首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 848 毫秒
1.
Coevolution between granivorous crossbills (Loxia spp.) and conifers has been a prominent process in the diversification of crossbills. A striking example occurs in western North America where coevolution between crossbills and Rocky Mountain lodgepole pine (Pinus contorta latifolia) is ongoing in isolated ranges without the crossbill’s dominant competitor for seeds, the red squirrel (Tamiasciurus hudsonicus). Preferential foraging by crossbills on lodgepole pine cones in the South Hills and Albion Mountains, two small mountain ranges in southern Idaho where red squirrels are absent, has led to the evolution of larger, thicker-scaled cones than in nearby ranges where red squirrels are present. This in turn has favored the evolution of larger-billed crossbills that have diverged from other crossbills in the region. However, such diversifying coevolution, resulting from geographic variation in the distribution of strongly interacting species, is vulnerable to species introductions. For example, the introduction of red squirrels caused the precipitous decline and perhaps extinction of the Newfoundland crossbill and perhaps a crossbill endemic to the Cypress Hills, Canada. In general, species introductions act to reduce the geographic variation in species interactions, which may be critical for the diversification of many taxa.  相似文献   

2.
The bill structures of different call types of red crossbills (Loxia curvirostra complex) in western North America usually approximate the predicted optima for foraging on single species of conifers. One clear exception is the call type in the South Hills, Idaho, that is coevolving in an evolutionary arms race with Rocky Mountain lodgepole pine (Pinus contorta ssp. latifolia). Although South Hills crossbills forage only on the cones of these lodgepole pines, their average bill depth is smaller than that predicted to be optimal. Because preliminary data showed that large-billed males were more likely to exhibit symptoms of ectoparasitic mite (Knemidokoptes jamaicensis) infestation, the goal of our study was to further quantify the incidence of mite infestation and determine whether selection by mites may have favored smaller-billed crossbills and thus driven crossbills away from the foraging optimum. We estimated annual survival of both infected and uninfected South Hills crossbills using program MARK, which allows for auxiliary variables such as bill size and sex to be included in survival analyses. Mite infestation depressed crossbill survival and, especially for males, caused directional selection against larger-billed individuals. Such selection may explain why South Hills crossbills have smaller bills than the optimum and why average bill size for males has decreased from 1998 to 2003. This selection may also explain why the degree of sexual size dimorphism has decreased by nearly 50% since 1998.  相似文献   

3.
Of the various forms of nonrandom dispersal, matching habitat choice, whereby individuals preferentially reside in habitats where they are best adapted, has relatively little empirical support. Here, I use mark‐recapture data to test for matching habitat choice in two nomadic ecotypes of North American Red Crossbills (Loxia curvirostra complex) that exist in the lodgepole pine (Pinus contorta) forests in the South Hills, Idaho, every summer. Crossbills are adapted for foraging on seeds in conifer cones, and in the South Hills the cones are distinctive, favoring a relatively large bill. During a period when seed was most limiting, only the largest individuals approximating the average size of the locally adapted ecotype remained for a year or more. During a period when seed was less limiting, proportionately more individuals remained and the trend for larger individuals to remain was weaker. Although matching habitat choice is difficult to demonstrate, it likely contributed to the observed patterns. Otherwise, nearly unprecedented intensities of natural selection would be needed. Given the nomadic behavior of most crossbill ecotypes and the heterogeneous nature of conifer seed crops, matching habitat choice should be favored and likely contributes to their adaptation to alternative conifers and rapid diversification.  相似文献   

4.
We examined three ecological factors potentially causing premating reproductive isolation to determine whether divergent selection as a result of coevolution between South Hills crossbills (Loxia curvirostra complex) and Rocky Mountain lodgepole pine (Pinus contorta latifolia) promotes ecological speciation. One factor was habitat isolation arising because of enhanced seed defenses of lodgepole pine in the South Hills. This caused the crossbill call types (morphologically and vocally differentiated forms) adapted to alternative resources to be rare. Another occurred when crossbills of other call types moved into the South Hills late in the breeding season and feeding conditions were deteriorating so that relatively few non-South Hills crossbills bred ("immigrant infecundity"). Finally, among those crossbills that bred, pairing was strongly assortative by call type (behavioral isolation). Total reproductive isolation between South Hills crossbills and the two other crossbills most common in the South Hills (call types 2 and 5) summed to .9975 and .9998, respectively, on a scale of 0 (no reproductive isolation) to 1 (complete reproductive isolation). These extremely high levels of reproductive isolation indicate that the divergent selection resulting from the coevolutionary arms race between crossbills and lodgepole pine is causing the South Hills crossbill to speciate.  相似文献   

5.
The breeding biology and cone size selection of crossbills was studied mainly during 1995 to 2002 at Abernethy Forest, Scotland, an ancient native Scots pine Pinus sylvestris wood, where only a single crossbill species, the Scottish crossbill Loxia scotica, was assumed to occur and to be adapted to feed on seeds in Scots pine cones. However, three crossbill species (common Loxia curvirostra, Scottish and parrot crossbills Loxia pytyopsittacus) nested in some years, with the parrot crossbill being the most abundant. Most nests were in old large pines, with the three crossbill species not differing in their use of tree size or stand density for nesting. The mean clutch and brood sizes were 3.8 and 2.9, and their mean survivals were 86 and 74%, respectively, with no significant differences among species. The timing of breeding differed between species, with parrot crossbills breeding earliest (median date 21 March, including second attempts) and common crossbills breeding last (median date 21 April), probably in response to the differing accessibility of Scots pine seeds to these species. The difference in the time of breeding may reduce mixed mating. Crossbills foraged preferentially on trees with small cones when the cones were closed. Small cones had thinner scales than large cones, suggesting that the preference for small cones was related to higher feeding rates on these cones when cones are closed. Such a preference was also found for captive crossbills with the Scottish crossbill showing a more pronounced preference for smaller cones than the larger‐billed parrot crossbill. However, crossbills selected larger cones within trees and trees with larger cones once the cones opened in April. Such a shift occurred presumably because variation in scale thickness has little impact on seed accessibility once cones open, and larger cones have larger and more seeds. The greater ability of parrot crossbills to exploit seeds in closed Scots pine cones allowed parrot crossbills to start breeding earlier and to have young when seeds were most accessible. Only after the cones opened were the smaller‐billed common crossbills able to easily access seeds and to start breeding. The time of breeding of Scottish crossbills was intermediate between common and parrot crossbills, and they probably had an intermediate ability to exploit Scots pine cones. The reason why there were few Scottish crossbills nesting in Abernethy Forest remains a puzzle, considering that native pine wood is assumed to be the ancestral habitat to which the Scottish crossbill is adapted. The breeding season for all crossbills ended in June, when most of the seed from a given cone cohort was shed. This is when starved broods were found, not associated with bad weather.  相似文献   

6.
Phenotypic selection that is sustained over time underlies both anagenesis and cladogenesis, but the conditions that lead to such selection and what causes variation in selection are not well known. We measured the selection exerted by three species of predispersal seed predators of lodgepole pine (Pinus contorta latifolia) in the South Hills, Idaho, and found that net selection on different cone and seed traits exerted by red crossbills (Loxia curvirostra) and cone borer moths (Eucosma recissoriana) over 10 years of seed crops was similar to that measured in another mountain range. We also found that the strength of selection increased as seed predation increased, which provides a mechanism for the correlation between the escalation of seed defenses and the density of seed predators. Red crossbills consume the most seeds and selection they exert accounts for much of the selection experienced by lodgepole pine, providing additional support for a coevolutionary arms race between crossbills and lodgepole pine in the South Hills. The third seed predator, hairy woodpeckers (Picoides villosus), consumed less than one‐sixth as many seeds as crossbills. Across the northern Rocky Mountains, woodpecker abundance and therefore selective impact appears limited by the elevated seed defenses of lodgepole pine.  相似文献   

7.
Understanding how resource abundance limits adaptive evolution and influences species interactions is an important step towards developing insight into the role of microevolutionary processes in establishing macroevolutionary patterns. We examined how variation in resource abundance (forest area of lodgepole pine Pinus contorta ssp. latifolia) influenced patterns of co-adaptation and coevolution between red crossbill (Loxia curvirostra complex) and lodgepole pine populations. First, we found that crossbill abundance increased logarithmically as forest area increased in mountain ranges lacking a preemptive competitor (pine squirrels Tamiasciurus hudsonicus). Second, seed defences against predation by crossbills increased with increases in crossbill density, suggesting that seed defences have likely evolved in proportion to the intensity of selection that crossbills exert. Third, the average bill size of crossbill populations increased with increasing seed defences, which implies that crossbill offenses increased with increases in seed defences. The large bill size on the largest range is the result of coevolution with lodgepole pine with this crossbill population perhaps speciating. Local adaptation of crossbill populations on smaller ranges, however, is more likely the result of resident crossbills representing a subset of the potential colonists (phenotypic sorting) than of local evolution. In the smallest range, migration and possibly more frequent extinction likely impede local adaptation and may result in maladaptation.  相似文献   

8.
Repeated patterns among biological communities suggest similar evolutionary and ecological forces are acting on the communities. Conversely, the lack of such patterns suggests that similar forces are absent or additional ones are present. Coevolution between a seed predator, the red crossbill (Loxia curvirostra complex), and lodgepole pine (Pinus contorta var. latifolia) exemplifies the ecological and evolutionary predictions for coevolving systems. In the absence of another seed predator and preemptive competitor (pine squirrels Tamiasciurus hudsonicus), natural selection by crossbills results in the evolution of larger cones with thicker distal scales, while relaxation of selection by squirrels results in the evolution of cones with more seeds and a greater ratio of seed mass to cone mass. However, in one range, the Little Rocky Mountains, distal scale thickness has diverged as expected but cone size has not. In these mountains seed predation by lodgepole pine cone borer moths (Eucosma recissoriana) was about 10 times greater than in other ranges lacking squirrels. We quantified moth predation and cone traits and found that moths select for smaller cones with fewer seeds. Thus, selection by moths in the Little Rocky Mountains counters both selection by crossbills for large cone size and relaxation of selection by squirrels favoring more seeds per cone and accounts for the relatively small and few-seeded cones in these mountains. It is also apparent that selection by crossbills changes seed defenses in a manner that favors seed predation by moths, whereas selection by squirrels likely reduces such predation. These results demonstrate the importance of considering the evolutionary consequences of community context in locally evolved (coevolved) traits and interactions.  相似文献   

9.
Studies of predator‐prey interactions have found that geographically structured coevolution has played an important role in the adaptive diversification of crossbills (Loxia spp.). We extend those studies by considering common crossbills (L. curvirostra) in the Mediterranean where they rely on seeds in the cones of black pine (Pinus nigra). On the continent, where tree squirrels (Sciurus vulgaris) are present, enhanced defenses against crossbills were most evident in larger areas of pine forest. On islands in the absence of tree squirrels, crossbills and black pine have coevolved in a predator‐prey arms race on Cyprus but not Corsica. In contrast to other conifers that island endemic crossbills rely upon, black pine does not hold seeds in its cones year round. Consequently, key to the strong crossbill–pine interaction on Cyprus is likely the presence of an alternative conifer that provides seeds during early summer when black pine seeds are scarce.  相似文献   

10.
Coevolution is one of the major processes organizing the earth's biodiversity, but it remains unclear when and how it may generate species diversity. The study by Parchman et al. ( 2016 ) in this issue of Molecular Ecology provides the clearest evidence to date that divergent local adaptation in a coevolving interaction may lead to speciation on one side of an interaction but not necessarily on the other side. Red crossbills in North America have diversified into ecotypes that specialize on different conifer species, use different calls and vary in the extent to which they are nomadic or sedentary. This new study evaluated genomic divergence among nine crossbill ecotypes. The authors found low overall genomic divergence among many of the ecotypes, but the sedentary South Hills crossbills, which are specialized to eat the seeds of a unique population of lodgepole pines, showed substantial divergence from other crossbills at a small number of genomic regions. These results corroborate past studies showing local coadaptation of the morphological traits of South Hills crossbills and lodgepole pines, and premating isolation of the South Hills crossbills from other populations. Together, the past and new results suggest that local coevolution with lodgepole pines has led to reduced gene flow between South Hills crossbills and other crossbills.  相似文献   

11.
Despite substantial interest in coevolution's role in diversification, examples of coevolution contributing to speciation have been elusive. Here, we build upon past studies that have shown both coevolution between South Hills crossbills and lodgepole pine (Pinus contorta), and high levels of reproductive isolation between South Hills crossbills and other ecotypes in the North American red crossbill (Loxia curvirostra) complex. We used genotyping by sequencing to generate population genomic data and applied phylogenetic and population genetic analyses to characterize the genetic structure within and among nine of the ecotypes. Although genome‐wide divergence was slight between ecotypes (FST = 0.011–0.035), we found evidence of relative genetic differentiation (as measured by FST) between and genetic cohesiveness within many of them. As expected for nomadic and opportunistic breeders, we detected no evidence of isolation by distance. The one sedentary ecotype, the South Hills crossbill, was genetically most distinct because of elevated divergence at a small number of loci rather than pronounced overall genome‐wide divergence. These findings suggest that mechanisms related to recent local coevolution between South Hills crossbills and lodgepole pine (e.g. strong resource‐based density dependence limiting gene flow) have been associated with genome divergence in the face of gene flow. Our results further characterize a striking example of coevolution driving speciation within perhaps as little as 6000 years.  相似文献   

12.
Serotiny, the retention of seeds in a canopy seed bank until high temperatures cause seeds to be released, is an important life history trait for many woody plants in fire‐prone habitats. Serotiny provides a competitive advantage after fire but increases vulnerability to predispersal seed predation, due to the seeds being retained in clusters in predictable locations for extended periods. This creates opposing selection pressures. Serotiny is favored in areas of high fire frequency, but is selected against by predispersal seed predators. However, predation also selects for cone traits associated with seed defense that could reduce predation on serotinous cones and thereby relax selection against serotiny. This helps explain the elevated defenses in highly serotinous species. However, whether such interactions drive variation in seed defenses within variably serotinous populations has been studied rarely. We investigated the effects of phenotypic selection exerted by red squirrel (Tamiasciurus hudsonicus) predation on Rocky Mountain lodgepole pine (Pinus contorta latifolia) seeds. Squirrels preferentially harvested cones with more and larger seeds, indicating a preference for a higher food reward. We found evidence for stronger selection on trees with serotinous cones, which presumably accounts for the elevated defenses of and lower predation on serotinous compared to non‐serotinous cones. Lower levels of predation on serotinous cones in turn lessen selection against serotiny by squirrels. This has important implications because the frequency of serotiny in lodgepole pine has profound consequences for post‐fire communities and ecosystems widespread in the Rocky Mountains.  相似文献   

13.
Few studies have shown both reciprocal selection and reciprocal adaptations for a coevolving system in the wild. The goal of our study was to determine whether the patterns of selection on Rocky Mountain lodgepole pine (Pinus contorta spp. latifolia) and red crossbills (Loxia curvirostra complex) were concordant with earlier published evidence of reciprocal adaptations in lodgepole pine and crossbills on isolated mountain ranges in the absence of red squirrels (Tamiasciurus hudsonicus). We found that selection (directional) by crossbills on lodgepole pine where Tamiasciurus are absent was divergent from the selection (directional) exerted by Tamiasciurus on lodgepole pine. This resulted in divergent selection between areas with and without Tamiasciurus that was congruent with the geographic patterns of cone variation. In the South Hills, Idaho, where Tamiasciurus are absent and red crossbills are thought to be coevolving with lodgepole pine, crossbills experienced stabilizing selection on bill size, with cone structure as the agent of selection. These results show that crossbills and lodgepole pine exhibit reciprocal adaptations in response to reciprocal selection, and they provide insight into the traits mediating and responding to selection in a coevolutionary arms race.  相似文献   

14.
We measured the impact of Leptoglossus occidentalis on seed production in lodgepole pine, Pinus contorta variety latifolia Engelmann, using an antibody marker developed to detect residual saliva in fed-on seeds. Nymphs, adult females, and adult males were caged on cones during early, mid- and late season cone development. Individual analysis of 12,887 seeds extracted from 365 cones revealed that 37.3% seeds tested positive for seed bug saliva. The antibody assay was 38 times more effective than radiography at detecting seed bug damage. Radiography can detect partially emptied seed but cannot discriminate between aborted seeds and those emptied by seed bugs. The antibody marker was least sensitive in detecting early season damage compared with mid- and late season damage. We hypothesize that residual saliva in seeds fed on early in the season was either absorbed by the damaged seed or degraded over time. Early season feeding resulted in the greatest number of seeds fused to cone scales and the extraction efficiency for cones exposed to feeding during this time was reduced by 64% compared with control cones. Adding fused seeds to antibody-positive seeds raised the proportion of damaged seeds to 48.3%. At all stages of cone development, adult females were the most destructive life stage, damaging up to two seeds per day late in the season. When seed losses were adjusted to damage per degree-day, female damage was greatest early in the season, while males caused the same amount of damage regardless of cone development period. The results of the antibody assay provide baseline data for developing damage prediction formulae, and establish L. occidentalis as a potentially serious pest in lodgepole pine seed orchards.  相似文献   

15.
The geographic mosaic theory of coevolution posits that the form of selection between interacting species varies across a landscape with coevolution important and active in some locations (i.e., coevolutionary hotspots) but not in others (i.e., coevolutionary coldspots). We tested the hypothesis that the presence of red squirrels (Tamiasciurus hudsonicus) affects the occurrence of coevolution between red crossbills (Loxia curvirostra complex) and Rocky Mountain lodgepole pine (Pinus contorta ssp. latifolia) and thereby provides a mechanism giving rise to a geographic mosaic of selection. Red squirrels are the predominant predispersal seed predator and selective agent on lodgepole pine cones. However, in four isolated mountain ranges east and west of the Rocky Mountains, red squirrels are absent and red crossbills are the main predispersal seed predator. These isolated populations of pine have apparently evolved without Tamiasciurus for about 10,000 to 12,000 years. Based on published morphological, genetic, and paleobotanical studies, we infer that cone traits in these isolated populations that show parallel differences from cones in the Rocky Mountains have changed in parallel. We used data on crossbill and conifer cone morphology and feeding preferences and efficiency to detect whether red crossbills and lodgepole pine exhibit reciprocal adaptations, which would imply coevolution. Cone traits that act to deter Tamiasciurus and result in high ratios of cone mass to seed mass were less developed in the isolated populations. Cone traits that act to deter crossbills include larger and thicker scales and perhaps increased overlap between successive scales and were enhanced in the isolated populations. In the larger, isolated mountain ranges crossbills have evolved deeper, shorter, and therefore more decurved bills to exploit these cones. This provides crossbills with higher feeding rates, and the change in bill shape has improved efficiency by reducing the concomitant increases in body mass and daily energy expenditures that would have resulted if only bill size had increased. These parallel adaptations and counter adaptations in red crossbills and lodgepole pine are interpreted as reciprocal adaptations and imply that these crossbills and pine are in coevolutionary arms races where red squirrels are absent (i.e., coevolutionary hotspots) but not where red squirrels are present (i.e., coevolutionary cold-spots).  相似文献   

16.
Understanding how climate warming will affect the demographic rates of different ecotypes is critical to predicting shifts in species distributions. Here, we present results from a common garden, climate change experiment in which we measured seedling recruitment of lodgepole pine, a widespread North American conifer that is also planted globally. Seeds from a low‐elevation provenance had more than three‐fold greater recruitment to their third year than seeds from a high‐elevation provenance across sites within and above its native elevation range and across climate manipulations. Heating halved recruitment to the third year of both low‐ and high‐elevation seed sources across the elevation gradient, while watering more than doubled recruitment, alleviating some of the negative effects of heating. Demographic models based on recruitment data from the climate manipulations and long‐term observations of adult populations revealed that heating could effectively halt modeled upslope range expansion except when combined with watering. Simulating fire and rapid postfire forest recovery at lower elevations accelerated lodgepole pine expansion into the alpine, but did not alter final abundance rankings among climate scenarios. Regardless of climate scenario, greater recruitment of low‐elevation seeds compensated for longer dispersal distances to treeline, assuming colonization was allowed to proceed over multiple centuries. Our results show that ecotypes from lower elevations within a species’ range could enhance recruitment and facilitate upslope range shifts with climate change.  相似文献   

17.
The seed-dispersal systems of Coulter pine (Pinus coulteri), gray pine (P. sabiniana), and Torrey pine (P. torreyana), all of the subsection Sabinianae, are not well understood. These pines occur in arid and semi-arid foothills and mountains of California that are subjected to frequent fires. Cone and seed traits of these three California pines are compared to those of four species of pines (sugar pine, P. lambertiana; Jeffrey pine, P. jeffreyi; ponderosa pine, P. ponderosa; and lodgepole pine, P. contorta) that occur in more mesic environments in the nearby Sierra Nevada mountains. The cones of the Sabinianae pines are large with thick, dense scales, and the scales of gray and Coulter pines are armed with sharp, recurved spines. The seeds of all three species are large, and those of gray and Torrey pines are nearly wingless. In contrast, the Sierra Nevada pines have small to medium-sized seeds with large wings that are initially dispersed by the wind. Heavy wing loading of the Sabinianae pine seeds causes them to fall rapidly, and they are not dispersed far by wind. However, animals remove the fallen seeds rapidly, and rodents and jays scatter hoarded many seeds in the soil. This caching activity results in seedling establishment. The unusual morphology of the cones and seeds of the Sabinianae pines is interpreted as a combination of traits that attract animal dispersers, thwart the foraging activities of seed predators, and promote the survival of seeds in an environment subject to frequent fires.  相似文献   

18.
Coevolution is increasingly recognized as an important process structuring geographic variation in the form of selection for many populations. Here we consider the importance of a geographic mosaic of coevolution to patterns of crossbill (Loxia) diversity in the northern boreal forests of North America. We examine the relationships between geographic variation in cone morphology, bill morphology, and feeding performance to test the hypothesis that, in the absence of red squirrels (Tamiasciurus hudsonicus), black spruce (Picea mariana) has lost seed defenses directed at Tamiasciurus and that red crossbills (L curvirostra) and black spruce have coevolved in an evolutionary arms race. Comparisons of cone morphology and several indirect lines of evidence suggest that black spruce has evolved defenses in response to Tamiasciurus on mainland North America but has lost these defenses on Newfoundland. Cone traits that deter crossbills, including thicker scales that require larger forces to separate, are elevated in black spruce on Newfoundland, and larger billed crossbills have higher feeding performances than smaller billed crossbills on black spruce cones from Newfoundland. These results imply that the large bill of the Newfoundland crossbill (L. c. percna) evolved as an adaptation to the elevated cone defenses on Newfoundland and that crossbills and black spruce coevolved in an evolutionary arms race on Newfoundland during the last 9000 years since glaciers retreated. On the mainland where black spruce is not as well defended against crossbills, the small-billed white-winged crossbill (L leucoptera leucoptera) is more efficient and specializes on seeds in the partially closed cones. Finally, reciprocal adaptations between crossbills and conifers are replicated in black spruce and Rocky Mountain lodgepole pine (Pinus contorta ssp. latifolia), with coevolution most pronounced in isolated populations where Tamiasciurus are absent as a competitor. This study further supports the role of Tamiasciurus in determining the selection mosaic for crossbills and suggests that a geographic mosaic of coevolution has been a prominent factor underlying the diversification of North American crossbills.  相似文献   

19.
Seeds and nuts dispersed by scatter-hoarding animals are relatively large compared to propagules dispersed by other means. Possible selective forces in the evolution of large seed size include the selectivity of foraging animals and the ways that food-storing animals treat seeds and nuts after harvest. Treatment by rodents, primarily yellow pine chipmunks ( Tamias amoenus ), of four species of pine seeds that vary in size was studied in the Carson Range of western Nevada. The pines, lodgepole pine ( Pinus contorta , 8.7 mg), ponderosa pine ( P. ponderosa , 55 mg), Jeffrey pine ( P. jeffreyi , 157 mg), and sugar pine ( P. lambertiana , 213 mg), produce winged seeds that are initially wind-dispersed but are gathered by rodents and cached in the soil. Radioactive scandium-46 was used to follow the fates of seeds of all fours species placed around three source trees during autumn 1998 to 2000. Rodents gathered the seeds of all four species, but they took fewer of the lodgepole pine seeds and only six lodgepole seed caches (n=2106 total caches) were found during the three years. Among the other three species, number of seeds per cache decreased with increasing seed mass. However, the product of number of seeds per cache and seed mass was similar for all species. Sugar pine seeds were cached slightly deeper than ponderosa and Jeffrey pine seeds. For the species examined, seed size appeared to have had little effect on several other attributes, including mean dispersal distance, substrate choice, and microhabitat choice. Large size decreases wind dispersibility of pine seeds, but secondary dispersal by scatter-hoarding rodents compensates for poor wind dispersal so that total dispersibility of large-seeded pines is not compromised.  相似文献   

20.
We examined the relationship between the Corsican nuthatch Sitta whiteheadi , a passerine endemic to the island of Corsica and Corsican pine Pinus nigra laricio forest, its virtually exclusive habitat, currently restricted to inland mountains. The Corsican nuthatch prefers older Corsican pine stands with tall, large trees, and avoids younger stands, both in the breeding and wintering seasons. This preference is explained by the greater availability of pine seeds from older trees. Territorial adults are almost completely sedentary, a trait that is influenced by seed hoarding behaviour. From late autumn to early spring (i.e., when cones are mature), and during sunny weather (i.e., when cones are open), nuthatches remove pine seeds from cones and cache them on branches and under the bark of trunks. The birds retrieve the cached seeds in cold and wet weather. The presence of old Corsican pine stands appears to be a key-factor in the survival of the Corsican nuthatch, whose habitat is currently threatened by logging and fires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号