity for the M. tuberculosis drug target INHA.  相似文献   

20.
Production of Sulfur Flavors by Ten Strains of Geotrichum candidum   总被引:2,自引:0,他引:2       下载免费PDF全文
Ten strains of Geotrichum candidum were studied on a liquid cheese model medium for the production of sulfur compounds which contribute to the aroma of cheeses. The volatile components produced by each cultured strain were extracted by dynamic headspace extractions, separated and quantified by gas chromatography (GC), and identified by GC-mass spectrometry. It was shown that four strains of this microorganism produced significant quantities of S-methyl thioacetate, S-methyl thiopropionate, S-methyl thiobutanoate, S-methyl thioisobutanoate, S-methyl thioisovalerate, and S-methyl thiohexanoate. This is the first example of the production of these compounds by a fungus. In addition, dimethyldisulfide, dimethyltrisulfide, dimethylsulfide, and methanethiol, which are more commonly associated with the development of cheese flavor in bacterial cultures, were also produced by G. candidum in various yields, depending on the strain selected. The potential application of these strains in cultured microbial associations to produce modified cheeses with more desirable organoleptic properties is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号