首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

A series of 3′-N-substituted 3′-amino-3′-deoxythymidine derivatives with alkyl, alkenyl and alkylaryl substituents was synthesized by two methods. The first method involved the reaction of 1-(2,3-dideoxy-3-0-mesyl-5-0-trityl-β-D-threo-pentofuranosyl)thymine with an appropriate amine. In the second method, 3′-amino-5′-0-trityl-3′-deoxy-thymidine served as a synthetic precursor which was reacted with an appropiate aldehyde or ketone followed by sodium borohydride reduction. An improved synthesis of 3′-amino-3′-deoxythymidine from 3′ -azido-5′-0-trityl-3′-deoxythymidine using sodium borohydride was also described.  相似文献   

2.
Abstract

Phosphorylation of 2′-0-acetyl-3′-trifluoroacetamido-3′-deoxy-N2-palmitoylguanosine with N-morpholino-O, O-bis(1-benzotriazolyl)phos-phate gives a 5′-phosphotriester. Removal of the benzotriazolyl group and addition of pyrophosphoric acid gave, after deblocking all protecting groups, GTP(3′NH2).  相似文献   

3.
Abstract

A strategy was developed for the synthesis of 3′-O-β-D-ribofuranosyl 2′-deoxythymidine derivatives using three different protecting groups, which allows the synthesis of a phosphoramidite building block for oligonucleotide synthesis. Likewise the 5′-O- and 5″-O-phosphorylated analogues were synthesized and their conformation was determined using NMR spectroscopy.  相似文献   

4.
Abstract

Preparation of 3′-deoxypsicothymidines bearing a tether group at O1′ is described. Selective protection of the primary hydroxy functions of the starting nucleoside is briefly discussed.  相似文献   

5.
6.
Abstract

The target compounds were synthesized via the key intermediate carbohydrate 8, which was synthesized by first selectively protecting the 1′ - and 2′- hydroxyl groups followed by selective tosylation of the 5′ -hydroxyl group to obtain compound 3. The tosyl moiety was then replaced by a benzyl ether to obtain 4. Compound 4 underwent Dess-Martin oxidation to afford the ketone 5. Compound 5 was subjected to Wittig olefination to afford the alkene 6 followed by regioselective hydroboration to obtain 7. Compound 7 was fully acetylated using acetic acid, acetic anhydride and sulfuric acid to obtain the key intermediate 8.  相似文献   

7.
Abstract

A series of 3′-C-cyano-3′-deoxy and 3′-C-cyano-2′,3′-dideoxy-nucleoside analogues of thymidine, uridine, cytidine and adenosine have been prepared. Their antiviral activity was assessed in various assay systems and while none of the compounas proved specifically active against human immunodeficiency virus, some compounds had marked activity against other viruses.  相似文献   

8.
Abstract

A synthesis of 1-(2,3-dideoxy-β-D-ribofuranosyl)-1,2,4-triazole-3-carboxamide (2′,3′-dideoxyribavirin, ddR) is described. Glycosylation of the sodium salt of 1,2,4-triazole-3-carbonitrile (5) with 1-chloro-2-deoxy-3,5-di-0-p-toluoyl-α-D-erythro-pentofuranose (1) gave exclusively the corresponding N-1 glycosyl derivative with β-anomeric configuration (6), which on ammonolysis provided a convenient synthesis of 2′-deoxyribavirin (7). Similar glycosylation of the sodium salt of methyl 1,2,4-triazole-3-carboxylate (2) with 1 gave a mixture of corresponding N-1 and N-2 glycosyl derivatives (3) and (4), respectively. Ammonolysis of 3 furnished yet another route to 7. A four-step deoxygenation procedure using imidazolylthiocarbonylation of the 3′-hydroxy group of 5′-0-toluoyl derivative (9a) gave ddR (11). The structure of 11 was proven by single crystal X-ray studies. In a preliminary in vitro study ddR was found to be inactive against HIV retrovirus.  相似文献   

9.
Abstract

An economical two pot synthesis of 2′,3′-dideoxycytidine (2) from N4-acetyl-cytidine (4) has been developed. The key feature of this sequence is the in situ reductive elimination of a mixture of 1-(3-bromo-3-deoxy-2,5-di-O-acetyl-β-D-xylofuranosyl)-N4-acetylcytosine (5) and 1-(2-bromo-3-deoxy-3,5-di-O-acetyl-β-D-arabinofuranosyl)-N4-acetylcytosine (6) and subsequent hydrogenation of the resultant olefin over palladised charcoal.  相似文献   

10.
Abstract

Treatment of O2, 3′-anhydro-5′-O-trityl derivatives of thymidine (1) and 2′-deoxyuridine (2) with lithium azide in dimethylformamide at 150 °C resulted in the formation of the corresponding isomeric 3′-azido-2′, 3′-dideoxy-5′-O-trityl-β-D-ribofuranosyl N1- (the major products) and N3-nucleosides (3/4 and 5/6). 3′-Amino-2′, 3′-dideoxy-β-D-ribofuranosides of thymidine [Thd(3′NH2)], uridine [dUrd(3′NH2)], and cytidine [dCyd(3′NH2)] were synthesized from the corresponding 3′-azido derivatives. The Thd(3′NH2) and dUrd(3′NH2) were used as donors of carbohydrate moiety in the reaction of enzymatic transglycosylation of adenine and guanine to afford dAdo(3′NH2) and dGuo(3′NH2). The substrate activity of dN(3′NH2) vs. nucleoside phosphotransferase of the whole cells of Erwinia herbicola was studied.  相似文献   

11.
Abstract

The title compound is prepared in consistently high yield and purity by molecular sieve catalyzed pyridinium dichromate oxidation of 5′-0-tritylthymidine. Shortcomings of other preparations are described, and properties of the title compound are reported.  相似文献   

12.
Abstract

The synthesis and anti-HBV and anti-HIV activity of a number of 2′,3′-dideoxy-2′-fluoro-3′-C-hydroxymethyl-β-D-arabinofuranosyl pyrimidine nucleosides are reported.  相似文献   

13.
Synthesis of 9-β-d-glucopyranosyl-adenine-6′-phosphate is described. The method developed here involves the process of condensation of base (chloromercuri-6-benzamidopurine) (I) with phosphorylated sugar (2,3,4-tri-O-acetyl-6-diphenylphosphoryl-α-d-glucopyranosyl bromide) (II). This reaction gives crystalline 6-benzamido-9-(2′,3′,4′-tri-O-acetyl-6′-diphenylphosphoryl-β-d-glucopyranosyl)-purine (III) in high yield, which is converted to the desired nucleotide by alkaline hydrolysis.  相似文献   

14.
Abstract

The synthesis of 3′-C-fluoromethyl and 3′-C-azidomethyl nucleosides is reported. The 3′-C-fluoromethyl furanoside 4 was synthesized via fluoride ion induced displacement of the corresponding trifluoromethanesulfonate. The 3′-C-hydroxymethyl furanoside 3 was converted to the corresponding 3′-C-azidomethyl furanoside 6 using triphenylphosphine-carbon tetrabromide-lithium azide. The 3′-C-fluoromethyl furanoside derivative 5 and the 3′-C-azidomethyl furanoside derivative 7 were subsequently condensed with silylated purine and pyrimidine bases. Deblocking and separation of the anomers by chromatography afforded the α- and β-nucleoside analogues. The nucleosides were tested for inhibition of HIV multiplication in vitro and were found to be inactive in the assay.  相似文献   

15.
Abstract

2′- and 3′-O-azidomethyl derivatives of ribonucleosides were obtained by splitting the corresponding methylthiomethyl derivatives of ribonucleosides with bromine or SO2Cl2 followed by lithium azide treatment.  相似文献   

16.
Abstract

Reaction of 2′-deoxy-2′-methylidene-5′-O-trityluridine (1) with diethylamino-sulfur trifluoride (DAST) in CH2Cl2 resulted in the formation of a mixture of (3′R)-2′,3′-dideoxy-3′-fluoro-2′-methylidene derivative 3 and 2′,3′-didehydro-2′,3′-dideoxy-2′-fluoromethyl derivative 4 (3:4 = 1:1.5) in 65% yield. A similar treatment of 1-(2-deoxy-2-methylidene-5-O-trityl-β-D-threo-pentofuranosyl)uracil (19) with DAST in CH2Cl2 afforded (3′S)-2′,3′-dideoxy-3′-fluoro-2′-methylidene derivatives 20 and 4 in 38% and 17% yields respectively. Transformation of the uracil nucleosides 4, 12, and 20 into cytosines followed by deprotection furnished the corresponding cytidine derivatives 29, 18, and 25, respectively. The corresponding thymidine congener 27 was also synthesized in a similar manner. All of the newly synthesized nucleosides were evaluated for their inhibitory activities against HIV and for their antiproliferative activities against L1210 and KB cells.  相似文献   

17.
Abstract

The facile synthesis of several substituted carbohydrates that are amenable for the preparation of 2′,3′-dideoxy-3′-hydroxymethyl nucleosides are reported. Elaboration of a previously reported analog, 5-O-benzoyl-3-deoxy-3-(benzyloxy)methyl-1,2-O-isopropylidene-β-D- ribofuranose (4) has provided two 2,3-dideoxy-3-branched ribose derivatives 5-O-benzoyl-2,3-dideoxy-3-(benzyloxy)methyl-1-O-methyl-β-D-ribofuranose (7) and 1.5-di-O-benzoyl-2,3-dideoxy-3-(benzyloxy)methyl-(α,β)-D-ribofuranose (10). Due to problems involved with the separation of anomeric mixtures when these carbohydrates were condensed with an heterocycle, another versatile synthon 5-O-benzoyl-3-deoxy-3-(benzyloxy)methyl-2-O-t-butyldimethylslyl-1-O- methyl-β-D-ribofuranose (12) was synthesized. The utility of this compound (12) is demonstrated in the total synthesis of 1-[3-deoxy-3-hydroxymethyl-β-D-ribofuranosyl]thymine (20).  相似文献   

18.
Stereo- and regio-selective synthesis of 3-O-(2-acetamido-2-deoxy-3-O-β-d- galactopyranosyl-β-d-galactopyranosyl)-1,2-di-O-tetradecyl-sn-glycerol by use of 1,2-di-O-tetradecyl-3-O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-d-galactopyranosyl)-sn-glycerol as a key intermediate is described.  相似文献   

19.
Abstract

The preparation of 3-alkyl D4T derivatives has been carried out starting from the corresponding 5′-O-t-butyldimethylsilyl-3′-O-methanesulfonylthymidine 2 by way of deprotection-elimination and succesive alkylation reactions.  相似文献   

20.
Abstract

3′-Amino-3′-deoxy-5′-O-(4,4′-dimethoxytrityl)-3′-N,5′(R)-C-ethylenethymidine (6) was synthesized starting from 3′-azido-3′-deoxythymidine. Condensation of 6 with 5′-O-(H-phosphonyl)thymidine and 5′-O-(p-nitrophenoxycarbonyl)thymidine derivatives gave dinucleotide and dinucleoside derivatives, respectively, which were incorporated into oligodeoxynucleotides (ODNs). Tm data of the modified ODNs are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号