首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
杨林  范美华  刘雪珠  武梅  石戈  廖智 《生物工程学报》2011,27(11):1564-1573
为深入了解两种新型人工抗菌肽mytilin-derived-peptide-1 (MDP-1) 和mytilin-derived-peptide-2 (MDP-2) 的溶液结构和抗菌机理并探讨两种抗菌肽之间活性差异的结构基础,采用二维核磁共振技术 (2-D NMR) 研究MDP分子的溶液结构;采用透射电镜技术 (Transmitted electron microscopy,TEM) 研究MDP分子对于大肠杆菌和藤黄叠球菌的作用机理。研究结果表明,MDP-1和MDP-2均采取了典型的β-发夹结构,其分子表面具有明显的疏水斑片,其分子中碱性氨基酸突出于分子表面;经MDP分子处理后的大肠杆菌以及藤黄叠球菌均出现细胞壁或细胞膜结构被破坏,并出现膜壁分离以及细胞质内缩现象。我们认为,MDP-1和MDP-2分子中的碱性氨基酸有助于MDP结合细菌表面的带负电荷的基团,同时其分子表面的疏水斑片有助于其插入到细菌细胞膜内;其疏水斑片面积以及碱性氨基酸在分子表面的拓扑结构差异是MDP-1和MDP-2活性差异的主要原因;电镜实验结果表明MDP-1和MDP-2的主要靶标是细菌细胞壁以及细胞膜;上述研究为深入了解MDP分子的结构与功能的关系以及将来基于MDP分子的药物研发奠定了基础。  相似文献   

2.
To develop novel short Trp-rich antimicrobial peptides (AMPs) with potent cell specificity (targeting bacteria but not eukaryotic cells) and anti-inflammatory activity, a series of 11-meric Trp-rich model peptides with different ratios of Leu and Lys/Arg residues, XXWXXWXXWXX-NH2 (X indicates Leu or Lys/Arg), was synthesized. K6L2W3 displayed an approximately 40-fold increase in cell specificity, compared with the natural Trp-rich AMP indolicidin (IN). Lys-containing peptides (K8W3, K7LW3 and K6L2W3) showed approximately 2- to 4-fold higher cell specificities than did their counterparts, the Arg-containing peptides (R8W3, R7LW3 and R6L2W3), indicating that multiple Lys residues are more important than multiple Arg residues in the design of AMPs with good cell specificity. The excellent resistance of d-enantiomers (K6L2W3-D and R6L2W3-D) and Orn/Nle-containing peptides (O6L2W3 and O6L2W3) to trypsin digestion compared with the rapid breakdown of the l-enantiomers (K6L2W3 and R6L2W3), highlights the clinical potential of such peptides. K6L2W3, R6L2W3, K6L2W3-D and R6L2W3-D caused weak dye leakage from bacterial membrane-mimicking negatively charged EYPG/EYPE (7:3, v/v) liposomes. Confocal microscopy showed that these peptides penetrated the cell membrane of Escherichia coli and accumulated in the cytoplasm, as observed for buforin-2. Gel retardation studies revealed that the peptides bound more strongly to DNA than did IN. These results suggested that one possible peptide bactericidal mechanism may relate to the inhibition of intracellular functions via interference with DNA/RNA synthesis. Furthermore, some model peptides, containing K6L2W3, K5L3W3, R6L2W3, O6L2W3, O6L2W3, and K6L2W3-D inhibited LPS-induced inducible nitric oxide synthase (iNOS) mRNA expression, the release of nitric oxide (NO) following LPS stimulation in RAW264.7 cells and had powerful LPS binding activities at bactericidal concentrations. Collectively, our results indicated that these peptides have potential for future development as novel antimicrobial and anti-inflammatory agents.  相似文献   

3.
In the present study, the 26-residue peptide sequence Ac-KWKSFLKTFKSAVKTVLHTALKAISS-amide (V681) was utilized as the framework to study the effects of peptide hydrophobicity/hydrophilicity, amphipathicity, and helicity (induced by single amino acid substitutions in the center of the polar and nonpolar faces of the amphipathic helix) on biological activities. The peptide analogs were also studied by temperature profiling in reversed-phase high performance liquid chromatography, from 5 to 80 degrees C, to evaluate the self-associating ability of the molecules in solution, another important parameter in understanding peptide antimicrobial and hemolytic activities. A higher ability to self-associate in solution was correlated with weaker antimicrobial activity and stronger hemolytic activity of the peptides. Biological studies showed that strong hemolytic activity of the peptides generally correlated with high hydrophobicity, high amphipathicity, and high helicity. In most cases, the D-amino acid substituted peptides possessed an enhanced average antimicrobial activity compared with L-diastereomers. The therapeutic index of V681 was improved 90- and 23-fold against Gram-negative and Gram-positive bacteria, respectively. By simply replacing the central hydrophobic or hydrophilic amino acid residue on the nonpolar or the polar face of these amphipathic derivatives of V681 with a series of selected D-/L-amino acids, we demonstrated that this method has excellent potential for the rational design of antimicrobial peptides with enhanced activities.  相似文献   

4.
Hu J  Chen C  Zhang S  Zhao X  Xu H  Zhao X  Lu JR 《Biomacromolecules》2011,12(11):3839-3843
We report a new class of cationic amphiphilic peptides with short sequences, G(IIKK)(n)I-NH(2) (n = 1-4), that can kill Gram-positive and Gram-negative bacteria as effectively as several well-known antimicrobial peptides and antibiotics. In addition, some of these peptides possess potent antitumor activities against cancer cell lines. Moreover, their hemolytic activities against human red blood cells (hRBCs) remain remarkably low even at some 10-fold bactericidal minimum inhibitory concentrations (MICs). When bacteria or tumor cells are cocultured with NIH 3T3 fibroblast cells, G(IIKK)(3)I-NH(2) showed fast and strong selectivity against microbial or tumor cells, without any adverse effect on NIH 3T3 cells. The high selectivity and associated features are attributed to two design tactics: the use of Ile residues rather than Leu and the perturbation of the hydrophobic face of the helical structure with the insertion of a positively charged Lys residue. This class of simple peptides hence offers new opportunities in the development of cost-effective and highly selective antimicrobial and antitumor peptide-based treatments.  相似文献   

5.
抗菌肽是生物体抵御外界病原体侵袭时产生的一类保守的小分子多肽,是生物体内先天免疫防御机制的重要组分。抗菌肽可以选择性杀伤肿瘤细胞,而对正常细胞损害较小,已作为化、放疗药物潜在的替代品被广泛研究和开发。从抗菌肽对不同肿瘤细胞选择性作用机制、抗菌肽药物设计的发展及应用前景等方面进行综述。  相似文献   

6.
Song YM  Park Y  Lim SS  Yang ST  Woo ER  Park IS  Lee JS  Kim JI  Hahm KS  Kim Y  Shin SY 《Biochemistry》2005,44(36):12094-12106
To develop a useful method for designing cell-selective antimicrobial peptides and to investigate the effect of incorporating peptoid residues into an alpha-helical model peptide on structure, function, and mode of action, we synthesized a series of model peptides incorporating Nala (Ala-peptoid) into different positions of an amphipathic alpha-helical model peptide (KLW). Incorporation of one or two Nala residues into the hydrophobic helix face of KLW was more effective at disrupting the alpha-helical structure and bacterial cell selectivity than incorporation into the hydrophilic helix face or hydrophobic/hydrophilic interface. Tryptophan fluorescence studies of peptide interaction with model membranes indicated that the cell selectivity of KLW-L9-a and KLW-L9,13-a is closely correlated with their selective interactions with negatively charged phospholipids. KLW-L9,13-a, which has two Nala residues in its hydrophobic helix face, showed a random structure in membrane-mimicking conditions. KLW-L9,13-a exhibited the highest selectivity toward bacterial cells, showing no hemolytic activity and no or less cytotoxicity compared with other peptides against four mammalian cell lines. Unlike other model peptides, KLW-L9,13-a caused no or little membrane depolarization in Staphylococcus aureus or lipid flip-flop in negatively charged vesicles. In addition, KLW-L9,13-a caused very little fluorescent dye leakage from negatively charged vesicles. Furthermore, confocal laser-scanning microscopy and DNA-binding assays showed that KLW-L9,13-a probably exerts its antibacterial action by penetrating the bacterial membrane and binding to cytoplasmic compounds (e.g., DNA), resulting in cell death. Collectively, our results demonstrate that the incorporation of two Nala residues into the central position of the hydrophobic helix face of noncell-selective alpha-helical peptides is a promising strategy for the rational design of intracellular, cell-selective antimicrobial peptides.  相似文献   

7.
Cationic antimicrobial peptides serve as the first chemical barrier between all organisms and microbes. One of their main targets is the cytoplasmic membrane of the microorganisms. However, it is not yet clear why some peptides are active against one particular bacterial strain but not against others. Recent studies have suggested that the lipopolysaccharide (LPS) outer membrane is the first protective layer that actually controls peptide binding and insertion into Gram-negative bacteria. In order to shed light on these interactions, we synthesized and investigated a 12-mer amphipathic alpha-helical antimicrobial peptide (K(5)L(7)) and its diastereomer (4D-K(5)L(7)) (containing four d-amino acids). Interestingly, although both peptides strongly bind LPS bilayers and depolarize bacterial cytoplasmic membranes, only the diastereomer kills Gram-negative bacteria. Attenuated total reflectance Fourier transform infrared, CD, and surface plasmon resonance spectroscopies revealed that only the diastereomer penetrates the LPS layer. In contrast, K(5)L(7) binds cooperatively to the polysaccharide chain and the outer phosphate groups. As a result, the self-associated K(5)L(7) is unable to traverse through the tightly packed LPS molecules, revealed by epifluorescence studies with LPS giant unilamellar vesicles. The difference in the peptides' modes of binding is further demonstrated by the ability of the diastereomer to induce LPS miscellization, as shown by transmission electron microscopy. In addition to increasing our understanding of the molecular basis of the protection of bacteria by LPS, this study presents a potential strategy to overcome resistance by LPS, and it should help in the design of antimicrobial peptides for future therapeutic purposes.  相似文献   

8.
  1. Download : Download high-res image (140KB)
  2. Download : Download full-size image
  相似文献   

9.
Rosenfeld Y  Sahl HG  Shai Y 《Biochemistry》2008,47(24):6468-6478
Endotoxin [lipopolysaccharide (LPS)] covers more than 90% of the outer monolayer of the outer membrane of Gram-negative bacteria, and it plays a dual role in its pathogenesis: as a protective barrier against antibiotics and as an effector molecule, which is recognized by and activates the innate immune system. The ability of host-defense antimicrobial peptides to bind LPS on intact bacteria and in suspension has been implicated in their antimicrobial and LPS detoxification activities. However, the mechanisms involved and the properties of the peptides that enable them to traverse the LPS barrier or to neutralize LPS endotoxic activity are not yet fully understood. Here we investigated a series of antimicrobial peptides and their analogues with drastically altered sequences and structures, all of which share the same amino acid composition (K 6L 9). The list includes both all- l-amino acid peptides and their diastereomers (composed of both l- and d-amino acids). The peptides were investigated functionally for their antibacterial activity and their ability to block LPS-dependent TNF-alpha secretion by macrophages. Fluorescence spectroscopy and transmission electron microscopy were used to detect their ability to bind LPS and to affect its oligomeric state. Their secondary structure was characterized in solution, in LPS suspension, and in LPS multibilayers by using CD and FTIR spectroscopy. Our data reveal specific biophysical properties of the peptides that are required to kill bacteria and/or to detoxify LPS. Besides shedding light on the mechanisms of these two important functions, the information gathered should assist in the development of AMPs with potent antimicrobial and LPS detoxification activities.  相似文献   

10.
In spite of all the advances in cancer treatment made in recent years, one of the main problems in this field that remains extremely urgent is the development of drug resistance to the chemotherapeutic agents currently in use due to clonal microevolution of tumor tissue. Numerous publications devoted to the study of cationic antimicrobial peptides (AMPs) as molecular factors of the innate immune system suggest that these compounds possess significant therapeutic potential and can be considered as candidates for the role of not only antimicrobial, but also next-generation anticancer drugs. AMPs are characterized by a variety of mechanisms of cytotoxic action that can lead to either necrosis or apoptosis of the target cells. These effects are based on the selective interaction with the membranes of tumor cells, which have a number of similarities, in structural and physiological aspects, with the microbial membranes. AMPs were found to be able to inhibit tumor growth by interrupting the formation of its vascular network. The antitumor effect of AMPs may also be enhanced by the modulation of host immune system, as previously observed for their antimicrobial effects. The described properties of AMPs give hope for the development of new drugs that will be able to overcome the resistance of tumor cells.  相似文献   

11.
Hybrid peptides (HP-MA, HP-ME), each of 20 residues and incorporating 2–9 residues of Helicobacter pylori ribosomal protein L1 (HP) and 1–12 residues of magainin 2 and melittin, were designed. The antibiotic activities of these peptides were evaluated using bacterial, tumor and human erythrocyte cells. HP-MA had a stronger antibacterial activity against Gram-positive bacteria and Gram-negative bacteria than HP (2-20) and magainin 2, and HP-ME was similar to melittin. None of the hybrids had anti-tumor or hemolytic activity. These peptides were further investigated using an artificial liposomal vesicle and 1,6-diphenyl-1,3,5-hexatriene as a membrane probe, and confirmed to have similar antibacterial activities. The antibacterial effect of these hybrids is probably caused by their ability to damage the bacterial plasma membrane. Additional circular dichroism spectra suggested that the -helical structure of these peptides plays an important role in their antibiotic effect but that -helical property is less connected with the enhanced antibiotic activity.  相似文献   

12.
Studies on anticancer activities of antimicrobial peptides   总被引:4,自引:0,他引:4  
In spite of great advances in cancer therapy, there is considerable current interest in developing anticancer agents with a new mode of action because of the development of resistance by cancer cells towards current anticancer drugs. A growing number of studies have shown that some of the cationic antimicrobial peptides (AMPs), which are toxic to bacteria but not to normal mammalian cells, exhibit a broad spectrum of cytotoxic activity against cancer cells. Such studies have considerably enhanced the significance of AMPs, both synthetic and from natural sources, which have been of importance both for an increased understanding of the immune system and for their potential as clinical antibiotics. The electrostatic attraction between the negatively charged components of bacterial and cancer cells and the positively charged AMPs is believed to play a major role in the strong binding and selective disruption of bacterial and cancer cell membranes, respectively. However, it is unclear why some host defense peptides are able to kill cancer cells when others do not. In addition, it is not clear whether the molecular mechanism(s) underlying the antibacterial and anticancer activities of AMPs are the same or different. In this article, we review various studies on different AMPs that exhibit cytotoxic activity against cancer cells. The suitability of cancer cell-targeting AMPs as cancer therapeutics is also discussed.  相似文献   

13.
In spite of great advances in cancer therapy, there is considerable current interest in developing anticancer agents with a new mode of action because of the development of resistance by cancer cells towards current anticancer drugs. A growing number of studies have shown that some of the cationic antimicrobial peptides (AMPs), which are toxic to bacteria but not to normal mammalian cells, exhibit a broad spectrum of cytotoxic activity against cancer cells. Such studies have considerably enhanced the significance of AMPs, both synthetic and from natural sources, which have been of importance both for an increased understanding of the immune system and for their potential as clinical antibiotics. The electrostatic attraction between the negatively charged components of bacterial and cancer cells and the positively charged AMPs is believed to play a major role in the strong binding and selective disruption of bacterial and cancer cell membranes, respectively. However, it is unclear why some host defense peptides are able to kill cancer cells when others do not. In addition, it is not clear whether the molecular mechanism(s) underlying the antibacterial and anticancer activities of AMPs are the same or different. In this article, we review various studies on different AMPs that exhibit cytotoxic activity against cancer cells. The suitability of cancer cell-targeting AMPs as cancer therapeutics is also discussed.  相似文献   

14.
New series of fused pyrazolopyridines were prepared and assessed for antimicrobial, antiquorum-sensing and antitumor activities. Antimicrobial evaluation toward selected Gram-positive bacteria, Gram-negative bacteria and fungi indicated that 5-phenylpyrazolopyridotriazinone 4a has good and broad-spectrum antimicrobial activity. In addition, 5-(4-chlorophenyl)pyrazolopyridotriazinone 4b and 5-(4-(dimethylamino)phenyl)pyrazolopyridotriazinone 4c exhibited good activity against the selected Gram-positive bacteria and A. fumigatus, whereas 5-amino-4-phenylpyrazolopyridopyrimidine 6a demonstrated good activity against B. cereus and P. aeruginosa. Furthermore, 6-amino-5-imino-4-phenylpyrazolopyridopyrimidine 7a and 6-amino-4-(4-chlorophenyl)-5-iminopyrazolopyridopyrimidine 7b demonstrated promising activity against the tested Gram-negative bacteria and fungi, and moderate activity against Gram-positive bacteria. Antiquorum-sensing screening over C. violaceum illustrated that 4a, 6a and 7a-c have strong activity. In vitro antiproliferative assessment of the new derivatives against HepG2, HCT-116 and MCF-7 cancer cells revealed that 7a is the most active analog against all tested cell lines. Likewise, 3,7-dimethyl-4-phenylpyrazolopyridopyrimidinone 2a and 6-amino-4-(4-chlorophenyl)-5-iminopyrazolopyridopyrimidine 7b manifested strong activity against all examined cell lines. In vivo antitumor testing of 2a, 7a and 7b against EAC cells in mice indicated that 7a has the highest activity. Cytotoxicity toward WI38 and WISH normal cells was also assessed and results assured that all of the investigated analogs have lower cytotoxicity than doxorubicin. DNA-binding affinity and topoisomerase IIβ inhibitory activity were evaluated, and results revealed that 5b, 7a and 7b bind strongly to DNA; in addition, 2a, 4a, 7a and 7b manifested higher topoisomerase IIβ inhibitory activity than that of doxorubicin. Analogs 5b, 7a and 7b were docked into topoisomerase IIβ, and results indicated that 7a and 7b have the highest binding affinity toward topoisomerase IIβ. In silico simulation studies referred that most of the new analogs comply with the optimum needs for good oral absorption. Also, computational carcinogenicity evaluation was predicted.  相似文献   

15.
抗菌肽是一类小分子肽,具有广谱的抗菌活性。以往对抗菌肽抗菌机制的研究主要集中在细菌细胞膜的作用上,包含"桶板"模型、"毯式"模型,"环形孔"模型和"凝聚"模型。近年来相继发现某些抗菌肽可以作用于细菌细胞内部,与核酸物质结合,阻断DNA复制、RNA合成;影响蛋白质合成;抑制隔膜、细胞壁合成,阻碍细胞分裂;抑制胞内酶的活性。本文从胞内机制和胞外机制两个角度对抗菌肽的抗菌机制进行综述,以期阐明各类抗菌肽的作用机制,为进一步研究菌株耐药性、杀菌效果及其杀菌机制提供科学根据。  相似文献   

16.
Consensus is gathering that antimicrobial peptides that exert their antibacterial action at the membrane level must reach a local concentration threshold to become active. Studies of peptide interaction with model membranes do identify such disruptive thresholds but demonstrations of the possible correlation of these with the in vivo onset of activity have only recently been proposed. In addition, such thresholds observed in model membranes occur at local peptide concentrations close to full membrane coverage. In this work we fully develop an interaction model of antimicrobial peptides with biological membranes; by exploring the consequences of the underlying partition formalism we arrive at a relationship that provides antibacterial activity prediction from two biophysical parameters: the affinity of the peptide to the membrane and the critical bound peptide to lipid ratio. A straightforward and robust method to implement this relationship, with potential application to high-throughput screening approaches, is presented and tested. In addition, disruptive thresholds in model membranes and the onset of antibacterial peptide activity are shown to occur over the same range of locally bound peptide concentrations (10 to 100 mM), which conciliates the two types of observations.  相似文献   

17.
抗菌肽作用机制的研究进展   总被引:1,自引:0,他引:1  
抗菌肽是一类来源于多种生物、能有效杀灭病原体的小分子多肽,具有活性谱广、作用强且迅速、不易产生耐药等众多优点.作为新一代抗感染候选药物,抗菌肽的作用机制还未完全清楚,但目前有两种观点已得到公认,即胞膜渗透作用破坏胞膜结构完整性和作用于胞内不同靶点干扰细菌生长及代谢平衡.本文主要就抗菌肽理化性质、二级结构、作用机制以及后两者间的关系做一总结,以便更好的理解抗菌肽的构效关系,为合理设计抗菌肽提供理论基础.  相似文献   

18.
A specific fraction of immunoglobulin G binds to polymorphonuclear neutrophils and stimulates their phagocytic activity. This phagocytosis-stimulating activity resides solely in a small peptide termed tuftsin, of the sequence Thr-Lys-Pro-Arg, which has been isolated from the leukophilic immunoglobulin G fraction. The physiological significance of tuftsin has been demonstrated in splenectomized patients and patients with a congenital tuftsin abnormality, in whom the low levels of tuftsin in sera (measurable by radioimmunoassay) coincides with a high incidence of infection. Tuftsin has also been shown to enhance bactericidal activity in addition to phagocytosis. Its biological activities appear to be mediated via specific tuftsin receptors which have been found on macrophages, monocytes and granulocytes. In addition, tuftsin possesses chemotactic, migration-enhancing and mitogenic properties for leukocytes and has recently been shown to enhance their anti-tumor activity invitro as well as invivo. Other known activities of tuftsin include effects on the activity of the hexose monophosphate shunt, on the concentrations of intracellular cyclic nucleotides and on the efflux of Ca2+ in leukocytes. Tuftsin has been chemically synthesized in various laboratories using different procedures and also is available commercially. The above features of tuftsin plus the expected low toxicity of this peptide make tuftsin a very attractive agent for immunotherapy against infection and cancer. However, a great deal of caution needs to be exercised when using tuftsin due to inhibitory contaminants found in certain commercial preparations.  相似文献   

19.
Cathelicidins are a numerous group of mammalian proteins that carry diverse antimicrobial peptides at the C-terminus of a highly conserved preproregion. These peptides, which become active when released from the proregion, display a remarkable variety of sizes, sequences, and structures, and in fact comprise representatives of all the structural groups in which the known antimicrobial peptides have been classified. Most of the cathelicidin-derived peptides exert a broad spectrum and potent antimicrobial activity and also bind to lipopolysaccharide and neutralize its effects. In addition, some of them have recently been shown to exert other activities and might participate in host defense also by virtue of their ability to induce expression of molecules involved in a variety of biological processes. This review is aimed at providing a general overview of the cathelicidins and of the peptides derived therefrom, with emphasis on aspects such as structure, biological activities in vitro and in vivo, and structure/activity relationship studies.  相似文献   

20.
研究不同浓度Cu~(2+)胁迫对黑水虻5龄幼虫抗菌肽分离纯化组分及抑菌活性影响,为黑水虻无害化处理粪便技术的有效实施提供有力的理论依据,为其副产品在饲料、食品及医药研发中的应用提供有价值的实验数据。本文在人工饲料中添加不同浓度Cu~(2+)(0、150、1 200 mg/kg)以饲喂黑水虻幼虫,采用金黄色葡萄球菌针刺法诱导5龄幼虫,断头收集血淋巴,高速冷冻离心结合超滤离心制备抗菌肽粗提物;利用RP-HPLC对三组抗菌肽粗提物进行分离纯化,收集各纯化峰对应组分,采用纸片琼脂扩散法测定各纯化峰对应组分的抑菌效果,以阐述Cu~(2+)胁迫对黑水虻抗菌肽的影响。结果表明,经Cu~(2+)胁迫,抗菌肽粗提物分离纯化后各组分的出峰时间及峰面积所占比例均不同,不同处理浓度下各分离组分第2峰面积均大于第1峰面积,其中150-2峰面积最大,为73.31%;分离纯化后所得6个组分对金黄色葡萄球菌、大肠杆菌及白色念珠菌均有抑菌活性,对金黄色葡萄球菌、白色念珠菌的抑菌活性显著高于对大肠杆菌抑菌活性,但其对金黄色葡萄球菌及白色念珠菌的抑菌活性未见显著差异;与其他5个组分相比,组分150-2对金黄色葡萄球菌、白色念珠菌及大肠杆菌抑菌活性最强,抑菌直径分别为27.85±0.74 mm、28.34±0.76 mm、21.97±0.54 mm。由此可见,不同浓度的Cu~(2+)胁迫对黑水虻幼虫抗菌肽组分及抑菌活性均产生显著影响,其中组分150-2抑菌活性最强,具有很好的开发潜能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号