首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In environments with high fire frequency the impoverishment of abiotic resources may favour male sexual expression in plants as it is less costly than female expression. Also, fire can modify pollinator communities and thus affect plant reproduction. Here we evaluate the effect of frequent fires on sexual expression, pollination and reproductive success of Vachellia caven (Leguminosae), an andromonoecious tree that is highly dependent on animal pollination and is abundant in burned sites. We expect that increased fire frequency will favour maleness but it will decrease reproductive success due to abiotic resource depletion in repeated burned sites. To test this, we selected focal plants in three unburned sites and three frequently burned sites and measured their sexual expression, basal diameter, pollination and fruit set. The proportion of male inflorescences per plant was not affected by fire and it was negatively related with the diameter of the plant. The proportion of pollinated flowers was not affected by fire, and fruit set increased with maleness only in frequently burned sites. These results indicate that V. caven is adapted to regimes of high fire frequency: not only was there similar fruit set in both burned and unburned sites, but more male plants had higher fruit set in burned sites. Despite the soil impoverishment triggered by repeated fires, V. caven is able to maintain its sexual and reproductive functions, allowing it to persist and maintain viable populations in fire‐prone environments. Abstract in Spanish is available with online material.  相似文献   

2.
  • Several Cerrado tree species have traits and structures that protect from fires. The effectiveness of a trait depends on the fire regime, especially the frequency. We used Vochysia elliptica, a common Cerrado tree, as a model to test whether different fire frequencies alter crown architecture and flower, fruit and seed production.
  • We analysed the effect of fire on the production of inflorescences, fruits and seeds, as well as seed germination and tree architecture of 20 trees in each of three plots of a long‐term ecological experiment managed with different fire regimes: burned every 2 years (B), burned every 4 years (Q) in mid‐dry season and an area protected from fire (C).
  • We found a large negative effect of fire frequency on crown architecture and on flower and fruit production. Trees in C and Q had significantly more main branches and a larger crown area than trees in B. At its peak, a tree in C was expected to produce 2.4 times more inflorescences than Q, and 15.5 times more than B, with similar magnitudes for fruits. Sixty per cent of trees in B and 10% in Q produced no fruits.
  • The differences in architecture might explain the reduction in sexual reproduction due to a smaller physical space to produce flowers at the branch apices. Resource limitation due to plant investment to replace burned vegetative parts may also decrease sexual reproduction. Our results indicate potentially severe consequences of high fire frequencies for population dynamics and species persistence in Cerrado communities.
  相似文献   

3.
Resprouting is an efficient life history strategy by which woody savanna species can recover their aboveground biomass after fire. However, resprouting dynamics after fire and the time it takes to start producing flowers and fruits are still poorly understood, especially for the Brazilian savanna (Cerrado biome), where fire is an important driver of vegetation structure and ecosystem functioning. We investigated the resprouting dynamics and production of flowers and fruits of 26 woody species (20 tree and 6 shrub species for a total of 485 individuals) that were burned and the production of flowers and fruits for a subset of 12 species (139 individuals) in an unburned area in a Brazilian savanna. We classified the species’ resprouting strategies as hypogeal (at the soil level, with main stem death), epigeal (on the main stem or crown), and hypogeal + epigeal. We used generalized linear mixed-effect models to identify the post-fire recovery patterns for five years. Individuals with basal resprouts (hypogeal and hypogeal + epigeal resprouting) produced an average of 6 basal resprouts, but only 33% of resprouts survived after five years. Individuals in burned areas produced fewer flowers and fruits than individuals in unburned areas. At least a subset of individuals in all the resprouting strategies started to produce flowers and fruits in the first-year post-fire. About 68% of the species with hypogeal resprouts produced flowers and fruits in the first-year post-fire, but the intensity of flowering and fruiting was lower compared to individuals with other resprouting strategies over time. Although woody species have invested in post-fire growth and sexual reproduction in all resprouting strategies, the long time needed to recover these processes can make these species more vulnerable to frequent fires.  相似文献   

4.
Little is known about the effects of fire on the structure and species composition of Neotropical savanna seedling communities. Such effects are critical for predicting long‐term changes in plant distribution patterns in these ecosystems. We quantified richness and density of seedlings within 144 plots of 1 m2 located along a topographic gradient in long‐unburned (fire protected since 1983) and recently burned (September 2005) savannas in Brazil. These savannas differ in tree density and canopy cover. Sites along the gradient, however, did not differ in species composition prior to the fire. In recently burned savannas we also evaluated the contribution of vegetative reproduction relative to sexual reproduction by quantifying richness and density of root suckers. Finally, we tested seed tolerance to pulses of high temperatures—similar to those occurring during fires on the soil surface and below—of five dominant savanna tree species. Seedlings were more abundant and diverse in unburned than in burned savannas. Seedling species composition differed among unburned and burned savannas probably reflecting early differences in root: shoot biomass allocation patterns. In recently burned savannas, root suckers were more abundant and diverse than seedlings. Relatively long exposures (>10 min) of temperatures of 90 °C reduced seed germination in all studied species suggesting a negative effect of fire on germination of seeds located at or aboveground level. Because vegetative reproduction contributes more than sexual reproduction in burned environments, frequent fires are likely to cause major shifts in species composition of Neotropical savanna plant communities, favoring clonally produced recruits along tree density/topographic gradients.  相似文献   

5.
The effects of fire recurrence on vegetation patterns in Quercus suber L. and Erica-Cistus communities in Mediterranean fire-prone ecosystems of south-eastern France were examined on stands belonging to 5 fire classes, corresponding to different numbers of fires (from 0 to 4) and time intervals between fires since 1959. A common pool of species was identified among the plots, which was typical of both open and closed maquis. Fire recurrence reduced the abundance of trees and herbs, whereas it increased the abundance of small shrubs. Richness differed significantly between the most contrasting classes of fire recurrence, with maximal values found in control plots and minimal values in plots that had burned recurrently and recently. Equitability indices did not vary significantly, in contrast to Shannon's diversity index which mostly correlated with richness. Forest ecosystems that have burnt once or twice in the last 50 years were resilient; that is to say they recovered a biomass and composition similar to that of the pre-fire state. However, after more than 3-4 fires, shrubland communities displayed lower species richness and diversity indices than unburned plots. The time since the last fire and the number of fires were the most explanatory fire variables, governing the structure of post-fire plant communities. However, environmental factors, such as slope or exposure, also made a significant contribution. Higher rates of fire recurrence can affect the persistence or expansion of shrublands in the future, as observed in other Mediterranean areas.  相似文献   

6.
Three aspects of the páramo vegetation's response to fires were investigated: the measurement of fire temperatures, general observations of changes in plant communities following fires, and monitoring the fate of individual plants after burning.Fire temperatures were strongly influenced by the physiognomy of the vegetation, dominated by tussocks of Calamagrostis spp. Temperatures were highest amongst the upper leaves of the tussock (sometimes >500°C). The middle levels of the tussock experienced temperatures in excess of 400°C, but in the dense leaf bases temperatures were often below 65°C. On the ground between tussocks, temperatures were variable, whereas 2 cm below ground temperatures failed to reach 65°C.Plant survival depended on the intensity of the fire and the plant's position within the tussock structure. Survival was often the result of high temperature avoidance (with buds shielded by other plant parts or buried beneath the soil surface).Post-fire Calamagrostis tiller mortality rates were high and tussock regrowth was slow. Some other species appear to maintain their populations by exploiting this recovery phase for seedling establishment on tussocks.Between tussocks, changes of occupancy at the level of the individual plants were greater after fire than in control vegetation. Most transitions were random. Those which departed from random often involved gaps and were related to post-fire mortality, regrowth from below-ground parts, colonisation or, in the case of a clonal mat-forming species, to spatial rearrangement of rosettes. Recovery was slower at higher altitude. Recovery was much slower in burned plots when the upper 2 cm of soil was removed (along with buried plant parts) compared with burned plots.Qualitative observations suggest that recovery may consist of a cyclical process, mediated by the serial dominance of several species that are physiognomically important.The frequency of fires determines the amount of fuel accumulated within grass tussocks and some plants may be unable to survive repeated burning. Chance survival of species in unburned patches of vegetation and random colonisation of gaps may be important determinants of subsequent community structure.  相似文献   

7.
火因子对荒漠化草原草本层片植物群落组成的影响   总被引:2,自引:0,他引:2  
火烧是世界许多地区关键的生态因子,也是人工和自然生态系统重要的干扰因素和管理工具,对格局与过程有着深刻的影响。采用人为放火试验研究了春季不同时间火烧对典型温带荒漠化草原草本植物群落组成的影响,结果表明:晚春火烧后当年,草本植物层片物种多度显著高于未火烧样地(P<0.05),而晚春火烧后第2年和早春火烧当年草本植物层片物种多度与未火烧样地差异不显著(P>0.05);晚春火烧后当年和第2年及早春火烧后当年,草本植物物种丰富度、多样性和均匀度均有所降低,且晚春火烧对植物群落组成的影响大于早春火烧。晚春火烧当年草本植物层片地上部分生物量显著大于未火烧样地(P<0.05),而晚春火烧后第2年和早春火烧当年草本植物层片地上部分生物量大于未火烧样地,但差异不显著(P>0.05);不同物种多度、高生长对火因子的响应不同。表明春季不同时间火烧处理对荒漠化草原草本植物层片植物群落组成的影响存在差异。  相似文献   

8.
Abstract Fire is often used as a management tool in fire‐prone communities to reduce fuel loads with the intention of reducing the severity and extent of unplanned fires, often resulting in the increased occurrence of fire in the dry sclerophyll vegetation of Australia. This study examined the effects of fire frequency (length of the inter‐fire interval) on the reproductive output of seven plant species in the Proteaceae, including obligate seeding shrubs (Hakea teretifolia, Petrophile pulchella), resprouting shrubs (Banksia spinulosa, Isopogon anemonifolius, Lambertia formosa) and resprouting trees (Banksia serrata, Xylomelum pyriforme). Reproductive output (measured as either number of confructescences or follicles) and relative size were estimated for 100 individuals at each of five sample sites, covering a range of past fire frequencies over 26 years including repeated short inter‐fire intervals. Patterns in reproductive output (after standardizing for size) were related to the life‐history attributes of the species. In areas that had experienced short inter‐fire intervals, obligate seeders had greater reproductive output compared with longer intervals, and the reproductive output of resprouting shrubs was less. Fire frequency did not affect reproductive output of the resprouting trees. The decreased reproductive output of the resprouting shrubs could be due to the allocation of resources to regrowth following fire rather than to reproduction. It is less clear what process resulted in the increased reproductive output of obligate seeders in high fire frequency areas, but it could be due to the most recent fires being more patchy in the areas experiencing shorter inter‐fire intervals, or it may have resulted from the selection for early reproduction in the high fire frequency areas. These results highlight the need to take into account past fire frequency at a site, in addition to time since the last fire, when planning prescribed fires.  相似文献   

9.
Forest areas have increased in the Mediterranean basin over the last two decades, due to the abandonment of agriculture. This and the occurrence of intense drought periods have led to an increase in the frequency and intensity of fires. Fire and drought can increase short-term soil organic C accumulation as a result of increased plant residues. In this study, we examined the changes in the soil organic C and the effects of fire and drought during a 12-year period in two Mediterranean grasslands and a shrubland. Thus, we established 6 plots for each of the three vegetation type and we set 18 experimental fires. Soils were sampled 3 days, 9 months, 6 years and 12 years after the fires and were analyzed for organic C. We used the RothC-26.3 model to help interpret the changes we observed. Three days after the fire, the amount of organic C was higher in burned plots than in unburned plots down to a depth of 5 cm. This was true in all plant communities under study and was probably due to burned plant deposition after the fires. However, these differences disappeared in the following years. In some cases, organic C from burned and unburned plots showed a large increase between years 6 and 12, which coincided with an extended 4-year drought period. Our results indicate that in Mediterranean shrublands and mixed shrub-grasslands the influence of drought periods could produce transient pulses of C that are much larger than the pulses produced by fire. The pulses of C caused by drought should be considered when studying the soil organic C dynamics in the frame of global warming.  相似文献   

10.
Aim We tested the hypothesis that anthropogenic fires favour the successful establishment of alien annual species to the detriment of natives in the Chilean coastal matorral. Location Valparaíso Region, central Chile. Methods We sampled seed rain, seedbank emergence and establishment of species in four paired burned and unburned areas and compared (using GLMM) fire resistance and propagule arrival of alien and native species. To assess the relative importance of seed dispersal and seedbank survival in explaining plant establishment after fire, we compared seed rain and seedbank structure with post‐fire vegetation using ordination analyses. Results Fire did not change the proportion of alien species in the coastal matorral. However, fire increased the number of annual species (natives and aliens) of which 87% were aliens. Fire reduced the alien seedbank and not the native seedbank, but alien species remained dominant in burned soil samples (66% of the total species richness). Seed rain was higher for alien annuals than for native annuals or perennials, thus contributing to their establishment after fire. Nevertheless, seed rain was less important than seedbank survival in explaining plant establishment in burned areas. Main conclusions Anthropogenic fires favoured alien and native annuals. Thus, fire did not increase the alien/native ratio but increased the richness of alien species. The successful establishment of alien annuals was attributable to their ability to maintain rich seedbanks in burned areas and to the greater propagule arrival compared to native species. The native seedbank also survived fire, indicating that the herbaceous community has become highly resilient after centuries of human disturbances. Our results demonstrate that fire is a relevant factor for the maintenance of alien‐dominated grasslands in the matorral and highlight the importance of considering the interactive effect of seed rain and seedbank survival to understand plant invasion patterns in fire‐prone ecosystems.  相似文献   

11.
Surface fires burn extensive areas of tropical forests each year, altering resource availability, biotic interactions, and, ultimately, plant diversity. In transitional forest between the Brazilian cerrado (savanna) and high stature Amazon forest, we took advantage of a long-term fire experiment to establish a factorial study of the interactions between fire, nutrient availability, and herbivory on early plant regeneration. Overall, five annual burns reduced the number and diversity of regenerating stems. Community composition changed substantially after repeated fires, and species common in the cerrado became more abundant. The number of recruits and their diversity were reduced in the burned area, but burned plots closed to herbivores with nitrogen additions had a 14 % increase in recruitment. Diversity of recruits also increased up to 50 % in burned plots when nitrogen was added. Phosphorus additions were related to an increase in species evenness in burned plots open to herbivores. Herbivory reduced seedling survival overall and increased diversity in burned plots when nutrients were added. This last result supports our hypothesis that positive relationships between herbivore presence and diversity would be strongest in treatments that favor herbivory—in this case herbivory was higher in burned plots which were initially lower in diversity. Regenerating seedlings in less diverse plots were likely more apparent to herbivores, enabling increased herbivory and a stronger signal of negative density dependence. In contrast, herbivores generally decreased diversity in more species rich unburned plots. Although this study documents complex interactions between repeated burns, nutrients, and herbivory, it is clear that fire initiates a shift in the factors that are most important in determining the diversity and number of recruits. This change may have long-lasting effects as the forest progresses through succession.  相似文献   

12.
Increased fire frequency can significantly erode both soil properties and plant–pollinator interactions affecting plant reproductive success but they have seldom been assessed simultaneously. Here, we evaluate soil properties, pollinator assemblage and the reproductive success of two native Fabaceae herbs, Desmodium uncinatum and Rhynchosia edulis, growing in unburned, low and high fire frequency sites of Chaco Serrano across two consecutive years. Desmodium uncinatum is outcrossing with a high dependence on pollinators, whereas R. edulis is autogamous and completely independent of pollinators. We found that soil water content, nitrates and electrical conductivity significantly decreased in low and high fire frequency sites. Pollinator richness and composition visiting each plant species was similar across all fire frequency scenarios. However, fruit set of the exogamous D. uncinatum was strongly reduced in frequently burned sites, whereas fruit set of the autogamous R. edulis showed no significant changes. In both species, the probability of setting fruits was positively related to soil quality across fire frequency scenarios, implying that decreased reproduction was mainly driven by limitation of abiotic resources shaped by increased fire frequency. Because the pollinator-dependent D. uncinatum has a higher reproductive cost, reduced soil quality induced by fire frequency had stronger effects on its reproduction. Chronic reduction of sexual reproduction in frequently burned sites with depleted soils will limit population recruitment with negative consequences on long-term plant population persistence.  相似文献   

13.
We examine the effects of fire and/or surrounding vegetation cover on demographic stage densities and plant performance for a rare endemic geophyte, Acis nicaeensis (Alliaceae), in Mediterranean xerophytic grasslands of the 'Alpes-Maritimes' French 'département', through sampling plots in unburned and burned treatments. Fire increases density of flowering individuals and seedling emergence, as well as clump densities and number of individuals per clump, per limiting vegetation height and cover, and increasing bare soil cover. In contrast, fire has no effect on reproductive success. Nevertheless, two growing seasons after fire, all parameters of demographic stages and plant performance do not significantly differ between the two treatments. Small-scale fire is beneficial for the regeneration of this threatened geophyte at a short-time scale. In this context, a conservation planning with small and controlled fires could maintain the regeneration window for populations of rare Mediterranean geophytes.  相似文献   

14.
Shrub encroachment in grasslands is a worldwide problem that has many ecological consequences, transforming previously open environments into dense forests. Disruption of natural fire regimes is one of the main causes of shrub encroachment, and the use of prescribed fire is a common strategy used to restore these ecosystems. In this study, we provide information about how a palm tree savanna under a process of shrub encroachment responds to the reintroduction of fire. We describe the effects of a first fire event on vegetation composition and structure using an experimental approach. We examine a species‐specific response to the fire. After one prescribed fire event applied to four study areas of 16 ha each, we analyzed the change in vegetation physiognomy and composition in burned and control plots for 1 year. Low‐intensity prescribed fire decreased height and cover of most shrub species and increased herbaceous vegetation cover over time. We classified shrub and herbaceous species response to fire according to the time they became present and their phenological characteristics. Our results can help stakeholders to determine if prescribed fire is helpful at reducing shrub encroachment in short term in similar ecosystems, considering how plant community responds to the reintroduction of fire after decades of fire suppression.  相似文献   

15.
Fire regimes shape plant communities but are shifting with changing climate. More frequent fires of increasing intensity are burning across a broader range of seasons. Despite this, impacts that changes in fire season have on plant populations, or how they interact with other fire regime elements, are still relatively understudied. We asked (a) how does the season of fire affect plant vigor, including vegetative growth and flowering after a fire event, and (b) do different functional resprouting groups respond differently to the effects of season of fire? We sampled a total of 887 plants across 36 sites using a space‐for‐time design to assess resprouting vigor and reproductive output for five plant species. Sites represented either a spring or autumn burn, aged one to three years old. Season of fire had the clearest impacts on flowering in Lambertia formosa with a 152% increase in the number of plants flowering and a 45% increase in number of flowers per plant after autumn compared with spring fires. There were also season × severity interactions for total flowers produced for Leptospermum polygalifolium and L. trinervium with both species producing greater flowering in autumn, but only after lower severity fires. Severity of fire was a more important driver in vegetative growth than fire season. Season of fire impacts have previously been seen as synonymous with the effects of fire severity; however, we found that fire season and severity can have clear and independent, as well as interacting, impacts on post‐fire vegetative growth and reproductive response of resprouting species. Overall, we observed that there were positive effects of autumn fires on reproductive traits, while vegetative growth was positively related to fire severity and pre‐fire plant size.  相似文献   

16.
Question: We tested whether (1) the change in composition and structure of whole plant communities after fire is directly related to regeneration of the dominant tree species in the canopy; (2) the change in structure and composition of plant communities several years after fire decreases with the proportion of obligate seeders and (3) the proportion of obligate seeders in plant communities increases with the dryness gradient. Location: Catalonia (NE Spain) Methods: We measured floristic differences between burned and long‐since burned sites in eight vegetation types across a climate gradient. We compared 22 sites burnt in 1994 in paired plots with 22 sites that had not been burnt since the 1940s. In each site we placed plots in burned and long‐since burned areas, where we identified the presence and abundance of all plant species. Results: When the tree canopy recovers, structure and composition of the vegetation also return to the long‐since burned community; when tree canopy does not recover, composition of the post‐fire community varies compared to the long‐since burned one. A higher proportion of obligate seeders in the pre‐fire community promotes quicker regeneration of the original community. The proportion of obligate seeders increased along the dryness gradient. Conclusions: Regeneration of plant communities after fire depends on the vegetation type before the fire. Regeneration increases when the dominant tree or shrub species persists after fire and with a higher proportion of obligate seeders in the pre‐fire community. The proportion of obligate seeders varies along the dryness gradient, which suggests that vegetation in drier areas (when seeders are more abundant) recovers earlier than in moister areas.  相似文献   

17.
Wildfires are an important agent in driving ecosystem function by altering vegetation structure and geomorphic processes. In recent decades, the number of wildfires and the total area burned has increased around the world, causing changes to natural regimes. In this study, we compared south- and north-facing slopes, their vegetation structure and dynamics, and the sediment yield generated in areas burned a number of times at the Carmel Mountain ridge in northern Israel. Our underlying hypothesis was that repeated and frequent fires significantly alter eco-geomorphic processes, including prolonged periods of soil erosion and delayed recovery of tree species. We tested whether these phenomenon are characterized by different rates on opposing aspects. To study the long-term changes of the vegetation we analyzed a 21-year (1985–2006) chrono-sequence of satellite images, in areas burned once, twice, or three times. Additionally, we estimated vegetation structure and cover at high resolutions in monitoring plots following a fire in 2005 in areas burned once or twice during the last two decades. To evaluate the long-term dynamics of the system, specific transition probabilities among the vegetation types, as a function of the number of times each site was burned, were used to construct Markov-based transition matrices. Additionally, runoff and sediment have been collected after precipitation events from the plots. The satellite image classifications revealed changes in the composition of tree, shrub, and herbaceous vegetation cover following wildfire events. Satellite image analyses suggest that recurring fires within short-time intervals may significantly alter the long-term structure of the vegetation communities, and may eliminate woody vegetation from the landscape (both trees and shrubs). Consequently, this results in the establishment and dominance of herbaceous vegetation communities. Similar trends were observed in the high-resolution monitoring plots. Sediment yields differed significantly in areas burned twice on south-facing slopes, compared to lower values obtained in areas burned once, or located on north-facing slopes. Thus, we demonstrate that repeated fires may dramatically alter long-term trajectories of Mediterranean-type vegetation communities and ecosystems. This pattern, in turn, may have significant implications for the associated geo-morphological processes, especially runoff and erosion, and should be of particular concern given recent changes of fire regimes.  相似文献   

18.
We examined how acceptability characteristics displayed by 28-day-old seedlings of 12 species of Western Australian Proteaceae affect the likelihood of seedling herbivory in the field. The seedling attributes quantified were cotyledon phenolic, cyanide and nitrogen concentrations, and cotyledon area, thickness and specific leaf area. Only phenolic content was significantly correlated (negatively) with field rates of herbivore attack. This finding shows that the phenomenon of selective herbivore attack on seedlings may be influenced by a specific plant life-history trait, (in this case cotyledon phenolic concentration). In addition, we also studied the interaction between fire, serotiny and herbivory in matched burned and unburned plots. Although herbivore activity was greater in unburned plots, weakly serotinous species were as prone to defoliation as congeneric, strongly serotinous species, even though their seedlings recruit successfully in the absence of fire. This result suggests that seedlings of species able to establish between fires are not better defended against the higher levels of herbivory normally associated with unburned vegetation.  相似文献   

19.
Changes in structural and compositional attributes of shinnery oak (Quercus havardii Rydb.) plant communities have occurred in the twentieth century. These changes may in part relate to altered fire regimes. Our objective was to document effects of prescribed fire in fall (October), winter (February), and spring (April) on plant composition. Three study sites were located in western Oklahoma; each contained 12, 60 × 30‐m plots that were designated, within site, to be seasonally burned, annually burned, or left unburned. Growing season canopy cover for herbaceous and woody species was estimated in 1997–1998 (post‐treatment). At one year post‐fire, burning in any season reduced shrub cover, and spring burns reduced cover most. Winter and annual fires increased cover of rhizomatous tallgrasses, whereas burning in any season decreased little bluestem cover. Perennial forbs increased with fall and winter fire. Shrub stem density increased with fire in any season. Communities returned rapidly to pre‐burn composition with increasing time since fire. Fire effects on herbaceous vegetation appear to be manifested through increases in bare ground and reduction of overstory shrub dominance. Prescribed fire can be used as a tool in restoration efforts to increase or maintain within and between community plant diversity. Our data suggest that some plant species may require or benefit from fire in specific seasons. Additional research is needed to determine the long‐term effects of repeated fire over time.  相似文献   

20.
The size of the local species pool (i.e., species surrounding a community capable of dispersal into that community) and other dispersal limitations strongly influence native plant community composition. However, the role that the local species pool plays in determining the invasibility of communities by exotic plants remains to be evaluated. We hypothesized that the richness and abundance of exotic species would be greater in C4‐dominated grassland communities if the local species pool included a larger proportion of exotic species. We also predicted that an increase in the exotic species pool would increase the invasibility of sites thought to be resistant to invasion (annually burned grassland). To test these hypotheses, study plots were established within two long‐term (>20 yr) fire experiments at a tallgrass prairie preserve in NE Kansas (USA). Study plots were surrounded by either a small pool of exotic species (small species pool (SSP) plots; six species) or a larger exotic species pool (large species pool (LSP) plots; 18 species). We found that richness and absolute cover of exotic species was significantly (P<0.001) lower (~70 and 90%, respectively) in annually burned compared to unburned plots, regardless of the size of the exotic species pool. As predicted, exotic species richness was higher (P<0.001) for LSP plots (3.9 per 250 m2) than for SSP plots (0.7 per 250 m2); however, absolute cover was unaffected by the size of the exotic species pool. In the absence of fire, plots with a LSP had four times as many exotic species than SSP plots. An increase in the local exotic species pool also increased the invasibility of annually burned grassland. Indeed, richness of exotic plant species in annually burned LSP plots did not differ from unburned plots with a SSP, indicating that a larger pool of exotic species countered the negative effects of fire. These findings have important implications for predicting how the invasion of plant communities may respond to human‐induced global changes, such as habitat fragmentation. Community characteristics or factors such as frequent fires in grasslands may impart resistance to invasions by exotic species in large, intact ecosystems. However, when a large pool of exotic species is present, frequent fire may not be sufficient to limit the invasions of exotic plants in fragmented landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号