首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PC12 cells express different Dp71 isoforms originated from alternative splicing; one of them, Dp71ab lacks exons 71 and 78. To gain insight into the function of Dp71 isoforms we identified dystrophin associated proteins (DAPs) that associate in vivo with Dp71ab during nerve growth factor (NGF) induced differentiation of PC12 cells. DAPs expression was analyzed by RT-PCR, Western blot and indirect immunofluorescence, showing the presence of each mRNA and protein corresponding to alpha-, beta-, gamma-, delta-, and epsilon-sarcoglycans as well as zeta-sarcoglycan mRNA. Western blot analysis also revealed the expression of beta-dystroglycan, alpha1-syntrophin, alpha1-, and beta-dystrobrevins. We have established that Dp71ab forms a complex with beta-dystroglycan, alpha1-syntrophin, beta-dystrobrevin, and alpha-, beta- and gamma-sarcoglycans in undifferentiated PC12 cells. In differentiated PC12 cells, the complex composition changes since Dp71ab associates only with beta-dystroglycan, alpha1-syntrophin, beta-dystrobrevin, and delta-sarcoglycan. Interestingly, neuronal nitric oxide synthase associates with the Dp71ab/DAPs complex during NGF treatment, raising the possibility that Dp71ab may be involved in signal transduction events during neuronal differentiation.  相似文献   

2.
Dp71 has an important role in the central nervous system. To better understand the function of Dp71 domains in neuronal differentiation, PC12 cells were stably transfected with a dystrophin mutant, Dp71Δ(78-79) , which lacks exons 78 and 79. Based on the percentage of cells bearing neurites and neurite length analyses, we found that cells stably expressing Dp71Δ(78-79) (PC12-C11) differentiate more efficiently than non-transfected cells. While wild-type cells reach their maximum differentiation 9-12 days after initiating the differentiation process, the PC12-C11 cells reach differentiation in 4-6 days. Protein expression analysis showed a down-regulation of Dp71a and an up-regulation of Dp71ab and/or Up71, β-dystroglycan and neuron-specific enolase in undifferentiated and in neural growth factor differentiated PC12-C11 cells. No change was observed in the expression of Grb2 and Up400. The subcellular localization of Dp71Δ(78-79) was in the cell periphery, and there was no change in localization during the differentiation process, which was also observed throughout the neurite extensions.  相似文献   

3.
Dystrophin Dp71 is the main product of the Duchenne muscular dystrophy gene in the brain; however, its function is unknown. To study the role of Dp71 in neuronal cells, we previously generated by antisense treatment PC12 neuronal cell clones with decreased Dp71 expression (antisense-Dp71 cells). PC12 cells express two different splicing isoforms of Dp71, a cytoplasmic variant called Dp71f and a nuclear isoform called Dp71d. We previously reported that antisense-Dp71 cells display deficient adhesion to substrate and reduced immunostaining of beta1-integrin in the cell area contacting the substrate. In this study, we isolated additional antisense-Dp71 clones to analyze in detail the potential involvement of Dp71f isoform with the beta1-integrin adhesion system of PC12 cells. Immunofluorescence analyses as well as immunoprecipitation assays demonstrated that the PC12 cell beta1-integrin adhesion complex is composed of beta1-integrin, talin, paxillin, alpha-actinin, FAK and actin. In addition, our results showed that Dp71f associates with most of the beta1-integrin complex components (beta1-integrin, FAK, alpha-actinin, talin and actin). In the antisense-Dp71 cells, the deficiency of Dp71 provokes a significant reduction of the beta1-integrin adhesion complex and, consequently, the deficient adhesion of these cells to laminin. In vitro binding experiments confirmed the interaction of Dp71f with FAK and beta1-integrin. Our data indicate that Dp71f is a structural component of the beta1-integrin adhesion complex of PC12 cells that modulates PC12 cell adhesion by conferring proper complex assembly and/or maintenance.  相似文献   

4.
The function of dystrophin Dp71 in neuronal cells remains unknown. To approach this issue, we have selected the PC12 neuronal cell line. These cells express both a Dp71f cytoplasmic variant and a Dp71d nuclear isoform. In this study, we demonstrated by electron and confocal microscopy analyses of in situ nuclear matrices and Western blotting evaluation of cell extracts that Dp71d associates with the nuclear matrix. Interestingly, this binding is modulated during NGF-induced neuronal differentiation of PC12 cells with a twofold increment in the differentiated cells, compared to control cells. Also, distribution of Dp71d along the periphery of the nuclear matrix observed in the undifferentiated cells is replaced by intense fluorescent foci localized in the center of the nucleoskeletal structure. In summary, we revealed that Dp71d is a dynamic component of nuclear matrix that might participate in the nuclear modeling occurring during neuronal differentiation.  相似文献   

5.
6.
The function of dystrophin Dp71 in neuronal cells remains to be established. Previously, we revealed the involvement of this protein in both nerve growth factor (NGF)-induced neuronal differentiation and cell adhesion by isolation and characterization of PC12 neuronal cells with depleted levels of Dp71. In this work, a novel phenotype of Dp71-knockdown cells was characterized, which is their delayed growth rate. Cell cycle analyses revealed an altered behavior of Dp71-depleted cells, which consists of a delay in G0/G1 transition and an increase in apoptosis during nocodazole-induced mitotic arrest. Dp71 associates with lamin B1 and β-dystroglycan, proteins involved in aspects of the cell division cycle; therefore, we compared the distribution of Dp71 with that of lamin B1 and β-dystroglycan in PC12 cells at mitosis and cytokinesis by means of immunofluorescence and confocal microscopy analysis. All of these three proteins exhibited a similar immunostaining pattern, localized at mitotic spindle, cleavage furrow, and midbody. It is noteworthy that a drastic decreased staining in mitotic spindle, cleavage furrow, and midbody was observed for both lamin B1 and β-dystroglycan in Dp71-depleted cells. Furthermore, we demonstrated the interaction of Dp71 with lamin B1 in PC12 cells by immunoprecipitation and pull-down assays, and importantly, we revealed that knockdown of Dp71 expression caused a marked reduction in lamin B1 levels and altered localization of the nuclear envelope protein emerin. Our data indicate that Dp71 is a component of the mitotic spindle and cytokinesis multi-protein apparatuses that might modulate the cell division cycle by affecting lamin B1 and β-dystroglycan levels.  相似文献   

7.
We have shown that the splicing isoform of Dp71 (Dp71d) localizes to the nucleus of PC12 cells, an established cell line derived from a rat pheochromocytoma; however, the mechanisms governing its nuclear localization are unknown. As protein phosphorylation modulates the nuclear import of proteins, and as Dp71d presents several potential sites for phosphorylation, we analyzed whether Dp71d is phosphorylated in PC12 cells and the role of phosphorylation on its nuclear localization. We demonstrated that Dp71d is phosphorylated under basal conditions at serine and threonine residues by endogenous protein kinases. Dp71d phosphorylation was activated by 2-O-tetradecanoyl phorbol 13-acetate (TPA), but this effect was blocked by EGTA. Supporting the role of intracellular calcium on Dp71d phosphorylation, we observed that the stimulation of calcium influx by cell depolarization increased Dp71d phosphorylation, and that the calcium-calmodulin inhibitor N-(6-aminohexyl)-1-naphthalenesulfonamide (W-7) blocked such induction. The blocking action of bisindolylmaleimide I (Bis I), a specific inhibitor for Ca2+/diacylglicerol-dependent protein kinase (PKC), on Dp71d phosphorylation suggested the participation of PKC in this event. In addition, transfection experiments with Ca2+/calmodulin-dependent protein kinase II (CaMKII) expression vectors as well as the use of KN-62, a CaMKII-specific inhibitor, demonstrated that CaMKII is also involved in Dp71d phosphorylation. Stimulation of Dp71d phosphorylation by cell depolarization and/or the overexpression of CaMKII favored the Dp71d nuclear accumulation. Overall, our results indicate that CAMKII-mediated Dp71d phosphorylation modulates its nuclear localization.  相似文献   

8.
The subcellular distribution of Dp71 isoforms alternatively spliced for exon 71 and/or 78 was examined. The cDNA sequence of each variant was fused to the C-terminus of the green fluorescent protein and the constructs were transfected transiently in the cell lines HeLa, C2C12 and N1E-115. The subcellular distribution of the fused proteins was determined by confocal microscope analysis. The Dp71 isoform lacking the amino acids encoded by exons 71 and 78 was found exclusively in the cytoplasm whereas the variants containing the amino acids encoded by exon 71 and/or exon 78 show a predominant nuclear localization. The nuclear localization of Dp71 provides a new clue towards the establishment of its cellular function.  相似文献   

9.
10.
We have adopted the PC12 cell line as in vitro cell model for studying Dp71 function in neuronal cells. These cells express a cytoplasmic (Dp71f) and a nuclear (Dp71d) isoform of Dp71 as well as various dystrophin-associated proteins (DAPs). In this study, we revealed by confocal microscopy analysis and Western blotting evaluation of cell fractions the presence of different DAPs (β-dystroglycan, β-dystrobrevin, ε-sarcoglycan and γ1-syntrophin) in the nucleus of PC12 cells. Furthermore, we established by immunoprecipitation assays that Dp71d and the DAPs form a dystrophin-associated protein complex (DAPC) in the nucleus. Interestingly, depletion of Dp71 by antisense treatment (antisense-Dp71 cells) provoked a drastic reduction of nuclear DAPs, which indicates that Dp71d is critical for DAPs stability within the nucleus. Although Up71, the utrophin gene product homologous to Dp71, exhibited increased expression in the antisense-Dp71 cells, its scarce nuclear levels makes unlikely that could compensate for Dp71 nuclear deficiency.  相似文献   

11.
PC12 cells acquire a neuronal phenotype in response to nerve growth factor (NGF). However, this phenotype is more efficiently achieved when the Dp71Δ78‐79 dystrophin mutant is stably expressed in PC12‐C11 cells. To investigate the effect of Dp71Δ78‐79 overexpression on the protein profile of PC12‐C11 cells, we compared the expression profiles of undifferentiated and NGF‐differentiated PC12‐C11 and PC12 cells by 2DE. In undifferentiated cultures, one protein was downregulated, and five were upregulated. Dp71Δ78‐79 overexpression had a greater effect on differentiated cultures, with ten proteins downregulated and seven upregulated. The protein with the highest upregulation was HspB1. Changes in HspB1 expression were validated by Western blot and immunofluorescence analyses. Interestingly, the neurite outgrowth in PC12‐C11 cells was affected by a polyclonal antibody against HspB1, and the level of HspB1 and HspB1Ser86 decreased, suggesting an important role for this protein in this cellular process. Our results show that Dp71Δ78‐79 affects the expression level of some proteins and that the stimulated neurite outgrowth produced by this mutant is mainly through upregulation and phosphorylation of HspB1.  相似文献   

12.
To determine the role of Dp71 in neuronal cells, we generated PC12 cell lines in which Dp71 protein levels were controlled by stable transfection with either antisense or sense constructs. Cells expressing the antisense Dp71 RNA (antisense-Dp71 cells) contained reduced amounts of the two endogenous Dp71 isoforms. Antisense-Dp71 cells exhibited a marked suppression of neurite outgrowth upon the induction with NGF or dibutyryl cyclic AMP. Early responses to NGF-induced neuronal differentiation, such as the cessation of cell division and the activation of ERK1/2 proteins, were normal in the antisense-Dp71 cells. On contrary, the induction of MAP2, a late differentiation marker, was disturbed in these cells. Additionally, the deficiency of Dp71 correlated with an altered expression of the dystrophin-associated protein complex (DAPC) members alpha and beta dystrobrevins. Our results indicate that normal expression of Dp71 is essential for neurite outgrowth in PC12 cells and constitute the first direct evidence implicating Dp71 in a neuronal function.  相似文献   

13.
14.
Previously, it was shown that Dp71f binds to the β1-integrin adhesion complex to modulate PC12 cell adhesion. The absence of Dp71f led to a failure in the β1-integrin adhesion complex formation. One of the structural proteins which links the β1-integrin cytoplasmic domain to the actin cytoskeleton is ILK. GSK3-β is an ILK substrate and the carboxi-terminal region of dystrophin 427 is a substrate for hierarchical phosphorylation by GSK3-β. Dp71f contains the carboxi-terminal domain present in dystrophin 427. By using co-immunoprecipitation assays, in the present work it is demonstrated that in the neuronal PC12 cell line an interaction between Dp71f and GSK3-β occurs. This interaction was corroborated by in vitro pulldown assays. We show that GSK3-β is recruited to the β1-integrin complex and that a reduced expression of Dp71f induces a reduced GSK3-β recruitment to the β1-integrin complex. In addition, the present work establishes that adhesion of PC12 cells to laminin does not influence the phosphorylation status of Dp71f.  相似文献   

15.
In the brain, Dp71 is the most abundant protein product of the DMD gene and by alternative splicing of exon 78 two isoforms can be expressed, Dp71d and Dp71f. To explore the subcellular distribution of these Dp71 isoforms, specific monoclonal antibodies were used. Dp71d (with exon 78) was found in microsomes, while Dp71f (without exon 78) was detected in mitochondria. To determine the alterations which the absence of dystrophin proteins induces, we compared the expression of Dp71d in microsomes and Dp71f in mitochondria from mdx and mdx(3CV) mice. Dp71d in microsomes of mdx was similar to that of wild-type mice and, as expected, in mdx(3CV) this protein was undetectable. However, in mitochondria from mdx(3CV), Dp71f was overexpressed in comparison to mitochondria from mdx mice. Because in mdx(3CV) mice all the dystrophin proteins are mutated or diminished, we concluded that the protein detected in mitochondria is not a Dp71f but a novel product named Dp71f-like protein.  相似文献   

16.
17.
18.
Enigk RE  Maimone MM 《Gene》1999,238(2):479-488
Alpha-dystrobrevin is a dystrophin-related protein expressed primarily in skeletal muscle, heart, lung and brain. In skeletal muscle, alpha-dystrobrevin is a component of the dystrophin-associated glycoprotein complex and is localized to the sarcolemma, presumably through interactions with dystrophin and utrophin. Alternative splicing of the alpha-dystrobrevin gene generates multiple isoforms which have been grouped into three major classes: alpha-DB1, alpha-DB2, and alpha-DB3. Various isoforms have been shown to interact with a variety of proteins; however, the physiological function of the alpha-dystrobrevins remains unknown. In the present study, we have cloned a novel alpha-dystrobrevin cDNA encoding a protein (referred to as alpha-DB2b) with a unique 11 amino acid C-terminal tail. Using RT PCR with primers specific to the new isoform, we have characterized its expression in skeletal muscle, heart, and brain, and in differentiating C2C12 muscle cells. We show that alpha-DB2b is expressed in skeletal muscle, heart and brain, and that exons 12 and 13 are alternatively spliced in alpha-DB2b to generate at least three splice variants. The major alpha-DB2b splice variant expressed in adult skeletal muscle and heart contains exons 12 and 13, while in adult brain, two alpha-DB2b splice variants are expressed at similar levels. This is consistent with the preferential expression of exons 12 and 13 in other alpha-dystrobrevin isoforms in skeletal muscle and heart. Similarly, in alpha-DB1 the first 21 nucleotides of exon 18 are preferentially expressed in skeletal muscle and heart relative to brain. We also show that the expression of alternatively spliced alpha-DB2b is developmentally regulated in muscle; during differentiation of C2C12 cells, alpha-DB2b expression switches from an isoform lacking exons 12 and 13 to one containing them. We demonstrate similar developmental upregulation of exons 12, 13, and 18 in alpha-DB1 and of exons 12 and 13 in alpha-DB2a. Finally, we show that alpha-DB2b protein is expressed in adult skeletal muscle, suggesting that it has a functional role in adult muscle. Together, these data suggest that alternatively spliced variants of the new alpha-dystrobrevin isoform, alpha-DB2b, are differentially expressed in various tissues and developmentally regulated during muscle cell differentiation in a fashion similar to that previously described for alpha-dystrobrevin isoforms.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号