首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Isolated hepatocytes undergo lipoapoptosis, a feature of hepatic lipotoxicity, on treatment with saturated free fatty acids (FFA) such as palmitate (PA). However, it is unknown if palmitate is directly toxic to hepatocytes or if its toxicity is indirect via the generation of lipid metabolites such as lysophosphatidylcholine (LPC). PA-mediated hepatocyte lipoapoptosis is associated with endoplasmic reticulum (ER) stress, c-Jun NH(2)-terminal kinase (JNK) activation, and a JNK-dependent upregulation of the potent proapoptotic BH3-only protein PUMA (p53 upregulated modulator of apoptosis). Our aim was to determine which of these mechanisms of lipotoxicity are activated by PA-derived LPC. We employed Huh-7 cells and isolated murine and human primary hepatocytes. Intracellular LPC concentrations increase linearly as a function of the exogenous, extracellular PA, stearate, or LPC concentration. Incubation of Huh-7 cells or primary hepatocytes with LPC induced cell death by apoptosis in a concentration-dependent manner. Substituting LPC for PA resulted in caspase-dependent cell death that was accompanied by activating phosphorylation of JNK with c-Jun phosphorylation and an increase in PUMA expression. LPC also induced ER stress as manifest by eIF2α phosphorylation and CAAT/enhancer binding homologous protein (CHOP) induction. LPC cytotoxicity was attenuated by pharmacological inhibition of JNK or glycogen synthase kinase-3 (GSK-3). Similarly, short-hairpin RNA (shRNA)-targeted knockdown of CHOP protected Huh-7 cells against LPC-induced toxicity. The LPC-induced PUMA upregulation was prevented by JNK inhibition or shRNA-targeted knockdown of CHOP. Finally, genetic deficiency of PUMA rendered murine hepatocytes resistant to LPC-induced apoptosis. We concluded that LPC-induced lipoapoptosis is dependent on mechanisms largely indistinguishable from PA. These data suggest that FFA-mediated cytotoxicity is indirect via the generation of the toxic metabolite, LPC.  相似文献   

3.
4.
Nonalcoholic fatty liver disease (NAFLD) is increasingly regarded as a hepatic manifestation of metabolic syndrome. Though with high prevalence, the mechanism is poorly understood. This study aimed to investigate the effects of p21 on free fatty acid (FFA)-induced steatosis in L02 cells. We therefore analyzed the L02 cells with MG132 and siRNA treatment for different expression of p21 related to lipid accumulation and lipotoxicity. Cellular total lipid was stained by Oil Red O, while triglyceride content, cytotoxicity assays, lipid peroxidation markers and anti-oxidation levels were measured by enzymatic kits. Treatment with 1 mM FFA for 48 hr induced magnificent intracellular lipid accumulation and increased oxidative stress in p21 overload L02 cells compared to that in p21 knockdown L02 cells. By increasing oxidative stress and peroxidation, p21 accelerates FFA-induced lipotoxic effect in L02 cells and might provide information about potentially new targets for drug development and treatments of NAFLD.  相似文献   

5.
M1-polarized macrophages are involved in chronic inflammatory diseases, including nonalcoholic fatty liver disease (NAFLD). However, the mechanisms responsible for the activation of macrophages in NAFLD have not been fully elucidated. This study aimed at investigating the physiological mechanisms by which extracellular vesicles (EVs)-encapsulated microRNA-9-5p (miR-9-5p) derived from lipotoxic hepatocytes might activate macrophages in NALFD. After blood sample and cell collection, EVs were isolated and identified followed by co-culture with macrophages. Next, the palmitic acid-induced cell and high fat diet-induced mouse NALFD models were established to explore the in vitro and in vivo effects of EVs-loaded miR-9-5p on NAFLD as evidenced by inflammatory cell infiltration and inflammatory reactions in macrophages. Additionally, the targeting relationship between miR-9-5p and transglutaminase 2 (TGM2) was identified using dual-luciferase reporter gene assay. miR-9-5p was upregulated in the NAFLD-EVs, which promoted M1 polarization of THP-1 macrophages. Furthermore, miR-9-5p could target TGM2 to inhibit its expression. Downregulated miR-9-5p in NAFLD-EVs alleviated macrophage inflammation and M1 polarization as evidenced by reduced levels of macrophage inflammatory factors, positive rates of CD86+ CD11b+, and levels of macrophage surface markers in vitro. Moreover, the effect of silencing of miR-9-5p was replicated in vivo, supported by reductions in TG, TC, AST and ALT levels and attenuated pathological changes. Collectively, lipotoxic hepatocytes-derived EVs-loaded miR-9-5p downregulated the expression of TGM2 and facilitated M1 polarization of macrophages, thereby promoting the progression of NAFLD. This highlights a potential therapeutic target for treating NAFLD.  相似文献   

6.
7.
曹彦  易艳荣 《生物磁学》2011,(10):1817-1820
目的:探讨SOCS-3在非酒精性脂肪肝病(NAFLD)发病中的作用以及吡格列酮的干预作用。方法:29只雄性SD大鼠随机分为正常对照组(8只),高脂饮食组(21只)。饲养8周后,从高质饮食组随机抽取5只大鼠证实造模成功后,将该组余下的16只大鼠继续以高脂饲料喂养,并随机分为NAFLD对照组(8只);吡格酮干预组(8只),予以吡格列酮3mg·kg^-1·d^-1灌胃。16周末,处死所有大鼠,检测血糖、血胰岛素、血脂、肝脏SOCS-3mRNA和SREBP-lcmRNA表达及肝脏病理学。结果:与正常对照组相比,NAFLD组血糖、血胰岛素、血脂、肝脏脂肪变水平及肝组织SOCS-3mRNA、SREBPlCmRNA表达显著上调。吡格列酮干预组sOCS.3mRNA、SREBP-1cmRNA表达较NAFLD组下调,且血糖、血胰岛素、血脂、肝脏脂肪变水平下降。SOCS-3mRNA表达水平与胰岛素抵抗指数、SREBP.1cmRNA表达水平、肝脂肪变成显著正相关。结论:SOCS-3可能通过胰岛素抵抗及上调肝组织SREBP-lcmRNA表达参与NAFLD发病,吡格列酮能抑制肝脏SOCS-3的表达,对NAFLD有一定治疗作用。  相似文献   

8.
9.
Pathogenesis of nonalcoholic fatty liver disease (NAFLD) is not clear. In this study we aimed to identify proteins involved in NAFLD development in free fatty acids (FFA)‐induced hepatosteatotic cells and in human liver biopsies. Steatosis was induced by incubating a normal human hepatocyte‐derived cell line L‐02 with FFA. Differentially expressed proteins in the steatotic cells were analyzed by two‐dimensional gel electrophoresis‐based proteomics. Involvement of one of the up‐regulated proteins in steatosis was characterized using the RNA interference approach with the steatotic cells. Protein expression levels in liver biopsies of patients with NAFLD were assessed by immunohistochemistry. Proteomic analysis of L‐02 steatotic cells revealed the up‐regulation of ERp57, a condition not previously implicated in NAFLD. Knockdown of ERp57 expression with siRNA significantly reduced fat accumulation in the steatotic cells. ERp57 expression was detected in 16 out of 17 patient biopsies and correlated with inflammation grades or fibrosis stages, while in 5 normal biopsies ERp57 expression was not detectable in hepatocytes. In conclusion, ERp57 was up‐regulated in FFA‐induced steatotic hepatic cells and in NAFLD patient livers and demonstrated steatotic properties in cultured cells. Further investigations are warranted to verify the involvement of ERp57 in NAFLD development. J. Cell. Biochem. 110: 1447–1456, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
11.
12.
13.
Recruitment of monocytes in the liver is a key pathogenic feature of hepatic inflammation in nonalcoholic steatohepatitis (NASH), but the mechanisms involved are poorly understood. Here, we studied migration of human monocytes in response to supernatants obtained from liver cells after inducing lipoapoptosis with saturated free fatty acids (FFA). Lipoapoptotic supernatants stimulated monocyte migration with the magnitude similar to a monocyte chemoattractant protein, CCL2 (MCP-1). Inhibition of c-Jun NH2-terminal kinase (JNK) in liver cells with SP600125 blocked migration of monocytes in a dose-dependent manner, indicating that JNK stimulates release of chemoattractants in lipoapoptosis. Notably, treatment of supernatants with Apyrase to remove ATP potently inhibited migration of THP-1 monocytes and partially blocked migration of primary human monocytes. Inhibition of the CCL2 receptor (CCR2) on THP-1 monocytes with RS102895, a specific CCR2 inhibitor, did not block migration induced by lipoapoptotic supernatants. Consistent with these findings, lipoapoptosis stimulated pathophysiological extracellular ATP (eATP) release that increased supernatant eATP concentration from 5 to ~60 nM. Importantly, inhibition of Panx1 expression in liver cells with short hairpin RNA (shRNA) decreased supernatant eATP concentration and inhibited monocyte migration, indicating that monocyte migration is mediated in part by Panx1-dependent eATP release. Moreover, JNK inhibition decreased supernatant eATP concentration and inhibited Pannexin1 activation, as determined by YoPro-1 uptake in liver cells in a dose-dependent manner. These results suggest that JNK regulates activation of Panx1 channels, and provide evidence that Pannexin1-dependent pathophysiological eATP release in lipoapoptosis is capable of stimulating migration of human monocytes, and may participate in the recruitment of monocytes in chronic liver injury induced by saturated FFA.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-015-9456-5) contains supplementary material, which is available to authorized users.  相似文献   

14.
Persistent hepatic damage and chronic inflammation in liver activate the quiescent hepatic stellate cells (HSCs) and cause hepatic fibrosis (HF). Several microRNAs regulate the activation and proliferation of HSCs, thereby playing a critical role in HF progression. Previous studies have reported that miR-188-5p is dysregulated during the process of HF. However, the role of miR-188-5p in HF remains unclear. This study investigated the potential role of miR-188-5p in HSCs and HF. Firstly, we validated the miR-188-5p expression in primary cells isolated from liver of carbon tetrachloride (CCl4)-induced mice, TGF-β1-induced LX-2 cells, livers from 6-month high-fat diet (HFD)-induced rat and 4-month HFD-induced mice NASH models, and human non-alcoholic fatty liver disease (NAFLD) patients. Furthermore, we used miR-188-5p inhibitors to investigate the therapeutic effects of miR-188-5p inhibition in the HFD + CCl4 induced in vivo model and the potential role of miR-188-5p in the activation and proliferation of HSCs. This present study reported that miR-188-5p expression is significantly increased in the human NAFLD, HSCs isolated from liver of CCl4 induced mice, and in vitro and in vivo models of HF. Mimicking the miR-188-5p resulted in the up-regulation of HSC activation and proliferation by directly targeting the phosphatase and tensin homolog (PTEN). Moreover, inhibition of miR-188-5p reduced the activation and proliferation markers of HSCs through PTEN/AKT pathway. Additionally, in vivo inhibition of miR-188-5p suppressed the HF parameters, pro-fibrotic and pro-inflammatory genes, and fibrosis. Collectively, our results uncover the pro-fibrotic role of miR-188-5p. Furthermore, we demonstrated that miR-188-5p inhibition decreases the severity of HF by reducing the activation and proliferation of HSCs through PTEN/AKT pathway.  相似文献   

15.
Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver disorders that is featured by the extensive deposition of fat in the hepatocytes. Current treatments are very limited due to its unclear pathogenesis. Here, we investigated the function of circ_0057558 and miR-206 in NAFLD. High-fat diet (HFD) feeding mouse was used as an in vivo NAFLD model and long-chain-free fatty acid (FFA)-treated liver cells were used as an in vitro NAFLD model. qRT-PCR was used to measure levels of miR-206, ROCK1 mRNA, and circ_0057558, while Western blotting was employed to determine protein levels of ROCK1, p-AMPK, AMPK, and lipogenesis-related proteins. Immunohistochemistry were performed to examine ROCK1 level. Oil-Red O staining was used to assess the lipid deposition in cells. ELISA was performed to examine secreted triglyceride (TG) level. Dual-luciferase assay was used to validate interactions of miR-206/ROCK1 and circ_0057558/miR-206. RNA immunoprecipitation was employed to confirm the binding of circ_0057558 with miR-206. Circ_0057558 was elevated while miR-206 was reduced in both in vivo and in vitro NAFLD models. miR-206 directly bound with ROCK1 3’-UTR and suppressed lipogenesis and TG secretion through targeting ROCK1/AMPK signaling. Circ_0057558 directly interacted with miR-206 to disinhibit ROCK1/AMPK signaling. Knockdown of circ_0057558 or overexpression of miR-206 inhibited lipogenesis, TG secretion and expression of lipogenesis-related proteins. ROCK1 knockdown reversed the effects of circ_0057558 overexpression. Injection of miR-206 mimics significantly ameliorated NAFLD progression in vivo. Circ_0057558 acts as a miR-206 sponge to de-repress the ROCK1/AMPK signaling and facilitates lipogenesis and TG secretion, which greatly contributes to NAFLD development and progression.Subject terms: Diseases, Gastrointestinal diseases  相似文献   

16.
Excess hepatic lipid accumulation and oxidative stress contribute to nonalcoholic fatty liver disease (NAFLD). Thus, we hypothesized that the hypolipidemic and antioxidant activities of green tea extract (GTE) would attenuate events leading to NAFLD. Obese mice (ob/ob; 5 weeks old, n=38) and their lean littermates (n=12) were fed 0%, 0.5% or 1% GTE for 6 weeks. Then, hepatic steatosis, oxidative stress and inflammatory markers were measured. Obese mice, compared to lean controls, had greater hepatic lipids and serum alanine aminotransferase (ALT). GTE at 1% lowered (P<.05) hepatic lipids and ALT in obese mice. The GTE-mediated attenuation in hepatic steatosis was accompanied by decreased mRNA expression of adipose sterol regulatory element-binding protein-1c, fatty acid synthase, stearoyl CoA desaturase-1, and hormone-sensitive lipase and decreased serum nonesterified fatty acid concentrations. Immunohistochemical data indicated that steatotic livers from obese mice had extensive accumulation of tumor necrosis factor-α (TNF-α), whereas GTE at 1% decreased hepatic TNF-α protein and inhibited adipose TNF-α mRNA expression. Hepatic total glutathione, malondialdehyde and Mn- and Cu/Zn-superoxide dismutase activities in obese mice fed GTE were normalized to the levels of lean littermates. Also, GTE increased hepatic catalase and glutathione peroxidase activities, and these activities were inversely correlated with ALT and liver lipids. Collectively, GTE mitigated NAFLD and hepatic injury in ob/ob mice by decreasing the release of fatty acids from adipose and inhibiting hepatic lipid peroxidation as well as restoring antioxidant defenses and decreasing inflammatory responses. These findings suggest that GTE may be used as an effective dietary strategy to mitigate obesity-triggered NAFLD.  相似文献   

17.
18.
MicroRNAs (miRNAs), small noncoding RNAs modulating messenger RNA (mRNA) and protein expression, have emerged as key regulatory molecules in chronic liver diseases, whose end stage is hepatic fibrosis, a major global health burden. Pharmacological strategies for prevention or treatment of hepatic fibrosis are still limited, what makes it necessary to establish a better understanding of the molecular mechanisms underlying its pathogenesis. In this context, we have recently shown that cyclooxygenase-2 (COX-2) expression in hepatocytes restricts activation of hepatic stellate cells (HSCs), a pivotal event in the initiation and progression of hepatic fibrosis. Here, we evaluated the role of COX-2 in the regulation of a specific set of miRNAs on a mouse model of CCl4 and bile duct ligation (BDL)-induced liver fibrosis. Our results provide evidence that COX-2 represses miR-23a-5p and miR-28-5p expression in HSC. The decrease of miR-23a-5p and miR-28-5p expression promotes protection against fibrosis by decreasing the levels of pro-fibrogenic markers α-SMA and COL1A1 and increasing apoptosis of HSC. Moreover, we demonstrate that serum levels of miR-28-5p are decreased in patients with chronic liver disease. These results suggest a protective effect exerted by COX-2-derived prostanoids in the process of hepatofibrogenesis.  相似文献   

19.

Background & Aims

Liver inflammation is a risk factor for the progression of nonalcoholic fatty liver disease (NAFLD). However, the diagnosis of liver inflammation is very difficult and invasive liver biopsy is still the only method to reliably detect liver inflammation. We previously reported that overexpression of CD14 in Kupffer cells may trigger the progression to nonalcoholic steatohepatitis (NASH) via liver inflammation following hyper-reactivity to low-dose lipopolysaccharide. Therefore, the aim of this study was to investigate the relationship between soluble type of CD14 (sCD14) and histological features in patients with NAFLD.

Methods

Our cohort consisted of 113 patients with liver biopsy-confirmed NAFLD and 21 age-matched healthy controls. Serum sCD14 levels were measured by an enzyme-linked immunosorbent assay.

Results

Serum sCD14 levels were significantly associated with diagnosis of NASH and the area under the receiver operator characteristic curve (AUROC) to distinguish between not NASH and NASH was 0.802. Moreover, serum sCD14 levels were significantly associated with the disease activity based on NAFLD activity score and hepatic CD14 mRNA expression, which is correlated with membrane CD14 (mCD14) expression, in patients with NAFLD. In multiple regression analysis, the serum sCD14 levels were independently associated with liver inflammation. The AUROC to distinguish between mild and severe liver inflammation in patients with NAFLD was 0.752.

Conclusions

We found that serum sCD14 levels increased significantly with increasing liver inflammation grade in patients with NAFLD, reflecting increased hepatic CD14 expression. Serum sCD14 is a promising tool to predict the worsening of liver inflammation, and may offer a potential biomarker for evaluation of therapeutic effects in NAFLD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号