首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding dynamics and inheritance of DNA methylation represents important facets for elucidating epigenetic paradigms in plant development and evolution. Using four sets of sorghum (Sorghum bicolor L.) inter-strain hybrids and their inbred parents, the developmental stability and inheritance of cytosine methylation in two tissues, leaf and endosperm, by MSAP analysis were investigated. It was found that in all lines (inbred and hybrid) studied, endosperm exhibited a markedly reduced level of full methylation of the external cytosine or both cytosines at the CCGG sites relative to leaf, which caused a variable reduction in the estimated total methylation level in endosperm by 6.89–19.69% (11.47% on average). For both tissues, a great majority of cytosine methylation profiles transmitted to F1 hybrids, however, from 1.69 to 3.22% of the profiles showed altered patterns in hybrids. Both inherited and altered methylation profiles can be divided into distinct groups, and their frequencies are variable among the cross-combinations, and between the two tissues. The variations in methylation level and pattern detected in the hybrids were not caused by parental heterozygosity, and they could be either non-random or stochastic among hybrid individuals. Homology analysis of isolated bands that showed endosperm-specific hypomethylation or variation in hybrids indicated that diverse sequences were involved, including known-function cellular genes and mobile elements. RT-PCR analysis of six genes representing endosperm-specific hypomethylation in MSAP profiles indicated that all showed higher expression in endosperm than in leaf, suggesting involvement of methylation state in regulating tissue-specific or tissue-biased expression in sorghum. Analysis on leaf-RNA from 5-azacytidine-treated plants further corroborated this possibility. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Imprinting is an epigenetic phenomenon referring to allele‐biased expression of certain genes depending on their parent of origin. Accumulated evidence suggests that, while imprinting is a conserved mechanism across kingdoms, the identities of the imprinted genes are largely species‐specific. Using deep RNA sequencing of endosperm 14 days after pollination in sorghum, 5683 genes (29.27% of the total 19 418 expressed genes) were found to harbor diagnostic single nucleotide polymorphisms between two parental lines. The analysis of parent‐of‐origin expression patterns in the endosperm of a pair of reciprocal F1 hybrids between the two sorghum lines led to identification of 101 genes with ≥ fivefold allelic expression difference in both hybrids, including 85 maternal expressed genes (MEGs) and 16 paternal expressed genes (PEGs). Thirty of these genes were previously identified as imprinted in endosperm of maize (Zea mays), rice (Oryza sativa) or Arabidopsis, while the remaining 71 genes are sorghum‐specific imprinted genes relative to these three plant species. Allele‐biased expression of virtually all of the 14 tested imprinted genes (nine MEGs and five PEGs) was validated by pyrosequencing using independent sources of RNA from various developmental stages and dissected parts of endosperm. Forty‐six imprinted genes (30 MEGs and 16 PEGs) were assayed by quantitative RT–PCR, and the majority of them showed endosperm‐specific or preferential expression relative to embryo and other tissues. DNA methylation analysis of the 5’ upstream region and gene body for seven imprinted genes indicated that, while three of the four PEGs were associated with hypomethylation of maternal alleles, no MEG was associated with allele‐differential methylation.  相似文献   

3.
This paper examines the extent of enzymatic methylation in 5'-CCGG sequences of inverted repeats in DNA isolated from adult liver and bone marrow of DBA/2 mice, with special attention to the methylation of such sequences in the vicinity of the beta-major globin gene. Two thirds of inverted repeats contain 5'-AGCT and 5'-CCGG sequences, as found by a method based on the capability of inverted repeats of forming intramolecular duplexes under the conditions of "zero-time" reassociation. Methylation in internal cytosines of 5'-CCGG sequences of inverted DNA repeats differs between bone marrow and liver tissues. The beta-major globin gene was found in DNA covalently linked to inverted repeats. The enzymatic methylation of inverted repeats neighbouring the beta-major globin gene differs at HpaII recognition sites; the DNA of bone marrow tissue, in which this gene is expressed, is less methylated at such sites as compared to liver DNA.  相似文献   

4.
During the normal developmental process, programmed gene expression is an essential phenomenon in all organisms. In eukaryotes, DNA methylation plays an important role in the regulation of gene expression. The extent of cytosine methylation polymorphism was evaluated in leaf tissues collected from the greenhouse grown plants and in in vitro-derived callus of three lowbush and one hybrid blueberry genotypes, using methylation-sensitive amplification polymorphism (MSAP) technique. Callus formation started from the leaf segments after 4 weeks of culture on a thidiazuron (TDZ) containing medium. Maximum callus formation (98 %) was observed in the hybrid blueberry at 1.0 mg dm-3 TDZ. Although noticeable changes in cytosine methylation pattern were detected within the MSAP profiles of both leaf and callus tissues, methylation events were more polymorphic in calli than in leaf tissues. The number of methylated CCGG sites varied significantly within the genotypes ranging from 75 to 100 in leaf tissues and from 215 to 258 in callus tissues. Differences in the methylation pattern were observed not only in a tissue-specific manner but also within the genotype in a treatment specific manner. These results demonstrated the unique effect of TDZ and the tissue culture process on DNA methylation during callus development.  相似文献   

5.
It has been widely shown that polyploidization can result in changes in cytosine methylation. However, little is known regarding how cytosine methylation changes in polyploids development, especially in polyploid trees. In this study, we investigated drifting changes of DNA methylation status at 5′-CCGG sites in the apical bud, young and mature leaf tissues of triploid black poplar (Populus. euramericana) with methylation-sensitive amplification polymorphism (MSAP) and assessed the expression of multiple DNA methyltransferases (MTases) and DNA demethylase during different developmental stages. MSAP analysis detected methylation levels at CG and CNG sites of diploid tissues reduced during development from bud to leaves, while for the triploid, methylation at CNG sites increased during development, but levels of methylation at CG sites first decreased in young leaves before increasing in mature leaves. MTase genes related to CG or CNG methylation were respectively preferential in different triploid tissues with high CG or CNG methylation levels. High expression of DNA demethylase was observed in tissue with high demethylation trends. These finding suggest CG and CNG methylation and their related enzymes are involved with different biological functions and networks of gene regulation in different developmental stages of triploid.  相似文献   

6.
Nagase H  Ghosh S 《The FEBS journal》2008,275(8):1617-1623
Epigenetics refers to heritable phenotypic alterations in the absence of DNA sequence changes, and DNA methylation is one of the extensively studied epigenetic alterations. DNA methylation is an evolutionally conserved mechanism to regulate gene expression in mammals. Because DNA methylation is preserved during DNA replication it can be inherited. Thus, DNA methylation could be a major mechanism by which to produce semi-stable changes in gene expression in somatic tissues. Although it remains controversial whether germ-line DNA methylation in mammalian genomes is stably heritable, frequent tissue-specific and disease-specific de novo methylation events are observed during somatic cell development/differentiation. In this minireview, we discuss the use of restriction landmark genomic scanning, together with in silico analysis, to identify differentially methylated regions in the mammalian genome. We then present a rough overview of quantitative DNA methylation patterns at 4600 NotI sites and more than 150 differentially methylated regions in several C57BL/6J mouse tissues. Comparative analysis between mice and humans suggests that some, but not all, tissue-specific differentially methylated regions are conserved. A deeper understanding of cell-type-specific differences in DNA methylation might lead to a better illustration of the mechanisms behind tissue-specific differentiation in mammals.  相似文献   

7.
8.
DNA methylation is one of the epigenetic mechanisms regulating gene expression in plants in response to environmental conditions. In this study, analysis of methylation patterns was carried out in order to assess the effect of water stress in two contrasting wheat genotypes using methylation-sensitive amplified polymorphism (MSAP). The results revealed that demethylation was higher in drought-tolerant genotype (C306) as compared to drought-sensitive genotype (HUW468) after experiencing drought stress. Comparisons of different MSAP patterns showed a high percentage of polymorphic bands between tolerant and susceptible wheat genotypes (from 74.79 % at anthesis to 88.89 % at tillering). Furthermore, differential DNA methylation in roots and leaves also revealed tissue-specific methylation of genomic DNA. Interestingly, 54 developmental stage-specific bands and 23 bands that were found contrasting between these two wheat genotypes were detected. Furthermore, a few sites with stable DNA methylation differences were identified between drought-tolerant and drought-sensitive cultivars, thus providing genotype-specific epigenetic markers. These results not only provide data on differences in DNA methylation changes but also contribute to dissection of molecular mechanisms of drought response and tolerance in wheat.  相似文献   

9.
Vu TH  Li T  Nguyen D  Nguyen BT  Yao XM  Hu JF  Hoffman AR 《Genomics》2000,64(2):132-143
  相似文献   

10.
Gene expression in endosperm—a seed tissue that mediates transfer of maternal resources to offspring—is under complex epigenetic control. We show here that plant-specific RNA polymerase IV (Pol IV) mediates parental control of endosperm gene expression. Pol IV is required for the production of small interfering RNAs that typically direct DNA methylation. We compared small RNAs (sRNAs), DNA methylation, and mRNAs in Arabidopsis thaliana endosperm from heterozygotes produced by reciprocally crossing wild-type (WT) plants to Pol IV mutants. We find that maternally and paternally acting Pol IV induce distinct effects on endosperm. Loss of maternal or paternal Pol IV impacts sRNAs and DNA methylation at different genomic sites. Strikingly, maternally and paternally acting Pol IV have antagonistic impacts on gene expression at some loci, divergently promoting or repressing endosperm gene expression. Antagonistic parent-of-origin effects have only rarely been described and are consistent with a gene regulatory system evolving under parental conflict.

Parents can have antagonistic effects on offspring development, but few molecular players involved in these antagonistic effects have been identified. This study shows that in Arabidopsis antagonistic parental effects on offspring gene expression are mediated by a small RNA pathway.  相似文献   

11.
Epigenetic marks, such as cytosine methylation and post-translational histone modifications, are important for interpreting and managing eukaryotic genomes. Recent genetic studies in plants have uncovered details on the different interwoven mechanisms that are responsible for specification of genomic cytosine methylation patterns. These mechanisms include targeting cytosine methylation using heterochromatic histone modifications and RNA guides. Genomic cytosine methylation patterns also reflect locus-specific demethylation initiated by specialized DNA glycosylases. While genetics continues to more fully define these mechanisms, genomic studies in Arabidopsis have yielded an unprecedented high-resolution view of how epigenetic marks are layered over a genome.  相似文献   

12.
Analysis of DNA methylation in different maize tissues   总被引:2,自引:0,他引:2  
DNA methylation plays an important role in gene expression regulation during biological development and tissue differentiation in plants. This study adopted methylation-sensitive Amplified fragment length polymorphism (AFLP) to compare the levels of DNA cytosine methylation at CCGG sites in tassel, bracteal leaf, and ear leaf from maize inbred lines, 18 White and 18 Red, respectively, and also examined specific methylation patterns of the three tissues. Significant differences in cytosine methylation level among the three tissues and the same changing tendency in two inbred lines were detected. Both MSAP (methylation sensitive amplification polymorphism) ratio and full methylation level were the highest in bracteal leaf, and the lowest in tassel. Meanwhile, different methylation levels were observed in the same tissue from the inbred lines, 18 White and 18 Red. Full methylation of internal cytosine was the dominant type in the maize genome. The differential methylation patterns in the three tissues were observed. In addition, sequencing of nine differentially methylated fragments and the subsequent blast search revealed that the cytosine methylated 5 ' -CCGG-3 ' sequences were distributed in repeating sequences, in the coding and noncoding regions. Southern hybridization was used to verify the methylation polymorphism. These results clearly demonstrated the power of the MSAP technique for large-scale DNA methylation detection in the maize genome, and the complexity of DNA methylation change during plant growth and development. The different methylation levels may be related to specific gene expression in various tissues.  相似文献   

13.
Tissue specific differentially methylated regions (TDMRs) were identified and localized in the mouse genome using second generation virtual RLGS (vRLGS). Sequenom MassARRAY quantitative methylation analysis was used to confirm and determine the fine structure of tissue specific differences in DNA methylation. TDMRs have a broad distribution of locations to intragenic and intergenic regions including both CpG islands, and non-CpG islands regions. Somewhat surprising, there is a strong bias for TDMR location in non-promoter intragenic regions. Although some TDMRs are within or close to repeat sequences, overall they are less frequently associated with repetitive elements than expected from a random distribution. Many TDMRs are methylated at early developmental stages, but unmethylated later, suggesting active or passive demethylation, or expansions of populations of cells with unmethylated TDMRs. This is notable during postnatal testis differentiation where many testis specific TDMRs become progressively "demethylated". These results suggest that methylation changes during development are dynamic, involve demethylation and methylation, and may occur at late stages of embryonic development or even postnatally.  相似文献   

14.
镉胁迫下萝卜基因组DNA甲基化敏感扩增多态性分析   总被引:27,自引:0,他引:27  
应用甲基化敏感扩增多态性(MSAP)技术分析了重金属镉(cd)胁迫处理后萝卜基因组DNA甲基化程度的变化。结果表明,经50、250和500mg/L CdCl_2处理后,MSAP比率分别为37%、43%和51%,均高于对照(34%);全甲基化率(双链C~mCGG)分别为23%、25%和27%,而其对照为22%,表明重金属CdCl_2胁迫后,某些位点发生了重新甲基化。萝卜叶片DNA中总甲基化水平的增加与CdCl_2处理浓度呈显著正相关。甲基化变异可分为重新甲基化、去甲基化、不定类型以及与对照相同的甲基化模式等类型,Cd胁迫处理引起的植株基因组DNA甲基化程度的提高主要是重新甲基化。  相似文献   

15.
Terminally differentiated lens fibre cells are formed in the vertebrate lens throughout life. Lens fibre cells may also be obtained by an in vitro process termed transdifferentiation, from certain tissues of different developmental origin from lens, such as embryo neural retina. delta-Crystallin is the major protein in the chick embryo lens fibre cells, and also in transdifferentiated lens cells obtained from cultured embryonic neural retina. Lens crystallin proteins and mRNA are present at low levels in the intact embryonic neural retina but are no longer detectable in the early stages of neural retina cell culture. However, levels rise steeply in the later stages and crystallins become the major products in terminally transdifferentiating neural retina cultures. We have used this system to test the hypothesis that the patterns of DNA methylation in particular genes are correlated with gene expression. A number of developmentally regulated genes have been found to be undermethylated in tissues where they are expressed, and methylated in tissues where they are not. However this correspondence does not always hold true. Eight-day-old embryonic neural retina was cultured for the period of time during which crystallin gene expression increases 100-fold. DNA methylation in the delta-crystallin gene region was analysed at several stages of cell culture by using the restriction endonucleases HpaII and MspI which cleave at the sequence CCGG. The former enzyme cannot cleave internally methylated cytosine (CmCGG) while the latter cannot cleave externally methylated cytosine (mCCGG). We detect no change in the methylation of CCGG sites within the delta-crystallin gene regions during transdifferentiation. Since dramatic changes in delta-crystallin gene expression occur during this process we conclude that large scale alterations in the pattern of DNA methylation are not a necessary accompaniment to changes in gene activity.  相似文献   

16.
Analysis of DNA methylation during the germination of wheat seeds   总被引:1,自引:0,他引:1  
DNA methylation is known to play a crucial role in regulating plant development and organ or tissue differentiation. Here, we focused on the DNA methylation dynamics during the germination of wheat seeds using the adapted AFLP technique so called methylation-sensitive amplified polymorphism (MSAP). The MSAP profiles of genomic DNA in embryo and endosperm tissues of germinating seeds, as well as dry seeds were characterized and notable changes of cytosine methylation were detected. Comparisons of MSAP profiles in different tissues tested showed that the methylation level in dry seeds is the highest. The alteration analysis of cytosine methylation displayed that the number of demethylation events were three times higher than that of de novo methylation, which indicated that the demethylation was predominant in germinating wheat seeds, though the methylation events occurred as well. Sixteen differentially displayed DNA fragments in MSAP profiles were cloned and the sequencing analysis confirmed that nine of them contained CCGG sites. The further BLAST search showed that four of the cloned sequences were located in coding regions. Interestingly, three of the sixteen candidates were homologous to retrotransposons, which indicated that switches between DNA methylation and demethylation occurred in retrotransposon elements along with the germination of wheat seeds.  相似文献   

17.
18.
19.
20.
Zhang X  Shiu SH  Shiu S  Cal A  Borevitz JO 《PLoS genetics》2008,4(3):e1000032
Whole genome tiling arrays provide a high resolution platform for profiling of genetic, epigenetic, and gene expression polymorphisms. In this study we surveyed natural genomic variation in cytosine methylation among Arabidopsis thaliana wild accessions Columbia (Col) and Vancouver (Van) by comparing hybridization intensity difference between genomic DNA digested with either methylation-sensitive (HpaII) or -insensitive (MspI) restriction enzyme. Single Feature Polymorphisms (SFPs) were assayed on a full set of 1,683,620 unique features of Arabidopsis Tiling Array 1.0F (Affymetrix), while constitutive and polymorphic CG methylation were assayed on a subset of 54,519 features, which contain a 5'CCGG3' restriction site. 138,552 SFPs (1% FDR) were identified across enzyme treatments, which preferentially accumulated in pericentromeric regions. Our study also demonstrates that at least 8% of all analyzed CCGG sites were constitutively methylated across the two strains, while about 10% of all analyzed CCGG sites were differentially methylated between the two strains. Within euchromatin arms, both constitutive and polymorphic CG methylation accumulated in central regions of genes but under-represented toward the 5' and 3' ends of the coding sequences. Nevertheless, polymorphic methylation occurred much more frequently in gene ends than constitutive methylation. Inheritance of methylation polymorphisms in reciprocal F1 hybrids was predominantly additive, with F1 plants generally showing levels of methylation intermediate between the parents. By comparing gene expression profiles, using matched tissue samples, we found that magnitude of methylation polymorphism immediately upstream or downstream of the gene was inversely correlated with the degree of expression variation for that gene. In contrast, methylation polymorphism within genic region showed weak positive correlation with expression variation. Our results demonstrated extensive genetic and epigenetic polymorphisms between Arabidopsis accessions and suggested a possible relationship between natural CG methylation variation and gene expression variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号