首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diverse approaches that include site-directed mutagenesis have indicated a catalytic role of Lys-329 of ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. To determine whether Lys-329 is required for the initial enolization of ribulose bisphosphate or for some subsequent step in the overall reaction pathway, the competence of position 329 mutant proteins (devoid of carboxylase activity) in catalyzing exchange of solvent protons with the C-3 proton of substrate has now been examined. Irrespective of the amino acid substitution for Lys-329, the mutant protein retains 2-6% of the wild-type activity in the proton exchange reaction. The complete stability of ribulose bisphosphate during the enolization catalyzed by mutant protein suggests that the major effect of Lys-329 is to facilitate the addition of gaseous substrates (CO2 or O2) to the enediol intermediate. The exchange reaction requires Mg2+, is CO2-dependent, and is inhibited by the transition-state analogue 2-carboxyarabinitol 1,5-bisphosphate. A mutant protein in which Lys-191, the site for carbamylation by CO2 in an obligatory activation step, is replaced by a cysteinyl residue totally lacks proton exchange activity. Barely detectable exchange activity (approximately 0.2% of wild-type) is displayed by the Lys-166----Cys mutant protein, consistent with the previously implicated role of Lys-166 in the deprotonation of ribulose bisphosphate. Retention of exchange activity by the Glu-48----Gln mutant protein, which is slightly active in overall carboxylation, demonstrates that active site Glu-48, like Lys-329, exerts its major effect at some step subsequent to the initial enolization.  相似文献   

2.
Acrylodan, which normally modifies cysteine residues, was employed to derivatize recombinant interleukin-1 beta (rIL-1 beta) under native conditions, using a reagent:protein ratio of 3:1. Two major covalent protein/acrylodan adducts were generated and subsequently purified by DEAE TSK 5PW ion exchange chromatography. Peptide mapping and mass spectrometry were used to locate the probe on the modified proteins. Both modified proteins carried one molecule of acrylodan each, one at Cys-8 and the other at Lys-103. Neither Cys-71 nor any of the other 13 lysine residues of rIL-1 beta was modified. Cysteine 71 is inaccessible to acrylodan, but the unusual specificity for Lys-103 could be caused by the location of that residue at the bottom of a hydrophobic pocket which might specifically bind the reagent. No double-labeled protein was detected, indicating that the introduction of the label at either site interferes with the labeling at the other. Both acrylodan-modified proteins exhibited bioactivity in the thymocyte proliferation assay at a level equivalent to that of the unmodified control protein (1.7 x 10(7) units/mg), which shows that the modification of either the Cys-8 or Lys-103 position with acrylodan does not interfere with the cellular bioactivities of the respective proteins. Furthermore, receptor binding assays yielded a Kd = 32.0 +/- 4.8 pM for the Lys-103-labeled protein, Kd = 69.5 +/- 12.7 pM for the unmodified protein, and Kd = 75.0 +/- 11.6 pM for the Cys-8-labeled protein. Thus, Cys-8 or Lys-103 modification of rIL-1 beta by acrylodan also does not interfere with the ability of the molecule to bind to its receptor. The slightly higher affinity of the Lys-103-labeled protein for the receptor suggests that the positive charge on this residue in the native molecule may interfere with IL-1 receptor binding. The two fluorescent labeled IL-1 proteins described herein should provide interesting probes for the study of IL-1/IL-1 receptor interactions.  相似文献   

3.
P Nacharaju  A S Acharya 《Biochemistry》1992,31(50):12673-12679
The site selectivity of nonenzymic glycation of proteins has been suggested to be a consequence of the Amadori rearrangement activity of the protein at the respective glycation sites [Acharya, A. S., Roy, R. P., & Dorai, B. (1991) J. Protein Chem. 10, 345-358]. The catalytic activity that determines the potential of a site for nonenzymic glycation is the propensity of its microenvironment to isomerize the protein bound aldose (aldimine) to a protein bound ketose (ketoamine). The catalytic power of the microenvironment of the glycation sites could be endowed to them either by the amino acid sequence (nearest-neighbor linear effects) or by the higher order structure (tertiary/quarternary) of the protein (nearest-neighbor three-dimensional effect). In an attempt to resolve between these two structural concepts, the glycation potential of Val-1(alpha) and Lys-16(alpha), the residues of hemoglobin A exhibiting the least and the highest isomerization activity in the tetramer, respectively, has been compared in the segment alpha 1-30, isolated alpha-chain, and the tetramer. When alpha-chain is used as the substrate for the nonenzymic glycation, the influence of the quaternary structure of the tetramer will be absent. Similarly, the contribution of the tertiary and quaternary structure of the protein will be absent when alpha 1-30 is used as the substrate. The microenvironment of Lys-16(alpha) exhibited hardly any Amadori rearrangement activity in the segment alpha 1-30. The tertiary structure of the alpha-chain induces a considerable degree of catalytic activity to the microenvironment of Lys-16(alpha) to isomerize the aldimine adduct at this site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Tn5 transposase active site mutants   总被引:7,自引:0,他引:7  
Tn5 transposase (Tnp) is a 53.3-kDa protein that is encoded by and facilitates movement of transposon Tn5. Tnp monomers contain a single active site that is responsible for catalyzing a series of four DNA breaking/joining reactions at one transposon end. Based on primary sequence homology and protein structural information, we designed and constructed a series of plasmids that encode for Tnps containing active site mutations. Following Tnp expression and purification, the active site mutants were tested for their ability to form protein-DNA complexes and perform each of the four catalytic steps in the transposition pathway in vitro. The results demonstrate that Asp-97, Asp-188, and Glu-326, visible in the active site of Tn5 crystal structures, are absolutely required for all catalytic steps. Mutations within a series of amino acid residues that are conserved in the IS4 family of transposases and retroviral integrases also impair Tnp catalytic activity. Mutations at either Tyr-319 or Arg-322 reduce both hairpin resolution and strand transfer activity within protein-DNA complexes. Mutations at Lys-333 reduce the ability of Tnps to form protein-DNA complexes, whereas mutations at the less strongly conserved Lys-330 have less of an effect on both synaptic complex formation and catalytic activity.  相似文献   

5.
A RecA/Rad51 homologue from Pyrococcus kodakaraensis KOD1 (Pk-REC) is the smallest protein among various RecA/Rad51 homologues. Nevertheless, Pk-Rec is a super multifunctional protein and shows a deoxyribonuclease activity. This deoxyribonuclease activity was inhibited by 3 mM or more ATP, suggesting that the catalytic centers of the ATPase and deoxyribonuclease activities are overlapped. To examine whether these two enzymatic activities share the same active site, a number of site-directed mutations were introduced into Pk-REC and the ATPase and deoxyribonuclease activities of the mutant proteins were determined. The mutant enzyme in which double mutations Lys-33 to Ala and Thr-34 to Ala were introduced, fully lost both of these activities, indicating that Lys-33 and/or Thr-34 are important for both ATPase and deoxyribonuclease activities. The mutation of Asp-112 to Ala slightly and almost equally reduced both ATPase and deoxyribonuclease activities. In addition, the mutation of Glu-54 to Gln did not seriously affect the ATPase, deoxyribonuclease, and UV tolerant activities. These results strongly suggest that the active sites of the ATPase and deoxyribonuclease activities of Pk-REC are common. It is noted that unlike Glu-96 in Escherichia coli RecA, which has been proposed to be a catalytic residue for the ATPase activity, the corresponding residual Glu-54 in Pk-REC is not involved in the catalytic function of the protein.  相似文献   

6.
T Katsube  Y Kazuta  K Tanizawa  T Fukui 《Biochemistry》1991,30(35):8546-8551
The entire structural gene for potato tuber UDP-glucose pyrophosphorylase has been amplified from its cDNA by the polymerase chain reaction and inserted into the expression plasmid pTV118-N downstream from the lac promoter. Escherichia coli JM105 cells carrying thus constructed plasmid produced the enzyme to a level of about 5% of the total soluble protein upon induction with isopropyl beta-D-thiogalactopyranoside. The recombinant enzyme purified to homogeneity in two column chromatographic steps was structurally and catalytically identical with the enzyme purified from potato tuber except for the absence of an N-terminal-blocking acetyl group. To examine functional roles of the five lysyl residues that had been identified by affinity labeling studies to be located at or near the active site of the enzyme [Kazuta, Y., Omura, Y., Tagaya, M., Nakano, K., & Fukui, T. (1991) Biochemistry (preceding paper in this issue)], they were replaced individually by glutamine via site-directed mutagenesis. The Lys-367----Gln mutant enzyme was almost completely inactive, and the Lys-263----Gln mutant enzyme had significantly decreased Vmax values with perturbed Km values for pyrophosphate and alpha-D-glucose 1-phosphate. Lys-329----Gln also exhibited increased Km values for these substrates but exhibited Vmax values similar to those of the wild-type enzyme. The two mutant enzymes Lys-409----Gln and Lys-410----Gln showed catalytic properties almost identical with those of the wild-type enzyme. Thus, among the five lysyl residues, Lys-367 is essential for catalytic activity of the enzyme and Lys-263 and Lys-329 may participate in binding of pyrophosphate and/or alpha-D-glucose 1-phosphate.  相似文献   

7.
The catalytic site of Escherichia coli F1 was probed using a reactive ATP analogue, adenosine triphosphopyridoxal (AP3-PL). For complete loss of enzyme activity, about 1 mol of AP3-PL bound to 1 mol of F1 was estimated to be required in the presence or absence of Mg2+. About 70% of the label was bound to the alpha subunit and the rest to the beta subunit in the absence of Mg2+, and the alpha Lys-201 and beta Lys-155 residues, respectively, were the major target residues (Tagaya, M., Noumi, T., Nakano, K., Futai, M., and Fukui, T. (1988) FEBS Lett. 233, 347-351). Addition of Mg2+ decreased the AP3-PL concentration required for half-maximal inhibition, and predominant labeling of the beta subunit (beta Lys-155 and beta Lys-201) with the reagent. ATP and ADP were protective ligands in the presence and absence of Mg2+. The alpha subunit mutation (alpha Lys-201----Gln or alpha Lys-201 deletion) were active in oxidative phosphorylation. However, purified mutant F1s showed impaired low multi-site activity, although their uni-site catalyses were essentially normal. Thus alpha Lys-201 is not a catalytic residue, but may be important for catalytic cooperativity. Mutant F1s were inhibited less by AP3-PL in the absence of Mg2+, and consistent with this, modifications of their alpha subunits by AP3-PL were reduced. AP3-PL was more inhibitory to the mutant enzymes in the presence of Mg2+, and bound to the beta Lys-155 and beta Lys-201 residues of mutant F1 (alpha Lys-201----Gln). These results strongly suggest that alpha Lys-201, beta Lys-155, and beta Lys-201 are located close together near the gamma-phosphate group of ATP bound to the catalytic site, and that the two beta residues and the gamma-phosphate group become closer to each other in the presence of Mg2+.  相似文献   

8.
The Rana catesbeiana (bullfrog) ribonucleases, which belong to the RNase A superfamily, exert cytotoxicity toward tumor cells. RC-RNase, the most active among frog ribonucleases, has a unique base preference for pyrimidine-guanine rather than pyrimidine-adenine in RNase A. Residues of RC-RNase involved in base specificity and catalytic activity were determined by site-directed mutagenesis, k(cat)/K(m) analysis toward dinucleotides, and cleavage site analysis of RNA substrate. The results show that Pyr-1 (N-terminal pyroglutamate), Lys-9, and Asn-38 along with His-10, Lys-35, and His-103 are involved in catalytic activity, whereas Pyr-1, Thr-39, Thr-70, Lys-95, and Glu-97 are involved in base specificity. The cytotoxicity of RC-RNase is correlated, but not proportional to, its catalytic activity. The crystal structure of the RC-RNase.d(ACGA) complex was determined at 1.80 A resolution. Residues Lys-9, His-10, Lys-35, and His-103 interacted directly with catalytic phosphate at the P(1) site, and Lys-9 was stabilized by hydrogen bonds contributed by Pyr-1, Tyr-28, and Asn-38. Thr-70 acts as a hydrogen bond donor for cytosine through Thr-39 and determines B(1) base specificity. Interestingly, Pyr-1 along with Lys-95 and Glu-97 form four hydrogen bonds with guanine at B(2) site and determine B(2) base specificity.  相似文献   

9.
Monoclonal antibody (mAb) #1-30-44 recognized an acid-sensitive conformational epitope of rabies virus glycoprotein (G). The antigenicity of G protein exposed on the cell surface was lost when the infected cells were exposed to pH 5.8. By comparing the deduced amino acid sequence of G protein between the HEP-Flury strain and the epitope-negative CVS strain as well as the mAb-resistant escape mutants, two distant sites that contained Lys-202 and Asn-336 were shown to be involved in the epitope formation. Lys-202 is located in the so-called neurotoxin-like sequence, while Asn-336 is included in antigenic site III and is very near the amino acid at position 333, which is known to affect greatly the neuropathogenicity of rabies virus when changed. Consistent with this finding, antigenicity of a neurovirulent revertant of the HEP-Flury strain, in which Gln-333 of G protein was replaced by Arg, was also affected as shown by its greatly decreased reactivity with mAb #1-30-44 compared to that of the original avirulent HEP virus. Based on these results, we hypothesize that the neurotoxin-like domain and some amino acids in antigenic site III come into contact with each other to form a conformational epitope for mAb #1-30-44, and such a configuration would be lost when exposed to acidic conditions to perform a certain low pH-dependent function of G protein.  相似文献   

10.
Oligonucleotide-directed mutagenesis of the yeast Saccharomyces cerevisiae was used to generate an abnormal iso-1-cytochrome c having an Arg-77 replacement of the normal Lys-77; this Lys-77 residue is evolutionarily conserved in most eukaryotic cytochromes c and is trimethylated in fungal and plant cytochromes c. Examination of strains having a single chromosomal copy of the gene encoding the Arg-77 protein indicated that the altered protein was synthesized at the normal rate and that it had normal or near normal activity in vivo. Examination of enzymatic activities in vitro with cytochrome b2, cytochrome c peroxidase, and cytochrome c oxidase indicated that the altered iso-1-cytochrome c has equal or enhanced catalytic efficiencies. Thus, replacement of the evolutionarily conserved residue Lys-77 produces no or only minor effects both in vivo and in vitro.  相似文献   

11.
Chondroitinase B from Flavobacterium heparinum is the only known lyase that cleaves the glycosaminoglycan, dermatan sulfate (DS), as its sole substrate. A recent co-crystal structure of chondroitinase B with a disaccharide product of DS depolymerization has provided some insight into the location of the active site and suggested potential roles of some active site residues in substrate binding and catalysis. However, this co-crystal structure was not representative of the actual enzyme-substrate complex, because the disaccharide product did not have the right length or the chemical structure of the minimal substrate (tetrasaccharide) involved in catalysis. Therefore, only a limited picture of the functional role of active site residues in DS depolymerization was presented in previous structural studies. In this study, by docking a DS tetrasaccharide into the proposed active site of the enzyme, we have identified novel roles of specific active site amino acids in the catalytic function of chondroitinase B. Our conformational analysis also revealed a unique, symmetrical arrangement of active site amino acids that may impinge on the catalytic mechanism of action of chondroitinase B. The catalytic residues Lys-250, Arg-271, His-272, and Glu-333 along with the substrate binding residues Arg-363 and Arg-364 were mutated using site-directed mutagenesis, and the kinetics and product profile of each mutant were compared with recombinant chondroitinase B. Mutating Lys-250 to alanine resulted in inactivation of the enzyme, potentially attributable to the role of the residue in stabilizing the carbanion intermediate formed during enzymatic catalysis. The His-272 and Glu-333 mutants showed diminished enzymatic activity that could be indicative of a possible role for one or both residues in the abstraction of the C-5 proton from the galactosamine. In addition, the Arg-364 mutant had an altered product profile after exhaustive digestion of DS, suggesting a role for this residue in defining the substrate specificity of chondroitinase B.  相似文献   

12.
Deubiquitinating enzymes (DUbs) play important roles in many ubiquitin-dependent pathways, yet how DUbs themselves are regulated is not well understood. Here, we provide insight into the mechanism by which ubiquitination directly enhances the activity of ataxin-3, a DUb implicated in protein quality control and the disease protein in the polyglutamine neurodegenerative disorder, Spinocerebellar Ataxia Type 3. We identify Lys-117, which resides near the catalytic triad, as the primary site of ubiquitination in wild type and pathogenic ataxin-3. Further studies indicate that ubiquitin-dependent activation of ataxin-3 at Lys-117 is important for its ability to reduce high molecular weight ubiquitinated species in cells. Ubiquitination at Lys-117 also facilitates the ability of ataxin-3 to induce aggresome formation in cells. Finally, structure-function studies support a model of activation whereby ubiquitination at Lys-117 enhances ataxin-3 activity independent of the known ubiquitin-binding sites in ataxin-3, most likely through a direct conformational change in or near the catalytic domain.  相似文献   

13.
14.
Three phospholipase A2 enzymes or homologs were purified from the venom of Trimeresurus mucrosquamatus (Taiwan habu). The most abundant one was found to be a phospholipase homolog without enzyme activity, and its complete amino acid sequence was determined using oligopeptide fragments derived from digestion by endopeptidases Glu-C, Asp-N, Lys-C and alpha-chymotrypsin, and by means of gas-phase sequencing. The sequence revealed that the protein belonged to the Lys-49 family of snake venom phospholipase A2. This protein's function was characterized as edema-inducing. The Lys-49 protein has the potential to bind membrane phospholipid and Ca2+ (Kd = 1.6 x 10(-4) M) as shown by ultraviolet difference spectra; however, the catalytic site appeared to be inactive and the edematous response was independent of the protein's hydrolytic activity. Mast cells and platelets were shown to be subject to activation by the Lys-49 protein.  相似文献   

15.
Analysis of the predicted amino acid sequence of Bacillus anthracis adenylyl cyclase revealed sequences with homology to consensus sequences for A- and B-type ATP binding domains found in many ATP binding proteins. Based on the analysis of nucleotide binding proteins, a conserved basic amino acid residue in the A-type consensus sequence and a conserved acidic amino acid residue in the B-type consensus sequence have been implicated in the binding of ATP. The putative ATP binding sequences in the B. anthracis adenylyl cyclase possess analogous lysine residues at positions 346 and 353 within two A-type consensus sequences and a glutamate residue at position 436 within a B-type consensus sequence. The two A-type consensus sequences overlap each other and have the opposite orientation. To determine whether Lys-346, Lys-353, or Glu-436 of the B. anthracis adenylyl cyclase are crucial for enzyme activity, Lys-346 and Lys-353 were replaced with methionine and Glu-436 with glutamine by oligonucleotide-directed mutagenesis. Furthermore, Lys-346 was also replaced with arginine. The genes encoding the wild type and mutant adenylyl cyclases were placed under the control of the lac promoter for expression in Escherichia coli, and extracts were assayed for adenylyl cyclase activity. In all cases, a 90-kDa polypeptide corresponding to the catalytic subunit of the enzyme was detected in E. coli extracts by rabbit polyclonal antibodies raised against the purified B. anthracis adenylyl cyclase. The proteins with the Lys-346 to methionine or arginine mutations exhibited no adenylyl cyclase activity, indicating that Lys-346 in the A-type ATP binding consensus sequence plays a critical role for enzyme catalysis. Furthermore, the enzyme with the Lys-353 to methionine mutation was also inactive, suggesting that Lys-353 may also directly contribute to enzyme catalysis. In contrast, the protein with the Glu-436 to glutamine mutation retained 75% of enzyme activity, suggesting that Glu-436 in the B-type ATP binding consensus sequence may not be directly involved in enzyme catalysis. It is concluded that Lys-346 and Lys-353 in B. anthracis adenylyl cyclase may interact directly with ATP and contribute to the binding of the nucleotide to the enzyme.  相似文献   

16.
17.
Legume seed development represents a high demand for energy and metabolic resources to support the massive synthesis of starch and proteins. However, embryo growth occurs in an environment with reduced O2 that forces the plant to adapt its metabolic activities to maximize efficient energy use. SNF1‐related protein kinase1 (SnRK1) is a master metabolic regulator needed for cells adaptation to conditions that reduce energy availability, and its activity is needed for the successful development of seeds. In bean embryo extracts, SnRK1 can be separated by anion exchange chromatography into two pools: one where the catalytic subunit is phosphorylated (SnRK1‐p) and another with reduced phosphorylation (SnRK1‐np). The phosphorylation of the catalytic subunit produces a large increase in SnRK1 activity but has a minor effect in determining its sensitivity to metabolic inhibitors such as trehalose 6‐P (T6P), ADP‐glucose (ADPG), glucose 1‐P (G1P) and glucose 6‐P (G6P). In Arabidopsis thaliana, upstream activating kinases (SnAK) phosphorylate the SnRK1 catalytic subunit at T175/176, promoting and enhancing its activity. Recombinant Phaseolus vulgaris homologous to SnAK proteins (PvSnAK), can phosphorylate and activate the catalytic domains of the α‐ subunits of Arabidopsis, as well as the SnRK1‐np pool purified from bean embryos. While the phosphorylation process is extremely efficient for catalytic domains, the phosphorylation of the SnRK1‐np complex was less effective but produced a significant increase in activity. The presence of SnRK1‐np could contribute to a quick response to unexpected adverse conditions. However, in addition to PvSnAK kinases, other factors might contribute to regulating the activation of SnRK1.  相似文献   

18.
beta-Ketoacyl-[acyl carrier protein (ACP)] synthase forms new carbon-carbon bonds in three steps: transfer of an acyl primer from ACP to the enzyme, decarboxylation of the elongating substrate and its condensation with the acyl primer substrate. Six residues of Escherichia coli beta-ketoacyl-ACP synthase I (KAS I) implicated in these reactions were subjected to site-directed mutagenesis. Analyses of the abilities of C163A, C163S, H298A, D306A, E309A, K328A, and H333A to carry out the three reactions lead to the following conclusions. The active site Cys-163 is not required for decarboxylation, whereas His-298 and His-333 are indispensable. Neither of the histidines is essential for increasing the nucleophilicity of Cys-163 to enable transfer of the acyl primer substrate. Maintenance of the structural integrity of the active site by Asp-306 and Glu-309 is required for decarboxylation but not for transfer. One function of Lys-328 occurs very early in catalysis, potentially before transfer. These results in conjunction with structural analyses of substrate complexes have led to a model for KAS I catalysis [Olsen, J. G., Kadziola, A., von Wettstein-Knowles, P., Siggaard-Andersen, M., and Larsen, S. (2001) Structure 9, 233-243]. Another facet of catalysis revealed by the mutant analyses is that the acyl primer transfer activity of beta-ketoacyl-ACP synthase I is inhibited by free ACP at physiological concentrations. Differences in the inhibitory response by individual mutant proteins indicate that interaction of free ACP with Cys-163, Asp-306, Glu-309, Lys-328, and His-333 might form a sensitive regulatory mechanism for the transfer of acyl primers.  相似文献   

19.
Autophagy is a catabolic process needed for maintaining cell viability and homeostasis in response to numerous stress conditions. Emerging evidence indicates that the ubiquitin system has a major role in this process. TRIMs, an E3 ligase protein family, contribute to selective autophagy acting as receptors and regulators of the autophagy proteins recognizing endogenous or exogenous targets through intermediary autophagic tags, such as ubiquitin. Here we report that TRIM50 fosters the initiation phase of starvation-induced autophagy and associates with Beclin1, a central component of autophagy initiation complex. We show that TRIM50, via the RING domain, ubiquitinates Beclin 1 in a K63-dependent manner enhancing its binding with ULK1 and autophagy activity. Finally, we found that the Lys-372 residue of TRIM50, critical for its own acetylation, is necessary for its E3 ligase activity that governs Beclin1 ubiquitination. Our study expands the roles of TRIMs in regulating selective autophagy, revealing an acetylation-ubiquitination dependent control for autophagy modulation.  相似文献   

20.
The P130gag-fps transforming protein of Fujinami sarcoma virus (FSV) possesses tyrosine-specific protein kinase activity and autophosphorylates at Tyr-1073. Within the kinase domain of P130gag-fps is a putative ATP-binding site containing a lysine (Lys-950) homologous to lysine residues in cAMP-dependent protein kinase and p60v-src which bind the ATP analogue p-fluorosulfonylbenzoyl-5' adenosine. FSV mutants in which the codon for Lys-950 has been changed to codons for arginine or glycine encode metabolically stable but enzymatically defective proteins which are unable to effect neoplastic transformation. Kinase-defective P130gag-fps containing arginine at residue 950 was normally phosphorylated at serine residues in vivo suggesting that this amino acid substitution has a minimal effect on protein folding and processing. The inability of arginine to substitute for lysine at residue 950 suggests that the side chain of Lys-950 is essential for P130gag-fps catalytic activity, probably by virtue of a specific interaction with ATP at the phosphotransfer active site. Tyr-1073 of the Arg-950 P130gag-fps mutant protein was not significantly autophosphorylated either in vitro or in vivo, but could be phosphorylated in trans by enzymatically active P140gag-fps. These data indicate that Tyr-1073 can be modified by intermolecular autophosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号