首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
UDP-D-Galactose:D-xylose galactosyltransferase, a membrane-bound enzyme which catalyzes the second glycosyl transfer reaction in the biosynthesis of chondroitin sulfate chains, has been solubilized and partially purified from embryonic chick cartilage. Solubilization was effected by treatment of a particulate fraction of a homogenate (sedimenting between 10,000 and 100,000 times g) with the nonionic detergent Nonidet P-40 (0.5%) and KCl (0.5 M) or by the alkali-detergent method described previously (Helting, T. (1971) J. Biol. Chem. 246, 815-822). The applicability of the salt-detergent procedure as a general method for solubilization of membrane-bound glycosyltransferases was tested by assay of four other glycosyltransferases involved in chondroitin sulfate synthesis (UDP-D-xylose:core protein xylosyltransferase, UDP-D-galactose:4-O-beta-D-galactosyl-D-xylose galactosyltransferase, UDP-D-glucuronic acid: 3-O-beta-D-galactosyl-D-galactose glucuronosyltransferase, and UDP-N-acetyl-D-galactosamine: (GlcUA-GalNAc-4-sulfate)4 N-acetylgalactosaminyltransferase). In each case, greater than 70% of the activity was solubilized and, on gel chromatography on Sephadex G-200, the enzymes appeared largely in included positions and partially separated from each other. After partial purification by gel chromatography on Sephadex G-200, UDP-D-galactose:D-xylose galactosyltransferase was purified further by chromatography on one of several affinity matrices, i.e. xylosylated core protein of cartilage proteoglycan coupled to CNBr-activated Sepharose, a core protein matrix saturated with UDP-D-xylose:core protein xylosyltransferase or UDP-D-xylose:core protein xylosyltransferase covalently bound to Sepharose. The specific activities of the enzyme preparations obtained by these procedures were approximately 1000-fold greater than that of the crude homogenate.  相似文献   

2.
1. Xanthine oxidase (EC 1.2.3.2) was found to represent more than 8% of the intrinsic protein of the bovine milk-fat-globule membranes. 2. Less than 25% of the xanthine oxidase activity of the fat-globule membrane was solubilized with 0.1 M-sodium pyrophosphate buffer or 2M-NaCl. Of the particulate activity remaining 56% was solubilized with Triton X-100. 3. The xanthine oxidase activity solubilized with buffer, 2M-NaCl or Triton X-100 was not liberated as the free enzyme. Only tryptic digestion was found to release the free enzyme from the fat-globule membrane. Tryptic digestion also liberated free xanthine oxidase from those fractions solubilized by buffer or NaCl, but not from those fractions solubilized with Triton X-100 or by sonication. 4. The effect of membrane association on the catalytic properties of the enzyme could be mimicked by low pH or by the presence in the assay mixture of certain concentrations of 2-methyl-propan-2-ol, but not 1,4-dioxan, suggesting that hydrogen-bonding rather than low dielectric constant may be involved. 5. The origin of the milk-fat-globule membrane is discussed with reference to the intrinsic nature of the associated xanthine oxidase activity.  相似文献   

3.
DNA polymerase was solubilized from adult liver chromatin-membrane complex. The activity of this solubilized enzyme was 20–30 times higher than that of the partially purified cytoplasmic DNA polymerase. The solubilized nuclear particulate enzyme differed from the cytoplasmic enzyme in properties such as template preference, salt effect and pH optimum. ATP stimulated only the cytoplasmic enzyme, but EDTA and spermidine, stimulated the solubilized nuclear particulate enzyme but not the cytoplasmic enzyme. On sucrose density gradient centrifugation the cytoplasmic DNA polymerase sedimented around 9 S and the solubilized nuclear enzyme sedimented around 3–4 S.  相似文献   

4.
Treatment of homogenates and plasma membrane preparations from HeLa cells with phospholipase A2 (EC 3.1.1.4) caused a 50% increase in activity of membrane-associated alkaline phosphatase. Lysophosphatidylcholine, dispersed in 0.15 M KCl, affected alkaline phosphatase in a similar fashion by releasing the enzyme from particulate fractions into the incubation medium and by elevating its specific activity. Higher concentrations of lysophosphatidylcholine solubilized additional protein from particulate fractions but did not further increase the specific activity of the released alkaline phosphatase. Particulate fractions from HeLa cells were exposed to the effects of liposomes prepared from lysophosphatidylcholine and cholesterol. The ratio of particulate protein/lysophosphatidylcholine (by weight) required for optimal activation of alkaline phosphatase was one. Kinetic studies indicated that phospholipase A2 and lysophosphatidylcholine enhanced the apparent V of the enzyme but did not significantly alter its apparent Km. The increased release of alkaline phosphatase from the particulate matrix by lysophosphatidylcholine was confirmed by disc electrophoresis. The release of the enzyme by either phospholipase A2 or by lysophosphatidylcholine appeared to be followed by the formation of micelles that contained lysophosphatidylcholine. The new complexes had relatively less cholesterol and more lysophosphatidylcholine than the native membranes. The possibility that lysophosphatidylcholine formed a lipoprotein complex with the solubilized alkaline phosphatase was indicated by a break point in the Arrhenius plot which was evident only in the lysophosphatidylcholine-solubilized enzyme but could not be demonstrated in alkaline phosphatase that had been released with 0.15 M KCl alone.  相似文献   

5.
At least 90% of a membrane-bound phospholipase D was solubilized by extraction of freeze-dried rat brain with 0.8% Miranol H2M and 0.5% cholate. The bulk of base exchange reaction enzymes remained firmly bound to the particulate fraction under these conditions. The phospholipase D specific activity was enriched 240-fold by a purification protocol employing ammonium sulfate precipitation, and both Sepharose 4B and DEAE-cellulose column chromatography. The approximate molecular weight of the partially purified enzyme was calculated to be 200,000 based upon the elution profile from Sepharose 4B and Sephadex G-200 columns. The optimum pH was 6.0, and Km values for phosphatidylcholine and phosphatidylethanolamine were 0.75 mM and 0.91 mM, respectively. The enzyme activity was not dependent on the presence of divalent cation although Ca2+ and Fe2+ showed stimulatory effects.  相似文献   

6.
ATPase (ATP phosphohydrolase, EC 3.6.1.3) was detected in the membrane fraction of the strict anaerobic bacterium, Clostridium pasteurianum. About 70% of the total activity was found in the particulate fraction. The enzyme was Mg2+ dependent; Co2+ and Mn2+ but not Ca2+ could replace Mg2+ to some extent; the activation by Mg2+ was slightly antagonized by Ca2+. Even in the presence of Mg2+, Na+ or K+ had no stimulatory effect. The ATPase reaction was effectively inhibited by one of its products, ADP, and only slightly by the other product, inorganic phosphate. Of the nucleoside triphosphates tested ATP was hydrolyzed with highest affinity ([S]0.5 v = 1.3 mM) and maximal activity (120 U/g). The ATPase activity could be nearly completely solubilized by treatment of the membranes with 2 M LiCl in the absence of Mg2+. Solubilization, however, led to instability of the enzyme. The clostridial solubilized and membrane-bound ATPase showed different properties similar to the "allotopic" properties of mitochondrial and other bacterial ATPases. The membrane-bound ATPase in contrast to the soluble ATPase was sensitive to the ATPase inhibitor dicyclohexylcarbodiimide (DCCD). DCCD, at 10(-4) M, led to 80% inhibition of the membrane-bound enzyme; oligomycin ouabain, or NaN3 had no effect. The membrane-bound ATPase could not be stimulated by trypsin pretreatment. Since none of the mono- or divalent cations had any truly stimulatory effect, and since a pH gradient (interior alkaline), which was sensitive to the ATPase inhibitor DCCD, was maintained during growth of C. pasteurianum, it was concluded that the function of the clostridial ATPase was the same as that of the rather similar mitochondrial enzyme, namely H+ translocation. A H+-translocating, ATP-consuming ATPase appears to be intrinsic equipment of all prolaryotic cells and as such to be phylogenetically very old; in the course of evolution the enzyme might have been developed to a H+-(re)translocating, ATP-forming ATPase as probably realized in aerobic bacteria, mitochondria and chloroplasts.  相似文献   

7.
1. It was confirmed that bilirubin glucuronyltransferase can be obtained in solubilized form from rat liver microsomes. 2. Michaelis-Menten kinetics were not followed by the enzyme with bilirubin as substrate when the bilirubin/albumin ratio was varied. High concentrations of bilirubin were inhibitory. 3. The K(m) for UDP-glucuronic acid at the optimum bilirubin concentration was 0.46mm. 4. Low concentrations of Ca(2+) were inhibitory in the absence of Mg(2+) but stimulatory in its presence; the converse applied for EDTA. 5. UDP-N-acetylglucosamine and UDP-glucose enhanced conjugation by untreated, but not by solubilized microsomes. 6. The apparent 9.5-fold increase in activity after solubilization was probably due to the absence of UDP-glucuronic acid pyrophosphatase activity in the solubilized preparation. 7. The activation of solubilized enzyme activity by ATP was considered to be a result of chelation of inhibitory metal ions. 8. The solubilized enzyme activity was inhibited by UMP and UDP. The effect of UMP was not competitive with respect to UDP-glucuronic acid. 9. A number of steroids inhibited the solubilized enzyme activity. The competitive effects of stilboestrol, oestrone sulphate and 3beta-hydroxyandrost-5-en-17-one, with respect to UDP-glucuronic acid, may be explained on an allosteric basis.  相似文献   

8.
A phospholipase C which hydrolyses phosphatidylinositol 4,5-bisphosphate to release inositol trisphosphate was detected in a sedimentable fraction from celery and from some other higher plants. The particulate enzyme also hydrolyses phosphatidylinositol, whereas the soluble phosphatidylinositol phosphodiesterase described previously [Irvine, Letcher & Dawson (1980) Biochem. J. 192, 279-283] acts only on phosphatidylinositol, and we were unable to detect activity of this soluble activity on phosphatidylinositol 4,5-bisphosphate. Activity of the particulate enzyme is markedly enhanced in the presence of deoxycholate, but not of other detergents; the particulate enzyme can also be solubilized by extraction with deoxycholate.  相似文献   

9.
Liver plasma membranes isolated from hypophysectomized rats were treated with 0.1 M Lubrol-PX, a nonionic detergent, and centrifuged at 165,000 × g for 1 hour. Adenylate cyclase activity remaining in the supernate had a specific activity that was at least equal to that of the particulate enzyme. The activity of the solubilized, non-sedimentable adenylate cyclase, as well as the membrane bound enzyme, was increased by GTP, ITP, and GMP-PCP at 10?4 M. The activity of the solubilized, non-sedimentable enzyme increased linearly with GTP from 10?6 to 10?4 M but there was no further increase in the activity of the solubilized enzyme with 10?3 M GTP. In contrast, the particulate liver membrane enzyme activity increased exponentially with GTP from 10?6 to 10?4 M and was further increased by 10?3 M GTP. These data indicate that GTP, ITP or GMP-PCP have direct effects on solubilized adenylate cyclase. This effect is in addition to a role of nucleotides in modifying membrane structure (16).  相似文献   

10.
S J Sulakhe  N L Leung  V Sulakhe 《Enzyme》1977,22(2):141-144
Some properties of guanylate cyclase, which was solubilized from the rabbit heart washed particles by the treatment with Triton X-100, were investigated. The solubilized enzyme activity was stimulated by Mg2+ in the presence of low (subsaturating) Mn2+ (GTP is greater than Mn2+); under these conditions, Ga2+ was inhibitory. At subsaturating MnGTP and free Mn2+, the solubilized enzyme was markedly stimulated by MnGDP and MnATP; CaGTP on the other hand, was inhibitory. These results are consistent with the view that the particulate guanylate cyclase may exist in the cell as a metalloenzyme with tightly bound Mn2+ and that Mg2+ supports its catalysis while Ca2+ as well as nucleotides may exert regulatory effects on its activity.  相似文献   

11.
The GlcNAc-1-P transferase was solubilized from pig aorta microsomal fractions using 0.5% Nonidet P-40. The activity of the solubilized enzyme was stimulated by exogeneously added phospholipids in the order phosphatidylglycerol greater than phosphatidylinositol greater than phosphatidylserine. When the enzyme was stored in 20% glycerol containing 20 micrograms of phosphatidylglycerol/mg of protein, more than 80% of the activity remained after storage for 6 days at 0-4 degrees C. On the other hand, in the absence of the stabilizers, the enzyme lost most of its activity within 24 h. The transferase was purified about 68-fold using ammonium sulfate and DEAE-cellulose fractionation. The DEAE-cellulose chromatography separated a heat-stable factor from the enzyme, which when added back to the partially purified enzyme stimulated about 5-fold. With this partially purified enzyme, the Km for UDP-GlcNAc was found to be 1 X 10(-7) M, and that for dolichyl-P about 1 X 10(-6) M. The stimulatory factor increased the Vmax for both UDP-GlcNAc and dolichyl-P 5-10-fold, but the Km values remained the same. The pH optimum for the enzyme was between 7.4 and 7.6, and either Mn2+ (1 mM) or Mg2+ (10 mM) was required for optimum activity. The GlcNAc-1-P transferase was also stimulated by the addition of GDP-mannose (or other purine sugar nucleotides) or dolichyl-phosphoryl-mannose to the incubation mixtures. These two compounds acted in different ways on the enzyme since their stimulatory effects were additive. The effect of GDP-mannose was found to be due to protection of the substrate, UDP-GlcNAc, from degradation, but the effect of dolichyl-P-mannose remains to be established. In addition, the stimulations shown by phosphatidylglycerol, GDP-mannose, and factor, or phosphatidylglycerol, dolichyl-P-mannose, and factor, were all additive, indicating that they were acting at different sites on the enzyme. The transferase was quite sensitive to the action of sulfhydryl reagents such as N-ethylmaleimide or p-chloromercuribenzene sulfonate, and was rapidly inactivated in their presence. The enzyme could be protected to the extent of about 50% when all of the substrates (UDP-GlcNAc, dolichyl-P, Mn2+) were added before the addition of the sulfhydryl reagents.  相似文献   

12.
1. Phosphodiesterase activity in rat liver supernatant and solubilized rat liver particulate fractions was chromatographed on Q Sepharose and several characteristics of each peak determined. 2. Rat liver supernatant contained four peaks of activity. The first two of these corresponded to type I and II phosphodiesterases. The fourth peaks was similar to a type V activity and the third peak could not be definitely classified. 3. Particulate activity solubilized by mild protease treatment also contained four peaks of activity. The first two corresponded to the first two from the supernatant, the fourth was a type IV enzyme which is the insulin activated phosphodiesterase. The third peak could not be definitely characterized. 4. Particulate activity solubilised by Triton X-100 contained three peaks. Two had the properties of a type IV enzyme but only one of these was immunologically identified as the insulin sensitive enzyme. The remaining activity was similar to the chymotrypsin peak 3 activity. 5. Most of the particulate phosphodiesterase of rat liver is found in a microsomal fraction, and most is the insulin sensitive type IV enzyme.  相似文献   

13.
Adenylate cyclase from the guinea-pig pancreas was activated in a dose-dependent manner by both secretin and cholecystokinin-pancreozymin, but in contrast with results in other species the hormones were approximately equipotent. All other hormones and transmitter substances tested were without any effect on adenylate cyclase activity. Guanylate cyclase activity was shown to have both particulate and supernatant components in the guinea-pig pancreas. The particulate enzyme, but not the supernatant enzyme, was markedly activated by Triton X-100, and most of the induced activity was released into the supernatant. The supernatant enzyme was specifically Mn2+-dependent, but, even though Mn2+ was maximally effective at a concentration of 3 mM, activity could be raised further by increasing Ca2+ concentration. The particulate enzyme, by contrast, was relatively Mn2+-independent. Activity of the particulate guanylate cyclase was enhanced by phosphatidylserine. The supernatant enzyme displayed classical Michaelis-Menten kinetics, but the particulate enzyme deviated markedly from such kinetics. Under none of the conditions used was any significant activation of guanylate cyclase observed with any of the secretogen hormones or transmitter substances.  相似文献   

14.
A particulate form of protein-phosphotyrosine phosphatase was solubilized and purified over 2,000-fold from the particulate fraction of rat spleen. Phosphorylated poly(Glu, Tyr), a random copolymer of glutamic acid and tyrosine, was used as substrate for measuring protein-phosphotyrosine phosphatase activity. Nonionic detergents like Triton X-100 increased the protein-phosphotyrosine phosphatase activity of the particulate fraction (but not of the soluble fraction) by 4-8-fold. Chromatography of the Triton extract of the particulate fraction on DEAE-Sephacel gave three peaks of protein-phosphotyrosine phosphatase activity. The major peak of activity was further purified on Bio-Gel HTP, Sephadex G-75, and phosphocellulose columns. On polyacrylamide gel electrophoresis in the presence of Na-dodecyl-SO4 the purified enzyme showed a major protein band of Mr 36,000 which comigrated with enzyme activity on the phosphocellulose column. The apparent Vmax and Km for phosphorylated poly(Glu,Tyr) were 6,150 nmol min-1 mg-1 and 1.6 microM, respectively. This enzyme was strongly inhibited by microM concentrations of orthovanadate and zinc acetate. Fluoride (50 mM) inhibited this enzyme only by 30-40%. Divalent metal ions Ca2+, Mg2+, and Mn2+ were inhibitory at 1-10 mM concentration. EDTA had no effect on the activity of the purified enzyme. This phosphatase could dephosphorylate and inactivate the phosphorylated form of a tyrosine-specific protein kinase (TK-I) previously purified from rat spleen. Dephosphorylation and inactivation of TK-I by purified phosphatase were inhibited by orthovanadate. After dephosphorylation and inactivation by phosphatase, TK-I could be rephosphorylated and reactivated on incubation with ATP. These results suggest that this protein-phosphotyrosine phosphatase may be involved in the regulation of the kinase activity of TK-I.  相似文献   

15.
The effects of various biological detergents on the particulate cGMP-stimulated cAMP phosphodiesterase activity from rat heart were investigated. When added to particulate fractions, anionic and non-ionic detergents diversely increased both cAMP and cGMP phosphodiesterase activities and slightly decreased the stimulatory effect of cGMP on cAMP hydrolysis whereas cationic detergents were rather inhibitory and drastically lowered the stimulatory effect of cGMP. Among the most efficient detergents, only sodium cholate was able to solubilize phosphodiesterase activity and preserve the stimulatory effect of cGMP on cAMP hydrolysis. Furthermore, the addition of glycerol significantly improved the conservation of the allosteric properties of the enzyme. Kinetic properties of the cholate-solubilized phosphodiesterase were quite identical to those of the membrane-bound enzyme.  相似文献   

16.
17.
Enzymatic decarbonylation of fatty aldehydes generates hydrocarbons. The particulate enzyme that catalyzes the decarbonylation has not been solubilized and purified from any organism but a green alga. Here we report the solubilization, purification, and partial characterization of the decarbonylase from a higher plant. Decarbonylase from a particulate preparation from pea (Pisum sativum) leaves, enriched in decarbonylase, was solubilized with beta-octyl glucoside and partially purified. SDS-PAGE showed a major protein band at 67 kDa. Rabbit antibodies raised against this protein specifically cross-reacted with the 67-kDa protein in solubilized microsomal preparations; anti-ribulose bisphosphate carboxylase cross-reacted only with the 49-kDa large subunit of the carboxylase, but not with any protein near 67 kDa, showing the absence of any contamination from cross-linked small-large subunit of the carboxylase found in the green algal enzyme preparation. Anti-67-kDa protein antibodies inhibited decarbonylation catalyzed by the enzyme preparations, showing that this protein represents the decarbonylase. Decarbonylase activity of the purified enzyme required phospholipids for activity; phosphatidylcholine was the preferred lipid although phosphatidylserine and phosphatidylethanolamine could substitute less effectively. Half-maximal activity was observed at 40 microM octadecanal. The purified enzyme produced alkane and CO and was inhibited by O2, NADPH, and DTE. Metal ion chelators severely inhibited the enzyme and Cu2+ fully restored the enzyme activity. Purified enzyme preparations consistently showed the presence of Cu, and copper protoporphyrin IX catalyzed decarbonylation. These results suggest that this higher plant enzyme probably is a Cu enzyme unlike the green algal enzyme that was found to have Co.  相似文献   

18.
Fat cells particulate phosphodiesterase activity can be solubilized in high yield (80--100%) in a buffer system (30 mM Tris - HCl, pH 8.0) containing non-ionic detergents (0.1% Brij 30, 1.0% Triton X-100), salt (3.0 mM MgSO4, 5.0 mM NaBr) and dithiothreitol (5.0 mM). Polyacrylamide gel electrophoresis of the solubilized enzyme activity indicated the presence of two bands of activities of different electrophoretic mobilities, both of which hydrolyzed cyclic AMP and cyclic GMP. The solubilized activity eluted from DEAE Bio-Gel columns as a somewhat broad profile with at least two peaks of activity. Activity against both cyclic AMP and cyclic GMP eluted in similar but not identical patterns. The solubilized enzyme and DEAE column eluates wxhibited low (less than 1 micronM) Michaelis constants for cyclic AMP and cyclic GMP. In addition, the increases in phosphodiesterase activity induced by incubation of intact fat cells with insulin or adrenocorticotropic hormone are maintained in the solubilized state.  相似文献   

19.
The subcellular distribution and properties of guanylate cyclase was examined in preparations of normal rat renal cortex and Morris renal tumors MK2 and MK3. In normal kidney cortex about two-thirds of guanylate cyclase activity of homogenates was found in soluble fractions. With renal tumors the homogenate activity was less and the enzyme was equally divided between particulate and soluble fractions. The particulate enzyme in kidney cortex and tumors was associated with all particulate fractions. Triton X-100 increased the activity of all preparations. All preparations preferred Mn2+ as the sole cation. The stimulatory effects of Ca2+ on soluble enzyme and inhibitory effects on particulate activity were similar with preparations of renal cortex and tumors. ATP inhibited all preparations. Soluble and particulate guanylate cyclases from renal cortex were activated several-fold with 1 mM NaN3. Preparations of tumor enzymes did not respond to NaN3. Thus, compared to normal renal cortex the subcellular distribution of guanylate cyclase and some of its properties are altered in preparations of renal tumors.  相似文献   

20.
Pfeil U  Wenzel KW 《Glycobiology》2000,10(8):803-807
UDP-xylosyltransferase (UDP-D-xylose:proteoglycan core protein beta-D-xylosyltransferase EC 2.4.2.26) initiates the formation of chondroitin sulfate in the course of proteoglycan biosynthesis. The enzyme catalyzes the transfer of D-xylose from UDP-D-xylose to specific serine residues in the core protein. A procedure for purification of xylosyltransferase from rat ear cartilage was developed which includes ammonium sulfate fractionation, chromatography on heparin-agarose, on Sephacryl S300 and finally a substrate affinity chromatography applying the dodeca peptide Q-E-E-E-G-S-G-G-G-Q-G-G. The specific activity of the purified enzyme was about 420 mU per mg protein. The purification factor was about 26.000 with 27% yield. In SDS-polyacrylamide gel electrophoresis, the highly purified enzyme is homogeneous and yields only a single distinct band of 78 kDa. An apparent molecular mass of 71 kDa was determined for the native enzyme. These data suggest a monomeric structure for the enzyme. Xylosyltransferase activity was found to depend essentially on the presence of divalent metal ions. The K(m) value for UDP-D-xylose was determined to 6.5 micromol/l and for the dodeca peptide Q-E-E-E-G-S-G-G-G-Q-G-G as xylose acceptor to 8 micromol/l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号