首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of dihydrodiols from 7-hydroxymethyl-12-methylbenz[alpha]anthracene by rat-liver microsomal fractions, by mouse skin in short-term organ culture and by chemical oxidation in an ascorbic acid/ferrous sulphate/EDTA system has been studied using a combination of thin-layer chromatography and high pressure liquie chromatography. The 3,4-, 8,9- and 10,11-dihydrodiols were formed in all three systems. The 5,6-dihydrodiol was formed in rat-liver microsomal fractions and in chemical oxidation but was not detected as a metabolite of [7-3H]hydroxymethyl-12-methylbenz[alpha]anthracene when this compound was incubated with mouse skin in short-term organ culture. The possible role of hydroxymethyl dihydrodiols in the in vivo metabolic activation of 7,12-dimethylbenz[alpha]anthracene in mouse skin has been studied using Sephadex LH-20 column chromatography. The results show that the hydrocarbon-nucleic acid products formed following the treatment of mouse skin in vivo with [7,12-3H]dimethylbenz[alpha]anthracene are not the same as those that are formed following the treatment of mouse skin under the same conditions with either 7-hydroxymethyl-12-methylbenz[alpha]anthracene or 7-methyl-12-hydroxymethylbenz[alpha]anthracene.  相似文献   

2.
The role of vicinal diol-epoxides in the metabolic activation of 7,12-dimethylbenz[a]anthracene to intermediates that react with nucleic acids was investigated using Sephadex LH-20 column chromatography and high pressure liquid chromatography. The results show that some of the hydrocarbon-DNA products formed in mouse skin treated in vivo with 7,12-dimethylbenz[a]anthracene arise from the reaction of DNA with 3,4-dihydro-3,4-dihydroxy-7,12-dimethylbenz[a]anthracene 1,2-oxides which, on the basis of this and other evidence, appears to be a biologically-active metabolite of 7,12-dimethylbenz[a]anthracene. However, since other nucleic acid-hydrocarbon adducts were also present that have not been identified as resulting from the reaction of the 3,4-diol 1,2-oxides with DNA, other mechanisms may also be involved in the metabolic activation of 7,12-dimethylbenz[a]anthracene in mouse skin.  相似文献   

3.
Studies were carried out on the incidence of sister-chromatid exchanges induced in Chinese hamster ovary cells by in vitro treatment with the polycyclic aromatic hydrocarbons 7-methylbenz[a]anthracene and benzo[a]pyrene and with related K-region and non-K-region dihydrodiols. Appreciable increases in the incidence of sister-chromatid exchanges were apparent in cells treated with non-K-region dihydrodiols: the most active compounds were 3,4-dihydro-3,4-dihydroxy-7-methylbenz[a]anthracene and 7,8-dihydro-7,8-dihydroxybenzo[a]pyrene and the effects were dose-dependent. The parent hydrocarbons and the related K-region dihydrodiols induced some sister-chromatid exchanges but they were considerably less active than these two non-K-region diols. The results suggest that this system may usefully be applied to studies aimed at determining which dihydrodiols are important in the metabolic activation of the carcinogenic polycyclic hydrocarbons. These and other results also infer that Chinese hamster ovary cells possess some intrinsic ability to metabolize such compounds in the absence of exogenous activation systems.  相似文献   

4.
The metabolism of 3H-labelled 7,12-dimethylbenz[a]anthracene (DMBA) and of 7-hydroxymethyl-12-methylbenz[a]anthracene (7-OHM-12-MBA) into solvent- and water-soluble and protein-bound derivatives has been examined in rat liver and adrenal homogenates and in rat adrenocortical cells in culture. Although the overall extents of metabolism of the substrates by the two types of homogenate were similar, there was twice as much binding to protein in incubations with the 7-hydroxymethyl derivative. Rat adrenal cells in culture metabolized DMBA more extensively than 7-OHM-12-MBA and converted much more of the parent hydrocarbon into water-soluble derivatives. Both hydrocarbons were metabolized to yield dihydrodiols that were separated and identified by high performance liquid chromatography (HPLC). The 8,9-dihydrodiol was the major dihydrodiol formed from DMBA but, with 7-OHM-12-MBA as substrate, metabolism was diverted to the 10,11- and 3,4-positions in adrenal and hepatic preparations respectively. The viability of rat adrenocortical cells in culture, as measured by trypan blue exclusion, did not appear to be affected by treatment with DMBA, 7-OHM-12-MBA, the sulphate ester of 7-OHM-12-MBA or by 3,4-dihydro-3,4-dihydroxy-7-hydroxymethyl-12-methylbenz[a]anthracene.  相似文献   

5.
The carcinogenic 7-methylbenz[a]anthracene and 7,12-dimethylbenz[a]anthracene were converted by rat liver microsomes into the corresponding hydroxymethyl derivatives and other metabolic products. The 7-methylbenz[a]anthracene incubation was carried out in H218O, and no incorporation of oxygen-18 was found in the hydroxymethyl metabolite isolated and purified by high pressure liquid chromatography, and analyzed by mass spectrometry. When 7-methylbenz[a]anthracene or 7,12-dimethylbenz[a]anthracene was incubated with 18O2, isotope incorporation was observed in the corresponding hydroxymethyl derivatives, indicating that such hydroxylation is a true oxygenase reaction.  相似文献   

6.
The mutagenic activities of benz[alpha]anthracene, 7-methylbenz[alpha]anthracene, 7,12-dimethylbenz[alpha]anthracene, 3-methylcholanthrene and benzo[alpha]pyrene, together with those of the trans-dihydrodiols derived from these hydrocarbons that would be expected to yield 'bay-region' vicinal diolepoxides on further metabolism have been examined in assays with S. typhimurium TA100 using post-mitochondrial supernatant fractions prepared from the livers of 3-methylcholanthrene-treated rats. Mutagenic activities obtained have been compared with: (a) the extents of reaction with DNA that occur in mouse skin following treatment with these hydrocarbons; (b) the carcinogenicities of the hydrocarbons expressed as Iball indices; (c) their activities as tumour-initiating agents on mouse skin. Close positive associations were found between the microsome-mediated mutagenicities of the dihydrodiols that could yield "bay-region" diol-epoxides and: (a) the extents of reaction with DNA in hydrocarbon-treated mouse skin; (b) the carcinogenic potencies of the parent hydrocarbons; although these correlations are not perfect, the mutagenic activities of the hydrocarbons themselves in microsome-mediated assays with S. typhimurium show no correlation with their extents of DNA binding on mouse skin and a poor correlation with their activities as initiating agents. These comparisons also indicated a statistically-significant positive correlation between carcinogenicity and the in vivo DNA binding on mouse skin treated with the hydrocarbons. Differences in the metabolic pathways by which polycyclic hydrocarbons are activated in vivo and in vitro are discussed in relation to the improved correlations found with the dihydrodiols.  相似文献   

7.
7-Methylbenz[a]anthracene and the 1,2-, 3,4-, 5,6- and 8,9-dihydrodiols derived from this hydrocarbon have been tested for mutagenicity towards S. typhimurium TA 98 in the presence of rat-liver post-mitochondrial supernatant. At non-toxic concentrations, the mutagenicity of the non-K-region 3,4-dihydrodiol was more than ten-fold higher than that of the other K-region and non-K-region dihydrodiols and more than three-fold higher than that of the parent hydrocarbon. 1,1,1-Trichloropropene 2,3-oxide, an inhibitor of epoxide hydratase, increased the microsome-mediated mutagenicity of 7-methylbenz[a]anthracene but did not alter that of the four related dihydrodiols.  相似文献   

8.
Investigations on the metabolism of 3H-labelled chrysene, benz[a]anthracene, 7-methylbenz[a]anthracene, 7,12-dimethylbenz[a]anthracene, 3-methylcholanthrene, benzo[a]pyrene, dibenz[a,c]anthracene and dibenz[a,h]anthracene by mouse skin maintained in short-term organ culture were carried out. Estimations of the distribution of the metabolites of each hydrocarbon present after 24 h showed that there were wide variations both in the rates at which the hydrocarbons were metabolised and in the amounts of metabolites covalently bound to skin macromolecules. All the hydrocarbons were metabolised to dihydrodiols, which were identified by comparison on high pressure liquid chromatography (HPLC) with the authentic compounds, and these were the same diols as those that were formed in previous experiments with rat-liver microsomal fractions. However, free dihydrodiols represented only relatively small proportions of the total amounts of metabolites formed. All the hydrocarbons yielded dihydrodiols of the type that could give rise to bay-region diol-epoxides, when further metabolised, some of which are thought to be involved in hydrocarbon carcinogenesis.  相似文献   

9.
The fungal metabolism of 7-methylbenz[a]anthracene (7-MBA) and 7-hydroxymethylbenz[a]anthracene (7-OHMBA) was studied. 7-MBA was metabolized by Cunninghamella elegans to form 7-OHMBA-trans-8,9-dihydrodiol and 7-OHMBA-trans-3,4-dihydrodiol as the predominant metabolites. Other metabolites were identified as 7-OHMBA, 7-MBA-trans-8,9-dihydrodiol and 7-MBA-trans-3,4-dihydrodiol, and 7-MBA-8,9,10,11-tetraol. Incubation of 7-OHMBA with C. elegans cells indicated that 7-OHMBA-trans-8,9-dihydrodiol and 7-OHMBA-trans-3,4-dihydrodiol were major metabolites. The metabolism of 7-MBA by rat liver microsomes from 3-methylcholanthrene-treated rats showed that the metabolites were qualitatively similar to those formed by C. elegans, except additional dihydrodiol metabolites were formed at the 5,6 and 10,11 positions. The metabolites formed were isolated by high-performance liquid chromatography and identified by comparing their chromatographic, UV-visible absorption and mass spectral properties with those of reference compounds.  相似文献   

10.
Enantiomers of nine K-region and one non-K-region epoxides of polycyclic aromatic hydrocarbons have been resolved by high-performance liquid chromatography with chiral stationary phases either ionically or covalently bonded to gamma-aminopropylsilanized silica. Resolution of enantiomers was confirmed by ultraviolet-visible absorption, circular dichroism, and mass spectral analyses. This method has been applied to the determination of optical purity and absolute configuration of the K-region epoxides formed in the metabolism of 1-methylbenz[a]anthracene, 7-methylbenz[a]anthracene, and 12-methylbenz[a]anthracene by rat liver microsomes.  相似文献   

11.
Metabolism of 4-methylbenz[a]anthracene by the fungus Cunninghamella elegans was studied. C. elegans metabolized 4-methylbenz[a]anthracene primarily at the methyl group, this being followed by further metabolism at the 8,9- and 10,11-positions to form trans-8,9-dihydro-8,9-dihydroxy-4-hydroxymethylbenz[a]anthracene and trans-10,11-dihydro-10,11-dihydroxy-4-hydroxymethylbenz[a]anthracene. There was no detectable trans-dihydrodiol formed at the methyl-substituted double bond (3,4-positions) or at the 'K' region (5,6-positions). The metabolites were isolated by reversed-phase high-pressure liquid chromatography and characterized by the application of u.v.-visible-absorption-, 1H-n.m.r.- and mass-spectral techniques. The 4-hydroxymethylbenz[a]anthracene trans-8,9- and -10,11-dihydrodiols were optically active. Comparison of the c.d. spectra of the trans-dihydrodiols formed from 4-methylbenz[a]anthracene by C. elegans with those of the corresponding benz[a]anthracene trans-dihydrodiols formed by rat liver microsomal fraction indicated that the major enantiomers of the 4-hydroxymethylbenz[a]anthracene trans-8,9-dihydrodiol and trans- 10,11-dihydrodiol formed by C. elegans have S,S absolute stereochemistries, which are opposite to those of the predominantly 8R,9R- and 10R,11R-dihydrodiols formed by the microsomal fraction. Incubation of C. elegans with 4-methylbenz[a]anthracene under 18O2 and subsequent mass-spectral analysis of the metabolites indicated that hydroxylation of the methyl group and the formation of trans-dihydrodiols are catalysed by cytochrome P-450 mono-oxygenase and epoxide hydrolase enzyme systems. The results indicate that the fungal mono-oxygenase-epoxide hydrolase enzyme systems are highly stereo- and regio-selective in the metabolism of 4-methylbenz[a]anthracene.  相似文献   

12.
The formation of trans-dihydrodiols from dibenz[a,c]anthracene, dibenz[a,h]anthracene and chrysene by chemical oxidation in an ascorbic acid-ferrous sulphate-EDTA system and by rat-liver microsomal fractions has been studied using a combination of thin-layer (TLC) and high pressure liquid chromatography (HPLC) to separate the mixtures of isomeric dihydrodiols. The 1,2- and 3,4-dihydrodiols of dibenz[a,c]anthracene, the 1,2-,3,4- and 5,6-dihydrodiols of dibenz[a,h]anthracene and the 1,2-, 3,4- and 5,6-dihydrodiols of chrysene were formed in chemical oxidations. These dihydrodiols were also formed when the three parent hydrocarbons were metabolized by rat-liver microsomal fractions and, in addition, dibenz[a,c]anthracene yielded the 10,11-dihydrodiol. The 1,2- and 3,4-dihydrodiols of dibenz[a,c]anthracene have not been reported previously either as metabolites of the hydrocarbon or as products of chemical syntheses and the 5,6-dihydrodiol of chrysene was not detected in earlier metabolic studies.  相似文献   

13.
Syncephalastrum racemosum UT-70 and Cunninghamella elegans ATCC 36112 metabolized 7,12-dimethylbenz[a]anthracene (7,12-DMBA) to hydroxymethyl metabolites as well as 7-hydroxymethyl-12-methylbenz[a]anthracene trans-3,4-, -5,6-, -8,9-, and -10,11-dihydrodiols. The 7,12-DMBA metabolites were isolated by reversed-phase high-performance liquid chromatography and identified by their UV-visible absorption, mass, and nuclear magnetic resonance spectral characteristics. A comparison of the circular dichroism spectra of the K-region (5,6-position) dihydrodiol of both fungal strains with those of the 7,12-DMBA 5S,6S-dihydrodiol formed from 7,12-DMBA by rat liver microsomes indicated that the major enantiomer of the 7-hydroxymethyl-12-methylbenz[a]anthracene trans-5,6-dihydrodiol formed by both fungal strains had a 5R,6R absolute stereochemistry. Direct resolution of the fungal trans-5,6-dihydrodiols by chiral stationary-phase high-performance liquid chromatography indicated that the ratios of the R,R and S,S enantiomers were 88:12 and 77:23 for S. racemosum and C. elegans, respectively. These results indicate that the fungal metabolism of 7,12-DMBA at the K region (5,6-position) is highly stereoselective and different from that reported for mammalian enzyme systems.  相似文献   

14.
Syncephalastrum racemosum UT-70 and Cunninghamella elegans ATCC 36112 metabolized 7,12-dimethylbenz[a]anthracene (7,12-DMBA) to hydroxymethyl metabolites as well as 7-hydroxymethyl-12-methylbenz[a]anthracene trans-3,4-, -5,6-, -8,9-, and -10,11-dihydrodiols. The 7,12-DMBA metabolites were isolated by reversed-phase high-performance liquid chromatography and identified by their UV-visible absorption, mass, and nuclear magnetic resonance spectral characteristics. A comparison of the circular dichroism spectra of the K-region (5,6-position) dihydrodiol of both fungal strains with those of the 7,12-DMBA 5S,6S-dihydrodiol formed from 7,12-DMBA by rat liver microsomes indicated that the major enantiomer of the 7-hydroxymethyl-12-methylbenz[a]anthracene trans-5,6-dihydrodiol formed by both fungal strains had a 5R,6R absolute stereochemistry. Direct resolution of the fungal trans-5,6-dihydrodiols by chiral stationary-phase high-performance liquid chromatography indicated that the ratios of the R,R and S,S enantiomers were 88:12 and 77:23 for S. racemosum and C. elegans, respectively. These results indicate that the fungal metabolism of 7,12-DMBA at the K region (5,6-position) is highly stereoselective and different from that reported for mammalian enzyme systems.  相似文献   

15.
Polycyclic aromatic hydrocarbons (PAHs) are metabolized to trans-dihydrodiol proximate carcinogens by CYP1A1 and epoxide hydrolase (EH). CYP1A1 or aldo–keto reductases (AKRs) from the 1C subfamily can further activate the trans-dihydrodiols by forming either anti-diol-epoxides or reactive and redox active o-quinones, respectively. To determine whether other AKR superfamily members can divert trans-dihydrodiols to o-quinones, the cDNA encoding human aldehyde reductase (AKR1A1) was isolated from hepatoma HepG2 cells using RT-PCR, subcloned into a prokaryotic expression vector, overexpressed in E. coli and purified to homogeneity in milligram amounts. Studies revealed that AKR1A1 preferentially oxidized the metabolically relevant (−)-[3R,4R]-dihydroxy-3,4-dihydrobenz[a]anthracene. AKR1A1 also displayed high utilization ratios (Vmax/Km) for the following PAH trans-dihydrodiols: (±)trans-3,4-dihydroxy-3,4-dihydro-7-methylbenz[a]anthracene, (±)trans-3,4-dihydroxy-3,4-dihydro-7,12-dimethylbenz[a]anthracene and (±)trans-7,8-dihydroxy-7,8-dihydro-5-methylchrysene. Multiple tissue expression (MTE) arrays were used to measure the co-expressed of CYP1A1, EH and AKR1A1. All the three enzymes co-expressed to sites of PAH activation. The high catalytic efficiency of AKR1A1 for potent proximate carcinogen trans-dihydrodiols and its presence in tissues that contain CYP1A1 and EH suggests that it plays an important role in this alternative pathway of PAH activation (supported by CA39504).  相似文献   

16.
Polycyclic aromatic hydrocarbons (PAHs) are metabolized to trans-dihydrodiol proximate carcinogens by CYP1A1 and epoxide hydrolase (EH). CYP1A1 or aldo-keto reductases (AKRs) from the 1C subfamily can further activate the trans-dihydrodiols by forming either anti-diol-epoxides or reactive and redox active o-quinones, respectively. To determine whether other AKR superfamily members can divert trans-dihydrodiols to o-quinones, the cDNA encoding human aldehyde reductase (AKR1A1) was isolated from hepatoma HepG2 cells using RT-PCR, subcloned into a prokaryotic expression vector, overexpressed in E. coli and purified to homogeneity in milligram amounts. Studies revealed that AKR1A1 preferentially oxidized the metabolically relevant (-)-[3R,4R]-dihydroxy-3,4-dihydrobenz[a]anthracene. AKR1A1 also displayed high utilization ratios (V(max)/K(m)) for the following PAH trans-dihydrodiols: (+/-)trans-3,4-dihydroxy-3,4-dihydro-7-methylbenz[a]anthracene, (+/-)trans-3,4-dihydroxy-3,4-dihydro-7,12-dimethylbenz[a]anthracene and (+/-)trans-7,8-dihydroxy-7,8-dihydro-5-methylchrysene. Multiple tissue expression (MTE) arrays were used to measure the co-expressed of CYP1A1, EH and AKR1A1. All the three enzymes co-expressed to sites of PAH activation. The high catalytic efficiency of AKR1A1 for potent proximate carcinogen trans-dihydrodiols and its presence in tissues that contain CYP1A1 and EH suggests that it plays an important role in this alternative pathway of PAH activation (supported by CA39504).  相似文献   

17.
James W. Flesher 《Life sciences》1981,28(10):1175-1181
Binding of 5-fluoro-7-hydroxymethyl-12-methylbenz(a)anthracene to calf thymus DNA was negligible (1.2 μmole hydrocarbon/mole DNA-P) in the absence of microsomal enzymes whereas in the presence of liver microsomes from unpretreated rats or from rats pretreated with 3-methylcholanthrene binding was greatly enhanced (11.6 and 16.2 μmole hydrocarbon/mole DNA-P respectively). In contrast, the acetate ester of 5-fluoro-7-hydroxymethyl-12-methylbenz(a)anthracene readily bound to DNA non-enzymatically (9.1 μmole hydrocarbon/mole DNA-P). In the presence of a 3′-phosphoadenosine-5′-phosphosulfate (PAPS) generating system, the binding of 5-fluoro-7-hydroxymethyl-12-methylbenz(a)anthracene was independent of sulfate ion. ATP enhanced non-enzymatic binding of 5-fluoro-7-hydroxymethyl-12-methylbenz(a)anthracene to DNA whereas CTP, β,γ-methylene-ATP, and ADP were much less effective suggesting a certain specificity for adenosine in addition to a high energy triphosphate for high binding. These observations suggest that 5-fluoro-7-hydroxymethyl-12-methylbenz(a)anthracene may be converted to a phosphate ester which, like 5-fluoro-7-acetoxymethyl-12-methylbenz(a)anthracene, readily binds to DNA.  相似文献   

18.
1. 7- and 12-Methylbenz[a]anthracene were converted by rat-liver homogenates into the corresponding hydroxymethyl derivatives, products that are probably the 8,9-dihydro-8,9-dihydroxy and the 5,6-dihydro-5,6-dihydroxy derivatives, and a number of phenolic products. 2. Both hydrocarbons were converted into glutathione conjugates; that from 7-methylbenz[a]anthracene was also formed, together with 5,6-dihydro-5,6-dihydroxy- and 5-hydroxy-benz[a]anthracene, from 5,6-epoxy-5,6-dihydro-7-methylbenz[a]anthracene. 3. 7- and 12-Hydroxymethyl-benz[a]anthracene were converted into products that are probably 8,9-dihydro-8,9-dihydroxy derivatives, and into phenols. 4. The preparation of a number of derivatives of the hydrocarbons is described. 5. The oxidation of the hydrocarbons with lead tetra-acetate was investigated.  相似文献   

19.
The enantiomers of a trans-5,6-dihydrodiol formed in the metabolism of 7,12-dimethylbenz[a]anthracene by rat liver microsomes (microsomal fractions) were resolved by chiral stationary-phase high-performance liquid chromatography. The major 7,12-dimethylbenz[a]anthracene trans-5,6-dihydrodiol enantiomer and its hydrogenation product 5,6,8,9,10,11-hexahydro-trans-5,6-diol were found to have 5S,6S absolute configurations by the exciton chirality c.d. method. The R,R/S,S enantiomer ratios of 7,12-dimethylbenz[a]anthracene trans-5,6-dihydrodiol formed in the metabolism of 7,12-dimethylbenz[a]anthracene by liver microsomes from untreated, 3-methylcholanthrene-treated and phenobarbital-treated male Sprague-Dawley rats were found to be 11:89, 6:94, and 5:95 respectively. These findings and those reported previously on the metabolic formations of trans-5,6-dihydrodiols from 7-methylbenz[a]anthracene and 12-methylbenz[a]anthracene suggest that the 12-methyl group in 7,12-dimethylbenz[a]anthracene plays an important role in determining the stereoselective metabolism at the K-region 5,6-double bond. Furthermore, the finding that formation of 5S,6S-dihydrodiol as the predominant enantiomer was not significantly affected by the isoenzymic composition of cytochrome P-450 present in microsomes prepared from the livers of the rats pretreated with the different inducing agents indicates that the stereoselectivity depends on the substrate metabolized rather than on the precise nature of the metabolizing-enzyme system.  相似文献   

20.
The syntheses of 7,12-dimethylbenz[a]anthracene 5,6-oxide, 7-acetoxymethyl-12-methylbenz[a]anthracene 5,6-oxide and a product that appears to be mainly 7-hydroxymethyl-12-methylbenz[a]anthracene 5,6-oxide are described. The compounds readily rearranged to phenols in the presence of mineral acid, and 7,12-dimethylbenz[a]anthracene 5,6-oxide and its 7-hydroxymethyl derivative reacted slowly with water to yield trans-5,6-dihydro-5,6-dihydroxy-7,12-dimethylbenz[a] anthracene and trans-5,6-dihydro-5,6-dihydroxy-7-hydroxymethyl-12-methylbenz [a]anthracene respectively. Both epoxides were converted enzymically by rat liver microsomal fractions and homogenates into the related trans-dihydrodiols. The epoxides reacted chemically with GSH to form conjugates that were identical with the conjugates formed when the epoxides were incubated with rat liver homogenates. The GSH conjugates were more stable to acid than conjugates derived from other arene oxides. In the alkylation of 4-(p-nitrobenzyl)pyridine, 7,12-dimethyl-benz[a]anthracene 5,6-oxide was more active than the 5,6-oxides of 7-methylbenz[a]-anthracene and benz[a]anthracene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号