首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Amino Acids - Obesity in fathers leads to DNA damage and epigenetic changes in sperm that may carry potential risk factors for metabolic diseases to the next generation. Taurine (TAU)...  相似文献   

3.
4.
Noradrenaline (1-10 microM) inhibited Ca2+-induced insulin secretion from electrically permeabilised islets of Langerhans with an efficacy similar to that for inhibition of glucose-induced insulin secretion from intact islets. The inhibition of insulin secretion from permeabilised islets was blocked by the alpha 2-adrenoreceptor antagonist, yohimbine. Adenosine 3',5'-cyclic monophosphate (cAMP) did not relieve the noradrenaline inhibition of Ca2+-induced secretion from the permeabilised islets, although noradrenaline did not affect the secretory responses to cAMP at substimulatory (50 nM) concentrations of Ca2+. These results suggest that catecholamines do not inhibit insulin secretion solely by reducing B-cell adenylate cyclase activity, and imply that one site of action of noradrenaline is at a late stage in the secretory process.  相似文献   

5.
A Ca2+-activated and calmodulin-dependent protein kinase activity which phosphorylates predominantly two endogenous proteins of 57kDa and 54kDa was found in a microsomal fraction from islet cells. Half-maximal activation of the protein kinase occurs at approx. 1.9 microM-Ca2+ and 4 micrograms of calmodulin/ml (250 nM) for phosphorylation of both protein substrates. Similar phosphoprotein bands (57kDa and 54kDa) were identified in intact islets that had been labelled with [32P]Pi. Islets prelabelled with [32P]Pi and incubated with 28 mM-glucose secreted significantly more insulin and had greater incorporation of radioactivity into the 54 kDa protein than did islets incubated under basal conditions in the presence of 5 mM-glucose. Thus the potential importance of the phosphorylation of these proteins in the regulation of insulin secretion is indicated both by activation of the protein kinase activity by physiological concentrations of free Ca2+ and by correlation of the phosphorylation of the substrates with insulin secretion in intact islets. Experiments undertaken to identify the endogenous substrates indicated that this calmodulin-dependent protein kinase may phosphorylate the alpha- and beta-subunits of tubulin. These findings suggest that Ca2+-stimulated phosphorylation of islet-cell tubulin via a membrane-bound calmodulin-dependent protein kinase may represent a critical step in the initiation of insulin secretion from the islets of Langerhans.  相似文献   

6.
A current model ascribes glucose-induced insulin secretion to the interaction of a triggering pathway (K(ATP) channel-dependent Ca(2+) influx and rise in cytosolic [Ca(2+)](c)) and an amplifying pathway (K(ATP) channel-independent augmentation of secretion without further increase of [Ca(2+)](c)). However, several studies of sulfonylurea receptor 1 null mice (Sur1KO) failed to measure significant effects of glucose in their islets lacking K(ATP) channels. We addressed this issue that challenges the model. Compared with controls, fresh Sur1KO islets showed slightly elevated basal [Ca(2+)](c) and insulin secretion. In 15 mm glucose, the absolute rate of secretion was approximately 3-fold lower in Sur1KO than control islets, with only poor increase above base line. Overnight culture of Sur1KO islets in 10 mm glucose (not in 5 mm) augmented basal insulin secretion and considerably improved the response to 15 mm glucose, which reached higher values than in control islets, in which culture had little impact. Glucose stimulation during KCl depolarization showed that the amplifying pathway is functional in fresh and cultured Sur1KO islets. The differences in insulin secretion between fresh and cultured Sur1KO islets and between Sur1KO and control islets were not attributable to differences in insulin content, glucose oxidation rate, or synchronization of [Ca(2+)](c) oscillations. The unmasking of glucose-induced insulin secretion in beta-cells lacking K(ATP) channels is paradoxically due to improvement in the production of a triggering signal (elevated [Ca(2+)](c)). The results show that K(ATP) channels are not the only transducer of glucose effects on [Ca(2+)](c) in beta-cells. They explain controversies in the literature and refute arguments raised against the model implicating an amplifying pathway in glucose-induced insulin secretion.  相似文献   

7.
Iezzi M  Eliasson L  Fukuda M  Wollheim CB 《FEBS letters》2005,579(23):5241-5246
Synaptotagmins (Syts) are involved in Ca(2+)-dependent insulin release. However, which Syt isoform is functional in primary beta-cells remains unknown. We demonstrate by electron microscopy of pancreatic islets, the association of Syt 9 with insulin granules. Silencing of Syt 9 by RNA interference adenovirus in islet cells had no effect on the expression of Syt 5, Syt 7 and Syt 3 isoforms. The latter was localized at the plasma membrane of pancreatic polypeptide cells. Insulin release in response to glucose or tolbutamide was strongly inhibited in Syt 9 deficient islets, whereas exocytosis potentiated by raising cAMP levels, was unaltered. Thus, Syt 9 may act as Ca(2+) sensor for beta-cell secretion.  相似文献   

8.
Isolated islets from low-protein (LP) diet rats showed decreased insulin secretion in response to glucose and carbachol (Cch). Taurine (TAU) increases insulin secretion in rodent islets with a positive effect upon the cholinergic pathway. Here, we investigated the effect of TAU administration upon glucose tolerance and insulin release in rats fed on a normal protein diet (17%) without (NP) or with 2.5% of TAU in their drinking water (NPT), and LP diet fed rats (6%) without (LP) or with TAU (LPT). Glucose tolerance was found to be higher in LP, compared to NP rats. However, plasma glucose levels, during ipGTT, in LPT rats were similar to those of controls. Isolated islets from LP rats secreted less insulin in response to increasing glucose concentrations (2.8-22.2 mmol/L) and to 100 μmol/L Cch. This lower secretion was accompanied by a reduction in Cch-induced internal Ca(2+) mobilization. TAU supplementation prevents these alterations, as judged by the higher secretion induced by glucose or Cch in LPT islets. In addition, Ach-M3R, syntaxin 1 and synaptosomal associated protein of 25 kDa protein expressions in LP were lower than in NP islets. The expressions of these proteins in LPT were normalized. Finally, the sarcoendoplasmatic reticulum Ca(2+)-ATPase 3 protein expression was higher in LPT and NPT, compared with controls. In conclusion, TAU supplementation to LP rats prevented alterations in glucose tolerance as well as in insulin secretion from isolated islets. The latter effect involves the normalization of the cholinergic pathway, associated with the preservation of exocytotic proteins.  相似文献   

9.
Insulin is secreted from pancreatic beta cells in response to an elevation of cytoplasmic Ca(2+) resulting from enhanced Ca(2+) influx through voltage-gated Ca(2+) channels. Mouse beta cells express several types of Ca(2+) channel (L-, R- and possibly P/Q-type). beta cell-selective ablation of the gene encoding the L-type Ca(2+) channel subtype Ca(v)1.2 (betaCa(v)1.2(-/-) mouse) decreased the whole-cell Ca(2+) current by only approximately 45%, but almost abolished first-phase insulin secretion and resulted in systemic glucose intolerance. These effects did not correlate with any major effects on intracellular Ca(2+) handling and glucose-induced electrical activity. However, high-resolution capacitance measurements of exocytosis in single beta cells revealed that the loss of first-phase insulin secretion in the betaCa(v)1.2(-/-) mouse was associated with the disappearance of a rapid component of exocytosis reflecting fusion of secretory granules physically attached to the Ca(v)1.2 channel. Thus, the conduit of Ca(2+) entry determines the ability of the cation to elicit secretion.  相似文献   

10.
Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) have been associated with dysregulation of iron metabolism. The basis for this association is not completely understood. To attempt to investigate this, we studied temporal associations between onset of insulin resistance (IR) and dysregulated iron homeostasis, in a mouse model of T2DM.Male C57Bl/6 mice (aged 8 weeks) were fed a high-fat diet (HFD; 60% energy from fat) or a control diet (CD; 10% energy from fat) for 4, 8, 12, 16, 20 and 24 weeks. Development of IR was documented, and various metabolic, inflammatory and iron-related parameters were studied in these mice.HFD-feeding induced weight gain, hepato-steatosis and IR in the mice. Onset of IR occurred from 12 weeks onwards. Hepatic iron stores progressively declined from 16 weeks onwards. Accompanying changes included a decrease in hepatic hepcidin (Hamp1) mRNA expression and serum hepcidin levels and an increase in iron content in the epididymal white adipose tissue (eWAT). Iron content in the liver negatively correlated with that in the eWAT. Factors known to regulate hepatic Hamp1 expression (such as serum iron levels, systemic inflammation, and bone marrow-derived erythroid regulators) were not affected by HFD-feeding. In conclusion, the results show that the onset of IR in HFD-fed mice preceded dysregulation of iron homeostasis, evidence of which were found both in the liver and visceral adipose tissue.  相似文献   

11.
12.
Maternal overnutrition is associated with increased risk of metabolic disorders in the offspring. This study tested the hypothesis that maternal green tea (GT) supplementation can alleviate metabolic derangements in high-fat-diet-fed rats born of obese dams. Female Sprague–Dawley rats were fed low-fat (LF, 7%), high-fat (HF, 30%) or HF diet containing 0.75% or 1.0% GT extract (GT1, GT2) prior to conception and throughout gestation and lactation. Both doses of GT significantly improved metabolic parameters of HF-fed lactating dams (P<.05). Birth weight and litter size of offspring from HF dams were similar, but GT supplementation led to lighter pups on day 21 (P<.05). The weaned male pups received HF, GT1 or GT2 diet (dam/pup diet groups: LF/HF, HF/HF, HF/GT1, HF/GT2, GT1/HF and GT2/HF). At week 13, they had similar weight but insulin resistance index (IRI), serum nonesterified fatty acid (NEFA) and liver triglyceride of rats born to GT dams were 57%, 23% and 26% lower, accompanied by improved gene/protein expressions related to lipid and glucose metabolism, compared with the HF/HF rats (P<.05). Although HF/GT1 and HF/GT2 rats had lower serum NEFA, their insulin and IRI were comparable to HF/HF rats. This study shows that metabolic derangements induced by an overnourished mother could be offset by supplementing GT to the maternal diet and that this approach is more effective than giving GT to offspring since weaning. Hence, adverse effects of developmental programming are reversible, at least in part, by supplementing bioactive food component(s) to the mother's diet.  相似文献   

13.
Certain conditions, such as several weeks of high-fat diet, disrupt endoplasmic reticulum (ER) homeostasis and activate an adaptive pathway referred as the unfolded protein response. When the unfolded protein response fails, the result is the development of inflammation and insulin resistance. These two pathological states are known to be improved by regular exercise training but the mechanisms remain largely undetermined. As it has recently been shown that the unfolded protein response is regulated by exercise, we hypothesised that concomitant treadmill exercise training (HFD+ex) prevents ER homeostasis disruption and its downstream consequences induced by a 6-week high-fat diet (HFD) in mice by activating the protective unfolded protein response. Several well-documented markers of the unfolded protein response were measured in the soleus and tibialis anterior muscles as well as in the liver and pancreas. In HFD mice, an increase in these markers was observed (from 2- to 15-fold, P?<?0.05) in all tissues studied. The combination of HFD+ex increased the expression of several markers further, up to 100 % compared to HFD alone (P?<?0.05). HFD increased inflammatory markers both in the plasma (IL-6 protein, 2.5?±?0.52-fold; MIP-1α protein, 1.3?±?0.13-fold; P?<?0.05) and in the tissues studied, and treadmill exercise attenuated the inflammatory state induced by HFD (P?<?0.05). However, treadmill exercise could not reverse HFD-induced whole body glucose intolerance, assessed by OGTT (AUC, 1.8?±?0.29-fold, P?<?0.05). In conclusion, our results show that a HFD activated the unfolded protein response in mouse tissues in vivo, and that endurance training promoted this response. We speculate that the potentiation of the unfolded protein response by endurance training may represent a positive adaptation protecting against further cellular stress.  相似文献   

14.
Metabolic syndrome is a low-grade inflammatory state in which oxidative stress is involved. Naringin, isolated from the Citrussinensis, is a phenolic compound with anti-oxidative and anti-inflammatory activities. The aim of this study was to explore the effects of naringin on metabolic syndrome in mice. The animal models, induced by high-fat diet in C57BL/6 mice, developed obesity, dyslipidemia, fatty liver, liver dysfunction and insulin resistance. These changes were attenuated by naringin. Further investigations revealed that the inhibitory effect on inflammation and insulin resistance was mediated by blocking activation of the MAPKs pathways and by activating IRS1; the lipid-lowering effect was attributed to inhibiting the synthesis way and increasing fatty acid oxidation; the hypoglycemic effect was due to the regulation of PEPCK and G6pase. The anti-oxidative stress of naringin also participated in the improvement of insulin resistance and lipogenesis. All of these depended on the AMPK activation. To confirm the results of the animal experiment, we tested primary hepatocytes exposed to high glucose system. Naringin was protective by phosphorylating AMPKα and IRS1. Taken together, these results suggested that naringin protected mice exposed to a high-fat diet from metabolic syndrome through an AMPK-dependent mechanism involving multiple types of intracellular signaling and reduction of oxidative damage.  相似文献   

15.

Aims/hypothesis

Changes in cellular cholesterol level may contribute to beta cell dysfunction. Islets from low density lipoprotein receptor knockout (LDLR−/−) mice have higher cholesterol content and secrete less insulin than wild-type (WT) mice. Here, we investigated the association between cholesterol content, insulin secretion and Ca2 + handling in these islets.

Methods

Isolated islets from both LDLR−/− and WT mice were used for measurements of insulin secretion (radioimmunoassay), cholesterol content (fluorimetric assay), cytosolic Ca2 + level (fura-2AM) and SNARE protein expression (VAMP-2, SNAP-25 and syntaxin-1A). Cholesterol was depleted by incubating the islets with increasing concentrations (0–10 mmol/l) of methyl-beta-cyclodextrin (MβCD).

Results

The first and second phases of glucose-stimulated insulin secretion (GSIS) were lower in LDLR−/− than in WT islets, paralleled by an impairment of Ca2 + handling in the former. SNAP-25 and VAMP-2, but not syntaxin-1A, were reduced in LDLR−/− compared with WT islets. Removal of excess cholesterol from LDLR−/− islets normalized glucose- and tolbutamide-induced insulin release. Glucose-stimulated Ca2 + handling was also normalized in cholesterol-depleted LDLR−/− islets. Cholesterol removal from WT islets by 0.1 and 1.0 mmol/l MβCD impaired both GSIS and Ca2 + handling. In addition, at 10 mmol/l MβCD WT islet showed a loss of membrane integrity and higher DNA fragmentation.

Conclusion

Abnormally high (LDLR−/− islets) or low cholesterol content (WT islets treated with MβCD) alters both GSIS and Ca2 + handling. Normalization of cholesterol improves Ca2 + handling and insulin secretion in LDLR−/− islets.  相似文献   

16.
17.
This study was designed to examine the effects of a high-fat, high-sucrose (HFHS) diet on vascular and metabolic actions of insulin. Male rats were randomized to receive an HFHS or regular chow diet for 4 wk. In a first series of experiments, the rats had pulsed Doppler flow probes and intravascular catheters implanted to measure blood pressure, heart rate, and regional blood flows. Insulin sensitivity and vascular responses to insulin were assessed during a euglycemic hyperinsulinemic clamp performed in conscious rats. In a second series of experiments, new groups of rats were used to examine skeletal muscle glucose transport activity and to determine in vitro vascular reactivity, endothelial nitric oxide synthase (eNOS) protein expression in muscle and vascular tissues and endothelin content, nitrotyrosine formation, and NAD(P)H oxidase protein expression in vascular tissues. The HFHS-fed rats displayed insulin resistance, hyperinsulinemia, hypertriglyceridemia, hyperlipidemia, elevated blood pressure, and impaired insulin-mediated renal and skeletal muscle vasodilator responses. A reduction in endothelium-dependent vasorelaxation, accompanied by a decreased eNOS protein expression in muscles and blood vessel endothelium, and increased vascular endothelin-1 protein content were also noted in HFHS-fed rats compared with control rats. Furthermore, the HFHS diet induced a reduced insulin-stimulated glucose transport activity in muscles and increased levels of NAD(P)H oxidase protein and nitrotyrosine formation in vascular tissues. These findings support the importance of eNOS protein in linking metabolic and vascular disease and indicate the ability of a Westernized diet to induce endothelial dysfunction and to alter metabolic and vascular homeostasis.  相似文献   

18.
Little is known about the role of the central melanocortin system in the control of fuel metabolism in peripheral tissues. Skeletal muscle AMP-activated protein kinase (AMPK) is activated by leptin and serves as a master regulator of fatty acid beta-oxidation. To elucidate an unidentified role of the central melanocortin system in muscle AMPK regulation, we treated conscious, unrestrained mice intracerebroventricularly with the melanocortin agonist MT-II or the antagonist SHU9119. MT-II augmented phosphorylation of AMPK and its target acetyl-CoA carboxylase (ACC) independent of caloric intake. Conversely, AMPK/ACC phosphorylation by leptin was abrogated by the coadministration of SHU9119 or in KKA(y) mice, which centrally express endogenous melanocortin antagonist. Importantly, high-fat-diet-induced attenuation of AMPK/ACC phosphorylation in leptin-overexpressing transgenic mice was not reversed by central leptin but was markedly restored by MT-II. Our data provide evidence for the critical role of the central melanocortin system in the leptin-skeletal muscle AMPK axis and highlight the system as a therapeutic target in leptin resistance.  相似文献   

19.
20.
The morphological aspects of Schistosoma mansoni adult worms recovered from albino mice fed on a cholesterol-rich diet compared to mice fed on a standard chow were investigated. After feeding on their respective diets for over a period of 5 months, mice were subcutaneously infected with c. 50 S. mansoni cercariae/mouse. Blood samples were obtained 1 day prior to experimental infections and 63 days later, when mice were euthanized by jugular section (hypovolaemic shock). Total cholesterol (TC) levels were determined. Recovered worms were stained with hydrochloric carmine, and preserved as whole-mounts for examination by bright-field and laser confocal microscopy. The infected mice fed on high-fat chow showed higher levels of serum lipoproteins than the infected mice fed on standard chow, except for very-low-density lipoprotein cholesterol (VLDL-c) and triglycerides (TG). In this experiment, worms from mice fed on a high-fat chow showed a greater percentage of morphological differentiation regarding supernumerary testes, seminal vesicle, and seminal receptacle. In mice of this group, the rate of oocyte laying in the ovary was much higher than in control females. The present results suggest that cholesterol could be actively involved in the modulation of cell signalling and reproduction, because the lobes contained fully developed oocytes in variable amounts, different from control males. The data presented here are the first to report the role of a cholesterol-rich diet affecting the development of S. mansoni worms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号