首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Prions are infectious proteins and over the past few decades, some prions have become renowned for their causative role in several neurodegenerative diseases in animals and humans. Since their discovery, the mechanisms and mode of transmission and molecular structure of prions have begun to be established. There is, however, still much to be elucidated about prion diseases, including the development of potential therapeutic strategies for treatment. The significance of prion disease is discussed here, including the categories of human and animal prion diseases, disease transmission, disease progression and the development of symptoms and potential future strategies for treatment. Furthermore, the structure and function of the normal cellular prion protein (PrPC) and its importance in not only in prion disease development, but also in diseases such as cancer and Alzheimer's disease will also be discussed.  相似文献   

2.
By immunizing Prnp-knockout mice with synthetic polypeptides, a panel of mAbs directed to bovine PrP(C) was obtained. The mAb panel was characterized by the ELISA method, where synthetic polypeptides were used for epitope mapping. Different reactivity patterns were identified. The ability of these mAbs to detect abnormal PrP(Sc) in CJD cases was studied by immunohistochemistry. All mAbs were tested for PrP(Sc) in murine, bovine, monkey and human brain tissues. Three mAbs recognized the fragmented PrP epitope in our ELISA. Antibody 1D12 was strongly reactive to ovine and squirrel monkey tissues infected with a scrapie agent, although non-reactive to scrapie-infected mouse tissues. Antibody 2D8 was clearly reactive to type-2 but not type-1 CJD human tissues. Of particular interest was the reactivity of mAb 6C4 with the inner structure of Kuru plaques (peripheral pattern) in a type-2 CJD case and mAb T2, 1D12, 2B11, 2D8, 4B5 and 6G3-2 with the central area (central pattern). The fact that different anti-PrP mAbs possess distinct staining properties suggests that the PrP(c) to PrP(Sc) conversion might involve a multiple-step process.  相似文献   

3.
Prion protein expression modulates neuronal copper content   总被引:2,自引:0,他引:2  
The prion protein is a copper (Cu)-binding protein. The abnormal isoform of this protein is associated with the transmissible spongiform encephalopathies or prion diseases. In prion diseases, the prion protein loses its Cu binding capacity. The effect of prion protein expression on the Cu content of the brain was investigated. Transgenic mice, either overexpressing the prion protein or expressing a mutant form lacking the Cu-binding region of the protein, were compared with wild-type mice and mice in which expression of the protein was knocked out. Age-dependent differences in Cu content of the brain were detected. Also, synaptosomal fractions from the brains of the mice showed different Cu content depending on the expression of the prion protein. Mice expressing prion protein, but without the Cu-binding domain showed reduced Cu content. Mice overexpressing the prion protein showed little difference in Cu in the brain compared with wild type but also the prion protein expressed by the mice showed a reduction in the level of Cu bound. These results confirm that prion protein expression modulates the Cu level found at the synapse and this effect is dependent on its Cu binding capacity. Loss of normal Cu binding by the prion protein altered age-related increases in metals in the brain. This may explain why many forms of human prion disease do not develop until late in life.  相似文献   

4.
AIMS: Experiments were designed to evaluate the potential of rumen-simulating conditions to reduce PrP(Sc) levels. METHODS AND RESULTS: Scrapie-positive brain material was incubated under rumen-simulating conditions. Time points were taken over a 24-h period and PrP(Sc) levels were analysed by Western blot. No loss of PrP(Sc) was observed over a 24-h time period. CONCLUSIONS: Our results indicate that a fully developed rumen fermentation does not provide significant protection against prion infection via the oral route. Developmental changes including senescence of immune system function or other developmental changes in the gastrointestinal tract are potential mechanisms by which relative bovine spongiform encephalopathy (BSE) susceptibility might vary with age. SIGNIFICANCE AND IMPACT OF THE STUDY: Epidemiology of the BSE outbreak in the United Kingdom indicates that younger animals were at higher risk of infection. The rumen undergoes pronounced developmental changes early in life, coinciding with the introduction of fibre into the diet. The timeframe of highest risk of infection overlaps the time in life prior to full rumen development. This work indicates that a fully developed rumen does not provide significant protection against prion infection via the oral route of infection. This result implicates other developmental changes that are responsible for the age-dependent susceptibility of cattle to BSE.  相似文献   

5.
Prion protein glycosylation   总被引:4,自引:1,他引:3  
The transmissible spongiform encephalopathies (TSE), or prion diseases are a group of transmissible neurodegenerative disorders of humans and animals. Although the infectious agent (the 'prion') has not yet been formally defined at the molecular level, much evidence exists to suggest that the major or sole component is an abnormal isoform of the host encoded prion protein (PrP). Different strains or isolates of the infectious agent exist, which exhibit characteristic disease phenotypes when transmitted to susceptible animals. In the absence of a nucleic acid genome it has been hard to accommodate the existence of TSE strains within the protein-only model of prion replication. Recent work examining the conformation and glycosylation patterns of disease-associated PrP has shown that these post-translational modifications show strain-specific properties and contribute to the molecular basis of TSE strain variation. This article will review the role of glycosylation in the susceptibility of cellular PrP to conversion to the disease-associated conformation and the role of glycosylation as a marker of TSE strain type.  相似文献   

6.
AIMS: The purpose of this paper was to screen candidate bacterial strains for the production of proteases suitable for application to the degradation of pathogenic forms of prion protein (PrP(Sc)). This paper describes the biochemical characteristics and proteolytic activity of the isolated protease. METHODS AND RESULTS: After screening more than 200 bacterial proteases for keratinolytic activity, we identified a Bacillus stain that produced a protease exhibiting high-degradation activity against a scrapie PrP(Sc). Sequence analysis indicated that this serine-protease belonged to the Subtilisin family and had optimum pH and temperature ranges of 9-10 and 60-70 degrees C. Western blotting analysis revealed that the protease was also capable of decomposing bovine spongiform encephalopathy-infected brain homogenate. In addition, the protease was demonstrated to degrade dried PrP(Sc) that had become firmly attached to a plastic surface considerably more effectively than proteinase K or PWD-1, a previously reported keratinase. CONCLUSIONS: These results indicate that the isolated protease exhibited higher activity for PrP(Sc) degradation compared with other proteases examined. SIGNIFICANCE AND IMPACT OF THE STUDY: This protease could be used under moderate conditions for the decontamination of precision instruments that are susceptible to PrP(Sc) contamination.  相似文献   

7.
It was reported that buffalo is a low susceptibility species resisting to transmissible spongiform encephalopathies (TSEs) (same as rabbits, horses, and dogs). TSEs, also called prion diseases, are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of species (except for rabbits, dogs, horses, and buffalo), manifesting as scrapie in sheep and goats; bovine spongiform encephalopathy (BSE or “mad–cow” disease) in cattle; chronic wasting disease in deer and elk; and Creutzfeldt–Jakob diseases, Gerstmann–Sträussler–Scheinker syndrome, fatal familial insomnia, and Kulu in humans etc. In molecular structures, these neurodegenerative diseases are caused by the conversion from a soluble normal cellular prion protein (PrPC), predominantly with α-helices, into insoluble abnormally folded infectious prions (PrPSc), rich in β-sheets. In this article, we studied the molecular structure and structural dynamics of buffalo PrPC (BufPrPC), in order to understand the reason why buffalo is resistant to prion diseases. We first did molecular modeling of a homology structure constructed by one mutation at residue 143 from the NMR structure of bovine and cattle PrP(124–227); immediately we found that for BufPrPC(124–227), there are five hydrogen bonds (HBs) at Asn143, but at this position, bovine/cattle do not have such HBs. Same as that of rabbits, dogs, or horses, our molecular dynamics studies also revealed there is a strong salt bridge (SB) ASP178–ARG164 (O–N) keeping the β2–α2 loop linked in buffalo. We also found there is a very strong HB SER170–TYR218 linking this loop with the C-terminal end of α-helix H3. Other information, such as (i) there is a very strong SB HIS187–ARG156 (N–O) linking α-helices H2 and H1 (if mutation H187R is made at position 187, then the hydrophobic core of PrPC will be exposed (L.H. Zhong (2010). Exposure of hydrophobic core in human prion protein pathogenic mutant H187R. Journal of Biomolecular Structure and Dynamics 28(3), 355–361)), (ii) at D178, there is a HB Y169–D178 and a polar contact R164–D178 for BufPrPC instead of a polar contact Q168–D178 for bovine PrPC (C.J. Cheng, & V. Daggett. (2014). Molecular dynamics simulations capture the misfolding of the bovine prion protein at acidic pH. Biomolecules 4(1), 181–201), (iii) BufPrPC owns three 310 helices at 125–127, 152–156, and in the β2–α2 loop, respectively, and (iv) in the β2–α2 loop, there is a strong π–π stacking and a strong π–cation F175–Y169–R164.(N)NH2, has been discovered.  相似文献   

8.
Seven peptides matching fragments of the prion protein and containing from 17 to 31 amino acid residues were synthesized to obtain antibodies for diagnostics of bovine spongiform encephalopathy. Rabbits were immunized with either free peptides or peptide–protein conjugates to result in sera with a high level of antipeptide antibodies. Immunohistochemical assay revealed sera against four free peptides and a protein–peptide conjugate, which effectively bind to the pathogenic isoform of the prion protein in brain tissue preparations from cattle afflicted with bovine spongiform encephalopathy and do not interact with normal brain preparations. The resulting antipeptide sera can be used in developing a diagnostic kit for bovine spongiform encephalopathy.  相似文献   

9.
羊朊毒体单抗结合表位分析   总被引:1,自引:0,他引:1  
通过分段表达PrP核心片段和人工合成多肽,分析5株羊朊毒体单抗结合表位。分段表达PrP核心片段,通过PCR方法扩增目的片段,经酶切、连接后,将目的片段插入质粒pET32a,在大肠杆菌BL21中表达。将表达的系列融合蛋白与单抗进行免疫转印试验,根据反应情况确定单抗结合的大致部位,在此基础上设计合成多条针对性多肽,用ELISA方法进一步确定3株单抗的结合部位;通过与6段融合蛋白反应证明5株单抗的结合部位分别为:2H3在199aa~213aa之间,4C6、5F11和7F11在139aa~168aa之间,7F1在214aa~227aa之间,与3段人工合成多肽进行ELISA反应进一步得到4C6、5F11和7F11抗原结合表位在149aa~158aa之间;本研究确定了5株单抗在PrP分子上的结合部位,为羊痒病和牛海绵状脑病的检测、发病机制的研究奠定了基础。  相似文献   

10.
Studies of prion biology and diseases have elucidated several new concepts, but none was more heretical than the proposal that the biological properties that distinguish different prion strains are enciphered in the disease-causing prion protein (PrP(Sc)). To explore this postulate, we examined the properties of PrP(Sc) from eight prion isolates that propagate in Syrian hamster (SHa). Using resistance to protease digestion as a marker for the undenatured protein, we examined the conformational stabilities of these PrP(Sc) molecules. All eight isolates showed sigmoidal patterns of transition from native to denatured PrP(Sc) as a function of increasing guanidine hydrochloride (GdnHCl) concentration. Half-maximal denaturation occurred at a mean value of 1.48 M GdnHCl for the Sc237, HY, SHa(Me7), and MT-C5 isolates, all of which have approximately 75-d incubation periods; a concentration of 1.08 M was found for the DY strain with a approximately 170-d incubation period and approximately 1.25 M for the SHa(RML) and 139H isolates with approximately 180-d incubation periods. A mean value of 1.39 M GdnHCl for the Me7-H strain with a approximately 320-d incubation period was found. Based on these results, the eight prion strains segregated into four distinct groups. Our results support the unorthodox proposal that distinct PrP(Sc) conformers encipher the biological properties of prion strains.  相似文献   

11.
Transmissible spongiform encephalopathies (TSE) or prion diseases result in aberrant metabolism of prion protein (PrP) and the accumulation of a protease-resistant, insoluble, and possibly infectious form of PrP, PrP-res. Studies of PrP biosynthesis, intracellular trafficking, and degradation has been studied in a variety of tissue culture cells. Pulse-chase metabolic labeling studies in scrapie-infected cells indicated that PrP-res is made posttranslationally from an apparently normal protease sensitive precursor, PrP-sen, after the latter reaches the cell surface. Cell-free reactions have provided evidence that PrP-res itself can induce the conversion of PrP-sen to PrP-res in a highly species- and strain-specific manner. These studies have shed light on the mechanism of PrP-res formation and suggest molecular bases for TSE species barrier effects and agent strain propagation.  相似文献   

12.
The transmissible spongiform encephalopathies (TSE), or prion diseases, are a group of rare, fatal, and transmissible neurodegenerative diseases of mammals for which there are no known viral or bacterial etiological agents. The bovine form of these diseases, bovine spongiform encephalopathy (BSE), has crossed over into humans to cause variant Creutzfeldt-Jakob disease. As a result, BSE and the TSE diseases are now considered a significant threat to human health. Understanding the basic mechanisms of TSE pathogenesis is essential for the development of effective TSE diagnostic tests and anti-TSE therapeutic regimens. This review provides an overview of the molecular mechanisms that underlie this enigmatic group of diseases.  相似文献   

13.
Identification of the strain of agent responsible for bovine spongiform encephalopathy (BSE) can be made histologically through the analysis of both distribution and intensity of brain vacuolar lesions after BSE transmission to mouse. Another useful way to distinguish the BSE agent from other prion strains is the study of the distribution of the abnormal prion protein (PrP(res)). For that purpose, paraffin-embedded tissue blot (PET-blot) method was applied on brains from C57Bl/6 mice infected with cattle BSE, experimental sheep BSE, or feline spongiform encephalopathy (FSE) from a cheetah. PrP(res) distribution was comparable, whichever of the three BSE agent sources was considered and was distinct from the PrP(res) distribution in C57Bl/6 mice inoculated with a French scrapie isolate or with a mouse-adapted scrapie strain (C506M3). These data confirm a common origin of infectious agent responsible for the British and French cattle BSE. They also indicate that PET-blot method appears as a precise complementary tool in prion strain studies because it offers easy and quick assessment of the PrP(res) mapping. Advantages and limits of the PET-blot method are discussed and compared with other established and validated methods of strain typing.  相似文献   

14.
Kuru is an acquired human prion disease that primarily affected the Fore linguistic group of the Eastern Highlands of Papua New Guinea. The central clinical feature of kuru is progressive cerebellar ataxia and, in sharp contrast to most cases of sporadic Creutzfeldt-Jakob disease (CJD), dementia is a less prominent and usually late clinical feature. In this regard, kuru is more similar to variant CJD, which also has similar prodromal symptoms of sensory disturbance and joint pains in the legs and psychiatric and behavioural changes. Since a significant part of the clinicopathological diversity seen in human prion disease is likely to relate to the propagation of distinct human prion strains, we have compared the transmission properties of kuru prions with those isolated from patients with sporadic, iatrogenic and variant CJD in both transgenic and wild-type mice. These data have established that kuru prions have prion strain properties equivalent to those of classical (sporadic and iatrogenic) CJD prions but distinct from variant CJD prions. Here, we review these findings and discuss how peripheral routes of infection and other factors may be critical modifiers of the kuru phenotype.  相似文献   

15.
AIMS: To analyse the frequencies of prion (PrP) gene haplotypes in UK sheep flocks and evaluate their relevance to transmissible spongiform encephalopathies (TSEs) and TSE resistance breeding programmes in sheep. METHODS AND RESULTS: Genomic DNA isolated from sheep blood was PCR amplified for the coding region of the PrP gene and then sequenced. This study has analysed the sequence of PrP between codons 110 and 245 in 6287 ARQ haplotypes revealing a total of eight variant sequences, which represent a higher than expected 41% of all ARQ haplotypes. The additional PrP gene dimorphisms were M112T, L141F, M137T, H143R, H151C, P168L, Q175E and P241S. CONCLUSION: The results do not suggest a correlation between the occurrence of a specific ARQ haplotype and the scrapie disease status of a flock. The ARQ haplotype variability appears to be different in the UK sheep flocks compared with sheep flocks from outside the UK. SIGNIFICANCE AND IMPACT OF THE STUDY: Additional PrP dimorphisms may impact on the methodologies used for standard PrP genotyping in sheep breeding programmes. Some of these polymorphisms were found with significant frequencies in the UK sheep flocks and should therefore be considered in breeding programmes.  相似文献   

16.
The prion protein PrP is a naturally occurring polypeptide that becomes transformed from a normal conformation to that of an aggregated form, characteristic of pathological states in fatal transmissible spongiform conditions such as Creutzfeld-Jacob Disease and Bovine Spongiform Encephalopathy. We report the crystal structure, at 2 A resolution, of residues 123-230 of the C-terminal globular domain of the ARQ allele of sheep prion protein (PrP). The asymmetric unit contains a single molecule whose secondary structure and overall organisation correspond to those structures of PrPs from various mammalian species determined by NMR. The globular domain shows a close association of helix-1, the C-terminal portion of helix-2 and the N-terminal portion of helix-3, bounded by the intramolecular disulphide bond, 179-214. The loop 164-177, between beta2 and helix-2 is relatively well structured compared to the human PrP NMR structure. Analysis of the sheep PrP structure identifies two possible loci for the initiation of beta-sheet mediated polymerisation. One of these comprises the beta-strand, residues 129-131 that forms an intra-molecular beta-sheet with residues 161-163. This strand is involved in lattice contacts about a crystal dyad to generate a four-stranded intermolecular beta-sheet between neighbouring molecules. The second locus involves the region 188-204, which modelling suggests is able to undergo a partial alpha-->beta switch within the monomer. These loci provide sites within the PrPc monomer that could readily give rise to early intermediate species on the pathway to the formation of aggregated PrPSc containing additional intermolecular beta-structure.  相似文献   

17.
Polymerase chain reaction (PCR) primers designed to amplify the octapeptide repeat region of the bovine prion gene were used to test the association of genotypes with bovine spongiform encephalitis (BSE) in 56 BSE-affected and 177 unaffected animals. Three alleles (A, B, C) were detected as single-strand conformation polymorphisms (SSCPs) and two alleles (1,2 representing six or five copies of the octapeptide repeat respectively) were detected as amplified double-strand fragment length polymorphisms (AMFLPs). Observed genotypes of SSCPs and AMFLPs were analysed by x-square. The SSCP genotypes of nuclear family members of animals with BSE and BSE-affected animals were different (P < 0.001, P < 0.01) from unrelated animals of the same breed without BSE. No genotypic differences were found between the BSE-affected animals and their relatives (P > 0.469). No AMFLP genotypic differences were detected between BSE-affected animals, their relatives, unrelated animals of the same breed or animals of different breeds (P > 0.05). These data suggest that BSE-affected animals and their relatives are more likely to have the AA SSCP genotype than unrelated animals of the same breed or animals of different breeds.  相似文献   

18.
19.
AIMS: The purpose of this study was to develop an effective method for detecting prion (PrP) antigenic determinants remaining in bovine meat and bone meal (MBM) using pressurized fluid extraction (PSE) equipment and flow microbead immunoassay (FMI). METHODS AND RESULTS: Using the FMI, bovine recombinant PrP could be determined quantitatively in the 7 pmol-7 nmol range using anti-PrP peptide polyclonal antibody-coupled microbeads and anti-PrP monoclonal antibody (SAF61) as a detection antibody. PSE extraction at 120 degrees C for 5 min under high pressure was most effective for eluting PrP determinants from bovine MBMs. The FMI was capable of detecting PrP determinants in bovine MBM extracts with high specificity and indicated that the MBMs contained high levels of PrP determinants. This assay was also applied to the detection of PrP(Sc) determinants in bovine MBM spiked with a scrapie-infected brain at a weight ratio of 50 : 1. CONCLUSIONS: These data indicate that this assay was effective for the specific detection of PrP determinants contained in bovine MBM extracts. SIGNIFICANCE AND IMPACT OF THE STUDY: To our knowledge, this is the first report detailing the detection of PrP determinants in bovine MBM. The assay could be applied to securing the safety of bovine MBM.  相似文献   

20.
The mouse-adapted scrapie prion strain RML is one of the most widely used in prion research. The introduction of a cell culture-based assay of RML prions, the scrapie cell assay (SCA) allows more rapid and precise prion titration. A semi-automated version of this assay (ASCA) was applied to explore a range of conditions that might influence the infectivity and properties of RML prions. These include resistance to freeze-thaw procedures; stability to endogenous proteases in brain homogenate despite prolonged exposure to varying temperatures; distribution of infective material between pellet and supernatant after centrifugation, the effect of reducing agents and the influence of detergent additives on the efficiency of infection. Apparent infectivity is increased significantly by interaction with cationic detergents. Importantly, we have also elucidated the relationship between the duration of exposure of cells to RML prions and the transmission of infection. We established that the infection process following contact of cells with RML prions is rapid and followed an exponential time course, implying a single rate-limiting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号