共查询到20条相似文献,搜索用时 15 毫秒
1.
Complex microbial ecosystems occupy the skin, mucosa and alimentary tract of all mammals, including humans. Recent advances have highlighted the tremendous diversity of these microbial communities and their importance to host physiology, but questions remain about the ecological processes that establish and maintain the microbiota throughout life. The prevailing view, that the gastrointestinal microbiota of adult humans is a climax community comprised of the superior competitors for a stable set of niches, does not account for all of the experimental data. We argue here that the unique history of each community and intrinsic temporal dynamics also influence the structure of human intestinal communities. 相似文献
2.
Almost immediately after a human being is born, so too is a new microbial ecosystem, one that resides in that person's gastrointestinal tract. Although it is a universal and integral part of human biology, the temporal progression of this process, the sources of the microbes that make up the ecosystem, how and why it varies from one infant to another, and how the composition of this ecosystem influences human physiology, development, and disease are still poorly understood. As a step toward systematically investigating these questions, we designed a microarray to detect and quantitate the small subunit ribosomal RNA (SSU rRNA) gene sequences of most currently recognized species and taxonomic groups of bacteria. We used this microarray, along with sequencing of cloned libraries of PCR-amplified SSU rDNA, to profile the microbial communities in an average of 26 stool samples each from 14 healthy, full-term human infants, including a pair of dizygotic twins, beginning with the first stool after birth and continuing at defined intervals throughout the first year of life. To investigate possible origins of the infant microbiota, we also profiled vaginal and milk samples from most of the mothers, and stool samples from all of the mothers, most of the fathers, and two siblings. The composition and temporal patterns of the microbial communities varied widely from baby to baby. Despite considerable temporal variation, the distinct features of each baby's microbial community were recognizable for intervals of weeks to months. The strikingly parallel temporal patterns of the twins suggested that incidental environmental exposures play a major role in determining the distinctive characteristics of the microbial community in each baby. By the end of the first year of life, the idiosyncratic microbial ecosystems in each baby, although still distinct, had converged toward a profile characteristic of the adult gastrointestinal tract. 相似文献
3.
4.
Towards the human intestinal microbiota phylogenetic core 总被引:2,自引:0,他引:2
Julien Tap Stanislas Mondot Florence Levenez Eric Pelletier Christophe Caron Jean-Pierre Furet Edgardo Ugarte Rafael Muñoz-Tamayo Denis L. E. Paslier Renaud Nalin Joel Dore Marion Leclerc 《Environmental microbiology》2009,11(10):2574-2584
The paradox of a host specificity of the human faecal microbiota otherwise acknowledged as characterized by global functionalities conserved between humans led us to explore the existence of a phylogenetic core. We investigated the presence of a set of bacterial molecular species that would be altogether dominant and prevalent within the faecal microbiota of healthy humans. A total of 10 456 non-chimeric bacterial 16S rRNA sequences were obtained after cloning of PCR-amplified rDNA from 17 human faecal DNA samples. Using alignment or tetranucleotide frequency-based methods, 3180 operational taxonomic units (OTUs) were detected. The 16S rRNA sequences mainly belonged to the phyla Firmicutes (79.4%), Bacteroidetes (16.9%), Actinobacteria (2.5%), Proteobacteria (1%) and Verrumicrobia (0.1%). Interestingly, while most of OTUs appeared individual-specific, 2.1% were present in more than 50% of the samples and accounted for 35.8% of the total sequences. These 66 dominant and prevalent OTUs included members of the genera Faecalibacterium , Ruminococcus , Eubacterium , Dorea , Bacteroides , Alistipes and Bifidobacterium . Furthermore, 24 OTUs had cultured type strains representatives which should be subjected to genome sequence with a high degree of priority. Strikingly, 52 of these 66 OTUs were detected in at least three out of four recently published human faecal microbiota data sets, obtained with very different experimental procedures. A statistical model confirmed these OTUs prevalence. Despite the species richness and a high individual specificity, a limited number of OTUs is shared among individuals and might represent the phylogenetic core of the human intestinal microbiota. Its role in human health deserves further study. 相似文献
5.
《Cell host & microbe》2022,30(12):1773-1787.e6
6.
L.H. Markiewicz J. Honke M. Haros D. Świątecka B. Wróblewska 《Journal of applied microbiology》2013,115(1):247-259
Aims
Investigation of intestinal bacterial groups involved in phytate degradation and the impact of diets with different phytate contents on phytase activity.Methods and Results
Faecal samples of adults on conventional (n = 8) or vegetarian (n = 8) diets and breastfed infants (n = 6) were used as an inoculum for modified media supplemented with phytate. Populations of Gram‐positive anaerobes (GPA), lactic acid bacteria (LAB), Proteobacteria–Bacteroides (P‐B), coliforms and anaerobes were studied. The PCR‐DGGE analysis revealed a random distribution of DGGE profiles in the dendrograms of GPA, P‐B and coliforms, and a partially diet‐specific distribution in the DGGE dendrograms of LAB and anaerobes. The degradation of phytic acid (PA) was determined with HPLC method in supernatants of the cultures. Regardless of the diet, the Gram‐positive anaerobes and LAB displayed the lowest ability to degrade phytate, whereas the coliforms and P‐B cultures produced higher amounts of intermediate myo‐inositol phosphates. Bacterial populations grown in a nonselective medium were the most effective ones in phytate degradation. It was the vegetarians' microbiota that particularly degraded up to 100% phytate to myo‐inositol phosphate products lower than InsP3.Conclusions
A diet rich in phytate increases the potential of intestinal microbiota to degrade phytate. The co‐operation of aerobic and anaerobic bacteria is essential for the complete phytate degradation.Significance and Impact of the Study
This study provides insights on the effect of diet on specific metabolic activity of human intestinal microbiota. 相似文献7.
Effect of gut microbiota on host whole metabolome 总被引:1,自引:0,他引:1
Takeo Moriya Yoshinori Satomi Shumpei Murata Hiroshi Sawada Hiroyuki Kobayashi 《Metabolomics : Official journal of the Metabolomic Society》2017,13(9):101
Introduction
Recent advances in microbiome research have revealed the diverse participation of gut microbiota in a number of diseases. Bacteria-specific endogenous small molecules are produced in the gut, are transported throughout the whole body by circulation, and play key roles in disease establishment. However, the factors and mechanisms underlying these microbial influences largely remain unknown.Objectives
The purpose of this study was to use metabolomics to better understand the influence of microbiota on host physiology.Methods
Germ-free mice (GF) were orally administered with the feces of specific pathogen-free (SPF) mice and were maintained in a vinyl isolator for 4 weeks for establishing the so-called ExGF mice. Comparative metabolomics was performed on luminal contents, feces, urine, plasma, and tissues of GF and ExGF mice.Results
The metabolomics profile of 1716 compounds showed marked difference between GF and ExGF for each matrix. Intestinal differences clearly showed the contribution of microbiota to host digestive activities. In addition, colonic metabolomics revealed the efficient conversion of primary to secondary metabolites by microbiota. Furthermore, metabolomics of tissues and excrements demonstrated the effect of microbiota on the accumulation of metabolites in tissues and during excretion. These effects included known bacterial effects (such as bile acids and amino acids) as well as novel ones, including a drastic decrease of sphingolipids in the host.Conclusion
The diverse effects of microbiota on different sites of the host metabolome were revealed and novel influences on host physiology were demonstrated. These findings should contribute to a deeper understanding of the influence of gut microbiota on disease states and aid in the development of effective intervention strategies.8.
Benzidine-based azo dyes are proven mutagens and have been linked to bladder cancer. Previous studies have indicated that their initial reduction is the result of the azo reductase activity of the intestinal microbiota. Metabolism of the benzidine-based dye Direct Black 38 was examined by using a semicontinuous culture system that simulates the lumen of the human large intestine. The system was inoculated with freshly voided feces, and an active flora was maintained as evidenced by volatile fatty acid and gas production. Within 7 days after exposure to the dye, the following metabolites were isolated and identified by gas chromatography-mass spectrometry:benzidine, 4-aminobiphenyl, monoacetylbenzidine, and acetylaminobiphenyl. Benzidine reached its peak level after 24 h, accounting for 39.1% of the added dye. Its level began to decline, and by day 7 the predominant metabolite was acetylaminobiphenyl, which accounted for 51.1% of the parent compound. Formation of the deaminated and N-acetylated analogs of benzidine, which have enhanced mutagenicity and lipophilicity, previously has not been attributed to the intestinal microbiota. 相似文献
9.
Liang Sun Zhiming Li Caiyou Hu Jiahong Ding Qi Zhou Guofang Pang Zhu Wu Ruiyue Yang Shenghui Li Jian Li Jianping Cai Yuzhe Sun Rui Li Hefu Zhen Shuqin Sun Jianmin Zhang Mingyan Fang Zhihua Chen Yuan Lv Qizhi Cao Yanan Sun Ranhui Gong Zezhi Huang Yong Duan Hengshuo Liu Jun Dong Junchun Li Jie Ruan Haorong Lu Benjin He Ninghu Li Tao Li Wenbin Xue Yan Li Juan Shen Fan Yang Cheng Zhao Qinghua Liang Mingrong Zhang Chen Chen Huan Gong Yong Hou Jian Wang Ying Zhang Huanming Yang Shida Zhu Liang Xiao Zhen Jin Haiyun Guo Peng Zhao Susanne Brix Xun Xu Huijue Jia Karsten Kristiansen Ze Yang Chao Nie 《Aging cell》2023,22(12):e14028
Human aging is invariably accompanied by a decline in renal function, a process potentially exacerbated by uremic toxins originating from gut microbes. Based on a registered household Chinese Guangxi longevity cohort (n = 151), we conducted comprehensive profiling of the gut microbiota and serum metabolome of individuals from 22 to 111 years of age and validated the findings in two independent East Asian aging cohorts (Japan aging cohort n = 330, Yunnan aging cohort n = 80), identifying unique age-dependent differences in the microbiota and serum metabolome. We discovered that the influence of the gut microbiota on serum metabolites intensifies with advancing age. Furthermore, mediation analyses unveiled putative causal relationships between the gut microbiota (Escherichia coli, Odoribacter splanchnicus, and Desulfovibrio piger) and serum metabolite markers related to impaired renal function (p-cresol, N-phenylacetylglutamine, 2-oxindole, and 4-aminohippuric acid) and aging. The fecal microbiota transplantation experiment demonstrated that the feces of elderly individuals could influence markers related to impaired renal function in the serum. Our findings reveal novel links between age-dependent alterations in the gut microbiota and serum metabolite markers of impaired renal function, providing novel insights into the effects of microbiota-metabolite interplay on renal function and healthy aging. 相似文献
10.
11.
Phylogenetic microarrays present an attractive strategy to high-throughput interrogation of complex microbial communities. In this work, we present several approaches to optimize the analysis of intestinal microbiota with the recently developed Microbiota Array. First, we determined how 16S rDNA-specific PCR amplification influenced bacterial detection and the consistency of measured abundance values. Bacterial detection improved with an increase in the number of PCR amplification cycles, but 25 cycles were sufficient to achieve the maximum possible detection. A PCR-caused deviation in the measured abundance values was also observed. We also developed two mathematical algorithms that aimed to account for a predicted cross-hybridization of 16S rDNA fragments among different species, and to adjust the measured hybridization signal based on the number of 16S rRNA gene copies per species genome. The 16S rRNA gene copy adjustment indicated that the presence of members of the class Clostridia might be overestimated in some 16S rDNA-based studies. Finally, we show that the examination of total community RNA with phylogenetic microarray can provide estimates of the relative metabolic activity of individual community members. Complementary profiling of genomic DNA and total RNA isolated from the same sample presents an opportunity to assess population structure and activity in the same microbial community. 相似文献
12.
Julia B. Honneffer Jörg M. Steiner Jonathan A. Lidbury Jan S. Suchodolski 《Metabolomics : Official journal of the Metabolomic Society》2017,13(3):26
Introduction
The fecal microbiota are relevant to the health and disease of many species. The importance of the fecal metabolome has more recently been appreciated, but our knowledge of the microbiota and metabolome at other sites along the gastrointestinal tract remains deficient.Objective
To analyze the gastrointestinal microbiota and metabolome of healthy domestic dogs at four anatomical sites.Methods
Samples of the duodenal, ileal, colonic, and rectal contents were collected from six adult dogs after humane euthanasia for an unrelated study. The microbiota were characterized using Illumina sequencing of 16S rRNA genes. The metabolome was characterized by mass spectrometry-based methods.Results
Prevalent phyla throughout the samples were Proteobacteria, Firmicutes, Fusobacteria, and Bacteroidetes, consistent with previous findings in dogs and other species. A total of 530 unique metabolites were detected; 199 of these were identified as previously named compounds, but 141 of them had at least one significantly different site-pair comparison. Noteworthy examples include relative concentrations of amino acids, which decreased from the small to large intestine; pyruvate, which peaked in the ileum; and several phenol-containing carboxylic acid compounds that increased in the large intestine.Conclusion
The microbiota and metabolome vary significantly at different sites along the canine gastrointestinal tract.13.
Metabolism of the benzidine-based azo dye Direct Black 38 by human intestinal microbiota. 总被引:5,自引:2,他引:3 下载免费PDF全文
Benzidine-based azo dyes are proven mutagens and have been linked to bladder cancer. Previous studies have indicated that their initial reduction is the result of the azo reductase activity of the intestinal microbiota. Metabolism of the benzidine-based dye Direct Black 38 was examined by using a semicontinuous culture system that simulates the lumen of the human large intestine. The system was inoculated with freshly voided feces, and an active flora was maintained as evidenced by volatile fatty acid and gas production. Within 7 days after exposure to the dye, the following metabolites were isolated and identified by gas chromatography-mass spectrometry:benzidine, 4-aminobiphenyl, monoacetylbenzidine, and acetylaminobiphenyl. Benzidine reached its peak level after 24 h, accounting for 39.1% of the added dye. Its level began to decline, and by day 7 the predominant metabolite was acetylaminobiphenyl, which accounted for 51.1% of the parent compound. Formation of the deaminated and N-acetylated analogs of benzidine, which have enhanced mutagenicity and lipophilicity, previously has not been attributed to the intestinal microbiota. 相似文献
14.
《遗传学报》2022,49(3):240-248
Gut microbiota plays an important role in coronary heart disease, but its compositional and functional changes in unstable angina (UA) remain unexplored. We performed metagenomic sequencing of 133 newly diagnosed UA patients and 133 sex- and age-matched controls, and profiled the fecal and plasma metabolomes in 30 case-control pairs. The alpha diversity of gut microbiota was increased in UA patients: the adjusted odds ratios (ORs) per standard deviation increase in Shannon and Simpson indices were 1.30 (95% confidence interval, 1.01–1.70) and 1.36 (1.05–1.81), respectively. Two common species (depleted Klebsiella pneumoniae and enriched Streptococcus parasanguinis; P ≤ 0.002) and three rare species (depleted Weissella confusa, enriched Granulicatella adiacens and Erysipelotrichaceae bacterium 6_1_45; P ≤ 0.005) were associated with UA. The UA-associated gut microbiota was depleted in the pathway of L-phenylalanine degradation (P = 0.001), primarily contributed by Klebsiella pneumoniae. Consistently, we found increased circulating phenylalanine in UA patients (OR = 2.76 [1.17–8.16]). Moreover, Streptococcus parasanguinis was negatively correlated with fecal citrulline (Spearman's rs = ?0.470, P = 0.009), a metabolite depleted in UA patients (OR = 0.26 [0.08–0.63]). These findings are informative to help understand the metabolic connection between gut microbiota and UA. 相似文献
15.
16.
A Marcobal P C Kashyap T A Nelson P A Aronov M S Donia A Spormann M A Fischbach J L Sonnenburg 《The ISME journal》2013,7(10):1933-1943
Defining the functional status of host-associated microbial ecosystems has proven challenging owing to the vast number of predicted genes within the microbiome and relatively poor understanding of community dynamics and community–host interaction. Metabolomic approaches, in which a large number of small molecule metabolites can be defined in a biological sample, offer a promising avenue to ‘fingerprint'' microbiota functional status. Here, we examined the effects of the human gut microbiota on the fecal and urinary metabolome of a humanized (HUM) mouse using an optimized ultra performance liquid chromatography–mass spectrometry-based method. Differences between HUM and conventional mouse urine and fecal metabolomic profiles support host-specific aspects of the microbiota''s metabolomic contribution, consistent with distinct microbial compositions. Comparison of microbiota composition and metabolome of mice humanized with different human donors revealed that the vast majority of metabolomic features observed in donor samples are produced in the corresponding HUM mice, and individual-specific features suggest ‘personalized'' aspects of functionality can be reconstituted in mice. Feeding the mice a defined, custom diet resulted in modification of the metabolite signatures, illustrating that host diet provides an avenue for altering gut microbiota functionality, which in turn can be monitored via metabolomics. Using a defined model microbiota consisting of one or two species, we show that simplified communities can drive major changes in the host metabolomic profile. Our results demonstrate that metabolomics constitutes a powerful avenue for functional characterization of the intestinal microbiota and its interaction with the host. 相似文献
17.
Mirjana Rajilić‐Stojanović Hans G. H. J. Heilig Sebastian Tims Erwin G. Zoetendal Willem M. de Vos 《Environmental microbiology》2013,15(4):1146-1159
The microbiota that colonizes the human intestinal tract is complex and its structure is specific for each of us. In this study we expand the knowledge about the stability of the subject‐specific microbiota and show that this ecosystem is stable in short‐term intervals (< 1 year) but also during long periods of time (> 10 years). The faecal microbiota composition of five unrelated and healthy subjects was analysed using a comprehensive and highly reproducible phylogenetic microarray, the HITChip. The results show that the use of antibiotics, application of specific dietary regimes and distant travelling have limited impact on the microbiota composition. Several anaerobic genera, including Bifidobacterium and a number of genera within the Bacteroidetes and the Firmicutes phylum, exhibit significantly higher similarity than the total microbiota. Although the gut microbiota contains subject‐specific species, the presence of which is preserved throughout the years, their relative abundance changes considerably. Consequently, the recently proposed enterotype status appears to be a varying characteristic of the microbiota. Our data show that the intestinal microbiota contains a core community of permanent colonizers, and that environmentally introduced changes of the microbiota throughout adulthood are primarily affecting the abundance but not the presence of specific microbial species. 相似文献
18.
We demonstrated that naringenin (NRG), the aglycon form of naringin present in grapefruit juice inhibits in vitro the metabolism of simvastatin (SV), a HMG-CoA reductase inhibitor. SV undergoes an important first pass metabolism and this is thought to be partly responsible for its low bioavailability after oral administration. SV is a prodrug that requires metabolic activation through hydrolysis by esterases. In addition, SV is a substrate for cytochrome P450 enzymes. NRG, a potent inhibitor of cytochrome P450 enzymes, interferes with the isoenzymes of cytochrome P450 involved in the hepatic metabolism of SV. NRG inhibits the metabolism of SV in rat hepatocytes (the intrinsic clearance of SV decreases from 26.2 microl/min/10(6) cells in absence of NRG to 4.15 microl/min/10(6) cells in presence of 50 microM NRG). This inhibition is more pronounced in hepatocytes (Ki value approximately 5 microM) than in liver microsomes (Ki approximately 23 microM and approximately 30 microM in human and rat liver microsomes respectively). Therefore, the hepatocytes seem to be the best approach for in vitro interaction study between SV and NRG ; and this should be taken into account in the in vitro/in vivo extrapolation. If this interaction were confirmed in man, the doses of SV should be reduced when co-administered with grapefruit juice because of increased bioavailability of SV. 相似文献
19.
Sproule-Willoughby KM Stanton MM Rioux KP McKay DM Buret AG Ceri H 《Journal of microbiological methods》2010,83(3):296-301
The human gastrointestinal tract hosts a complex community of microorganisms that grow as biofilms on the intestinal mucosa. These bacterial communities are not well characterized, although they are known to play an important role in human health. This study aimed to develop a model for culturing biofilms (surface-adherent communities) of intestinal microbiota. The model utilizes adherent mucosal bacteria recovered from colonic biopsies to create multi-species biofilms. Culture on selective media and confocal microscopy indicated the biofilms were composed of a diverse community of bacteria. Molecular analyses confirmed that several phyla were represented in the model, and demonstrated stability of the community over 96 h when cultured in the device. This model is novel in its use of a multi-species community of mucosal bacteria grown in a biofilm mode of growth. 相似文献
20.
Zhigang Zhang Jiawei Geng Xiaodan Tang Hong Fan Jinchao Xu Xiujun Wen Zhanshan Ma Peng Shi 《The ISME journal》2014,8(4):881-893
Human gut microbiota shows high inter-subject variations, but the actual spatial distribution and co-occurrence patterns of gut mucosa microbiota that occur within a healthy human instestinal tract remain poorly understood. In this study, we illustrated a model of this mucosa bacterial communities'' biogeography, based on the largest data set so far, obtained via 454-pyrosequencing of bacterial 16S rDNAs associated with 77 matched biopsy tissue samples taken from terminal ileum, ileocecal valve, ascending colon, transverse colon, descending colon, sigmoid colon and rectum of 11 healthy adult subjects. Borrowing from macro-ecology, we used both Taylor''s power law analysis and phylogeny-based beta-diversity metrics to uncover a highly heterogeneous distribution pattern of mucosa microbial inhabitants along the length of the intestinal tract. We then developed a spatial dispersion model with an R-squared value greater than 0.950 to map out the gut mucosa-associated flora''s non-linear spatial distribution pattern for 51.60% of the 188 most abundant gut bacterial species. Furthermore, spatial co-occurring network analysis of mucosa microbial inhabitants together with occupancy (that is habitat generalists, specialists and opportunist) analyses implies that ecological relationships (both oppositional and symbiotic) between mucosa microbial inhabitants may be important contributors to the observed spatial heterogeneity of mucosa microbiota along the human intestine and may even potentially be associated with mutual cooperation within and functional stability of the gut ecosystem. 相似文献