首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Caspase activation during apoptosis occurs in a cascade from the initiator caspase(s) (e.g. caspase-8) to the effector caspases (e.g. caspase-3), which ensures the generation of large amounts of active caspases to dismantle cells. However, the mechanism that safeguards against inadvertent caspase activation is not well understood. Previous studies have suggested that the activation of procaspase-8 is mediated by cross-cleavage of precursor dimers, formed upon apoptosis induction, which are not only enzymatically competent but also highly susceptible to cleavage, and that procaspase-8 activation is a linear process without self-amplification. Effector procaspases constitutively exist as dimers and their activation is started by trans-cleavage by an initiator caspase followed by autocleavage of effector caspases. Here we show that the dimerization of caspase-3 molecules through their protease domains is required for their processing by initiator caspases. The subsequent autoprocessing takes place through cleavage between the dimeric intermediates. Moreover, mature caspase-3 fails to process its own precursor. Thus, despite a marked difference in the generation of active intermediates, the activation of initiator and effector caspases shares the features of interdimer cleavage and lack of self-amplification. These features may be important in preventing accidental cell death.  相似文献   

2.
The activation of caspases is the principal event in the execution of apoptosis. Initiator caspases are activated through an autocatalytic mechanism often involving dimerisation or oligomerisation. In Drosophila, the only initiator caspase DRONC, is tightly inhibited by DIAP1 and removal of DIAP1 permits activation of DRONC by the Drosophila Apaf-1-related killer, ARK. ARK is proposed to facilitate DRONC oligomerisation and autoprocessing at residue E352. This study examines whether autoprocessing of DRONC is required for its activation and for DRONC-mediated cell death. Using purified recombinant proteins, we show here that while DRONC autocleaves at residue E352, mutation of this site did not abolish enzyme activation, DRICE-induced cleavage of DRONC or DRONC-mediated activation of DRICE. We performed a detailed mutational analysis of DRONC cleavage sites and show that overexpression of DRONC cleavage mutants in Drosophila cells retain pro-apoptotic activity. Using an in vitro cell-free assay, we found ARK alone did not activate DRONC and demonstrate a requirement for an additional cytosolic factor in ARK-mediated DRONC activation. These results suggest that, similar to mammalian caspase-2 and caspase-9, the initial cleavage of DRONC is not essential for its activation and suggest a mechanism of ARK-mediated DRONC activation different from that proposed previously.  相似文献   

3.
Proteases of the caspase family are thought to be activated by proteolytic processing of their inactive zymogens. However, although proteolytic cleavage is sufficient for executioner caspases, a different mechanism has been recently proposed for initiator caspases, such as caspase-8, which are believed to be activated by proximity-induced dimerization. According to this model, dimerization rather than proteolytic processing is considered as the critical event for caspase-8 activation. Such a mechanism would suggest that in the absence of a dimerization platform such as the death-inducing signaling complex, caspase-8 proteolytic cleavage would result in an inactive enzyme. As several studies have described caspase-8 cleavage during mitochondrial apoptosis, we now investigated whether caspase-8 becomes indeed catalytically active in this pathway. Using an in vivo affinity labeling approach, we demonstrate that caspase-8 is activated in etoposide-treated cells in vivo in the absence of the receptor-induced death-inducing signaling complex formation. Furthermore, we show that both caspase-3 and -6 are required for the efficient activation of caspase-8. Our data therefore indicate that interchain cleavage of caspase-8 in the mitochondrial pathway is sufficient to produce an active enzyme even in the absence of receptor-driven procaspase-8 dimerization.  相似文献   

4.
A subgroup of caspase family of inflammatory caspases (-1, -4, -5, -11, and -12) play important role during cytokine maturation and inflammation but their regulation is not well understood as much as the initiator and effector caspases. Here, the biochemical mechanism of caspase-4 activation is elucidated. With citrate, a well-known kosmotrope to enhance the monomer-dimer transition, caspase-4 was activated approximately 40 times that was comparable with that of caspase-9 ( approximately 75-fold increments). The activation reaction was mainly bimolecular (n=1.67+/-0.04) for monomeric caspase-4. In addition, the interdomain cleavage was also responsible to activate caspase-4 more than 100-fold, again comparable with that of effector caspases where the proteolytic processing is considered as the sole activation mechanism. Thus, caspase-4 shows a novel activation mechanism of the synergism between dimerization and proteolysis that sharply differs from the established activation mechanism of dimerization for initiators and interdomain cleavage for effector caspases.  相似文献   

5.
Adaptive responses to mild heat shock are among the most widely conserved and studied in nature. More intense heat shock, however, induces apoptosis through mechanisms that remain largely unknown. Herein, we present evidence that heat shock activates an apical protease that stimulates mitochondrial outer membrane permeabilization and processing of the effector caspase-3 in a benzyloxycarbonyl-VAD-fluoromethyl ketone (polycaspase inhibitor)- and Bcl-2-inhibitable manner. Surprisingly, however, neither FADD.caspase-8 nor RAIDD.caspase-2 PIDDosome (p53-induced protein with a death domain) complexes were detected in dying cells, and neither of these initiator caspases nor the endoplasmic reticulum stress-activated caspases-4/12 were required for mitochondrial outer membrane permeabilization. Similarly, although cytochrome c was released from mitochondria following heat shock, functional Apaf-1.caspase-9 apoptosome complexes were not formed, and caspase-9 was not essential for the activation of caspase-3 or the induction of apoptosis. Thus, heat shock does not require any of the known initiator caspases or their activating complexes to promote apoptotic cell death but instead relies upon the activation of an apparently novel apical protease with caspase-like activity.  相似文献   

6.
Caspases are responsible for the execution of programmed cell death (apoptosis) and must undergo proteolytic activation, in response to apoptotic stimuli, to function. The mechanism of initiator caspase activation has been generalized by the induced proximity model, which is thought to drive dimerization-mediated activation of caspases. The initiator caspase, caspase-9, exists predominantly as a monomer in solution. To examine the induced proximity model, we engineered a constitutively dimeric caspase-9 by relieving steric hindrance at the dimer interface. Crystal structure of the engineered caspase-9 closely resembles that of the wild-type (WT) caspase-9, including all relevant structural details and the asymmetric nature of two monomers. Compared to the WT caspase-9, this engineered dimer exhibits a higher level of catalytic activity in vitro and induces more efficient cell death when expressed. However, the catalytic activity of the dimeric caspase-9 is only a small fraction of that for the Apaf-1-activated caspase-9. Furthermore, in contrast to the WT caspase-9, the activity of the dimeric caspase-9 can no longer be significantly enhanced in an Apaf-1-dependent manner. These findings suggest that dimerization of caspase-9 may be qualitatively different from its activation by Apaf-1, and in conjunction with other evidence, posit an induced conformation model for the activation of initiator caspases.  相似文献   

7.
Caspase-8, an initiator caspase involved in lymphocyte apoptosis, is paradoxically required for lymphocyte proliferation. It is not understood how caspase-8 is controlled during antigenic signaling to allow for activation while averting the triggering of apoptosis. Here, we show that caspase-8 undergoes limited activation upon antigenic stimulation, and this activation is dependent on the paracaspase MALT1. The paracaspase domain of MALT1, in a protease-independent manner, induces caspase-8 activation through direct association. MALT1 diminishes the activation of apoptotic effector caspases, but it does not alter the activity of caspase-8 toward c-FLIP(L), which is required for antigenic signaling. Mutants of MALT1 that fail to activate caspase-8 and permit c-FLIP(L) cleavage cannot facilitate NF-kappaB activation or IL-2 induction. Our results reveal a mechanism that utilizes a protease potentially deadly to the cell for proliferative signaling and demonstrate a functional connection between the caspase and paracaspase families to enable nonapoptotic processes.  相似文献   

8.
Drosophila Nedd2-like caspase (DRONC), an initiator caspase in Drosophila melanogaster and ortholog of human caspase-9, is cleaved during its activation in vitro and in vivo. We show that, in contrast to conclusions from previous studies, cleavage is neither necessary nor sufficient for DRONC activation. Instead, our data suggest that DRONC is activated by dimerization, a mechanism used by its counterparts in humans. Subsequent cleavage at Glu352 stabilizes the active dimer. Since cleavage is at a Glu residue, it has been proposed that DRONC is a dual Asp- and Glu-specific caspase. We used positional-scanning peptide libraries to define the P1-P4 peptide sequence preferences of DRONC, and show that it is indeed equally active on optimized tetrapeptides containing either Asp or Glu in P1. Furthermore, mutagenesis reveals that Asp and Glu residues are equally tolerated at the primary autoprocessing site of DRONC itself. However, when its specificity is tested on a natural substrate, the Drosophila executioner caspase DRICE, a clear preference for Asp emerges. The formerly proposed Glu preference is thus incorrect. DRONC does not differentiate between Asp and Glu in poor substrates, but prefers Asp when tested on a good substrate.  相似文献   

9.
Caspase-2 redux     
It has been difficult to assign caspase-2 to the effector or initiator caspase groups. It bears sequence homology to initiators (caspase-9 and CED-3), but its cleavage specificity is closer to the effectors (caspase-3 and -7). Interest in caspase-2 was dampened by the lack of a dramatic phenotype in the caspase-2 null mouse. Studies have been inhibited by the lack of knowledge about its mechanism of activation and the lack of specific methods to assay its activity. Molecular studies have defined a unique role for caspase-2 in apoptosis initiated by beta-amyloid toxicity or by trophic factor deprivation. Recently, a role for caspase-2 as an upstream initiator of mitochondrial permeabilization has been proposed. Thus, while much remains to be deciphered about caspase-2, most critically the mode of activation, it is clear that caspase-2 plays critical and singular roles in the control of programmed cell death.  相似文献   

10.
11.
During apoptosis, initiator caspases (8, 9 and 10) activate downstream executioner caspases (3, 6 and 7) by cleaving the IDC (interdomain connector) at two sites. Here, we demonstrate that both activation sites, site 1 and site 2, of caspase 7 are suboptimal for activation by initiator caspases 8 and 9 in cellulo, and in vitro using recombinant proteins and activation kinetics. Indeed, when both sites are replaced with the preferred motifs recognized by either caspase 8 or 9, we found an up to 36-fold improvement in activation. Moreover, cleavage at site 1 is preferred to site 2 because of its location within the IDC, since swapping sites does not lead to a more efficient activation. We also demonstrate the important role of Ile195 of site 1 involved in maintaining a network of contacts that preserves the proper conformation of the active enzyme. Finally, we show that the length of the IDC plays a crucial role in maintaining the necessity of proteolysis for activation. In fact, although we were unable to generate a caspase 7 that does not require proteolysis for activity, shortening the IDC of the initiator caspase 8 by four residues was sufficient to confer a requirement for proteolysis, a key feature of executioner caspases. Altogether, the results demonstrate the critical role of the primary structure of caspase 7's IDC for its activation and proteolytic activity.  相似文献   

12.
Apoptosome: a platform for the activation of initiator caspases   总被引:1,自引:0,他引:1  
Apoptosome refers to the adaptor protein complex that mediates the activation of an initiator caspase at the onset of apoptosis. In mammalian cells, caspase-9, caspase-8, and caspase-2 rely on the apoptotic protease-activating factor 1 (Apaf-1)-apoptosome, death-inducing signaling complex (DISC), and PIDDosome, respectively, for activation. In Drosophila, activation of the caspase-9 homolog Dronc requires assembly of an apoptosome comprised of Dark/Hac-1/Dapaf-1. In Caenorhabditis elegans, activation of the caspase CED-3 is facilitated by the CED-4-apoptosome. Recent biochemical and structural investigation revealed significant insights into the assembly and function of the various apoptosomes. Nonetheless, conclusive mechanisms by which the initiator caspases are activated by the apoptosomes remain elusive. Several models have been proposed to explain the activation process. The induced proximity model summarizes the general process of initiator caspase activation. The proximity-driven dimerization model describes how initiator caspases respond to induced proximity and offers an explanation for their activation. Regardless of how initiator caspases are activated, enhanced activity must be correlated with altered active site conformation. The induced conformation model posits that the activated conformation for the active site of a given initiator caspase is attained through direct interaction with the apoptosome or through homo-oligomerization facilitated by the apoptosome.  相似文献   

13.
Apoptosis occurs through a tightly regulated cascade of caspase activation. In the context of extrinsic apoptosis, caspase-8 is activated by dimerization inside a death receptor complex, cleaved by auto-proteolysis and subsequently released into the cytosol. This fully processed form of caspase-8 is thought to cleave its substrates BID and caspase-3. To test if the release is required for substrate cleavage, we developed a novel approach based on localization probes to quantitatively characterize the spatial-temporal activity of caspases in living single cells. Our study reveals that caspase-8 is significantly more active at the plasma membrane than within the cytosol upon CD95 activation. This differential activity is controlled by the cleavage of caspase-8 prodomain. As a consequence, targeting of caspase-8 substrates to the plasma membrane can significantly accelerate cell death. Subcellular compartmentalization of caspase-8 activity may serve to restrict enzymatic activity before mitochondrial pathway activation and offers new possibilities to interfere with apoptotic sensitivity of the cells.  相似文献   

14.
Mitochondrial disruption during apoptosis results in the release of cytochrome c that forms apoptosomes with Apaf-1 and caspase-9. Activation of caspase-9 by dimerization in apoptosomes then triggers a caspase signaling cascade. In addition, other apoptosis signaling molecules released from the mitochondrion, such as apoptosis-inducing factor and endonuclease G, may induce caspase-9-independent apoptosis. To determine the signaling events induced by caspase-9, we used chemically induced dimerization for specific activation of caspase-9. We observed that caspase-9 dimerization resulted in the loss of mitochondrial membrane potential and the cleavage of anti-apoptotic Bcl-2, Bcl-xL, and Mcl-1. Moreover, cleavage-resistant Bcl-2, Bcl-xL, or Mcl-1 potently inhibited caspase-9-dependent loss of mitochondrial membrane potential and the release of cytochrome c. Our data suggest that a caspase-9 signaling cascade induces feedback disruption of the mitochondrion through cleavage of anti-apoptotic Bcl-2, Bcl-xL, and Mcl-1.  相似文献   

15.
Alterations in cellular homeostasis that affect protein folding in the endoplasmic reticulum (ER) trigger a signaling pathway known as the unfolded protein response (UPR). The initially cytoprotective UPR will trigger an apoptotic cascade if the cellular insult is not corrected; however, the proteins required to initiate this cell death pathway are poorly understood. In this study, we show that UPR gene expression is induced in cells treated with ER stress agents in the presence or absence of murine caspase-12 or human caspase-4 expression and in cells that overexpress Bcl-x(L) or a dominant negative caspase-9. We further demonstrate that ER stress-induced apoptosis is a caspase-dependent process that does not require the expression of caspase-12 or caspase-4 but can be inhibited by overexpression of Bcl-x(L) or a dominant negative caspase-9. Additionally, treatment of human and murine cells with ER stress agents led to the cleavage of the caspase-4 fluorogenic substrate, LEVD-7-amino-4-trifluoromethylcoumarin, in the presence or absence of caspase-12 or caspase-4 expression, whereas Bcl-x(L) or a dominant negative caspase-9 overexpression inhibited LEVD-7-amino-4-trifluoromethylcoumarin cleavage. These data suggest that caspase-12 and caspase-4 are not required for the induction of ER stress-induced apoptosis and that caspase-4-like activity is not always associated with an initiating event.  相似文献   

16.
Previous studies from our laboratory had indicated that cytochrome c-independent processing and activation of caspase-9 by caspase-8 contributed to early amplification of the caspase cascade in tumor necrosis factor (TNF)-alpha-treated murine cells. Here we show that murine caspase-9 is phosphorylated by casein kinase 2 (CK2) on a serine near the site of caspase-8 cleavage. CK2 has been shown to regulate cleavage of the pro-apoptotic Bid protein by phosphorylating serine residues near its caspase-8 cleavage site. Similarly, CK2 modification of Ser(348) on caspase-9 appears to render the protease refractory to cleavage by active caspase-8. This phosphorylation did not affect the ability of caspase-9 to autoprocess. Substitution of Ser(348) abolished phosphorylation but not cleavage, and a phospho-site mutant promoted apoptosis in TNF-alpha-treated caspase-9 knock-out mouse embryo fibroblasts. Furthermore, inhibition of CK2 activity and RNA interference-mediated knockdown of the kinase accelerated caspase-9 activation, whereas phosphatase inhibition delayed both caspase-9 activation and death in response to TNF receptor occupation. Taken together, these studies show that TNF receptor cross-linking promotes dephosphorylation of caspase-9, rendering it susceptible to processing by activated caspase-8 protein. Thus, our data suggest that modification of procaspase-9 to protect it from inappropriate cleavage and activation is yet another mechanism by which the oncogenic kinase CK2 promotes survival.  相似文献   

17.
Apoptotic cell death is of central importance in the pathogenesis of viral infections. Activation of a cascade of cysteine proteases, i.e. caspases, plays a key role in the effector phase of virus-induced apoptosis. However, little is known about pathways leading to the activation of initiator caspases in virus-infected host cells. Recently, we have shown that Sendai virus (SeV) infection triggers apoptotic cell death by activation of the effector caspase-3 and initiator caspase-8. We now investigated mechanisms leading to the activation of another initiator caspase, caspase-9. Unexpectedly we found that caspase-9 cleavage is not dependent on the presence of active caspases-3 or -8. Furthermore, the presence of caspase-9 in mouse embryonic fibroblast (MEF) cells was a prerequisite for Sendai virus-induced apoptotic cell death. Caspase-9 activation occurred without the release of cytochrome c from mitochondria and was not dependent on the presence of Apaf-1 or reactive oxygen intermediates. Our results therefore suggest an alternative mechanism for caspase-9 activation in virally infected cells beside the well characterized pathways via death receptors or mitochondrial cytochrome c release.  相似文献   

18.
Wu S  Kaufman RJ 《Biochemistry》2004,43(34):11027-11034
The double-stranded (ds) RNA-activated protein kinase PKR phosphorylates the alpha-subunit of the eukaryotic initiation factor 2 (eIF2alpha) and inhibits translation initiation. PKR contains two dsRNA binding domains in its amino terminus and a kinase domain in its carboxy terminus. dsRNA binding activates PKR from a latent state by inducing dimerization and trans-autophosphorylation. Recent studies show that PKR is also activated by caspase cleavage to remove the inhibitory dsRNA binding domains. In this report, we show that the isolated kinase domain of PKR is a constitutively active monomeric kinase that has an activity similar to that of wild-type PKR. We used a solid-phase kinase assay system to show that PKR does not transfer its own phosphate to either PKR or eIF2alpha but rather uses the gamma-phosphate from ATP. In addition, the isolated autophosphorylated kinase domain of PKR phosphorylated intact monomeric PKR in trans in a reaction that did not require dsRNA binding. However, this trans-phosphorylation did not occur at the critical Thr446/451 sites and was not sufficient to induce dimerization and/or activation of PKR. The results show that dsRNA binding domains of PKR are not only required for dimerization of PKR but also required for phosphorylation of Thr446/451 sites of PKR. The results imply that even though the isolated kinase domain of PKR phosphorylates intact PKR and eIF2alpha, it is unable to activate PKR.  相似文献   

19.
Key structural and catalytic features are conserved across the entire family of cysteine-dependent aspartate-specific proteases (caspases). Of the caspases involved in apoptosis signal transduction, the initiator caspases-2, -8 and -9 are activated at multi-protein activation platforms, and activation is thought to involve homo-dimerisation of the monomeric zymogens. Caspase-9, the essential initiator caspase required for apoptosis signalling through the mitochondrial pathway, is activated on the apoptosome complex, and failure to activate caspase-9 has profound pathophysiological consequences. Here, we review the pertinent literature on which the currently prevalent understanding of caspase-9 activation is based, extend this view by insight obtained from recent structural and kinetic studies on caspase-9 signalling, and describe an emerging model for the regulation of caspase-9 activation and activity that arise from the complexity of multi-protein interactions at the apoptosome. This integrated view allows us to postulate and to discuss functional consequences for caspase-9 activation and apoptosis execution that may take centre stage in future experimental cell research on apoptosis signalling.  相似文献   

20.
Previously we have reported that induction of apoptosis in Jurkat cells results in an inhibition of overall protein synthesis with the selective and rapid cleavage of eukaryotic initiation factor (eIF) 4GI. For the cleavage of eIF4GI, caspase-3 activity is both necessary and sufficient in vivo, in a process which does not require signaling through the p38 MAP kinase pathway. We now show that activation of the Fas/CD95 receptor promotes an early, transient increase in the level of eIF2alpha phosphorylation, which is temporally correlated with the onset of the inhibition of translation. This is associated with a modest increase in the autophosphorylation of the protein kinase activated by double-stranded RNA. Using a Jurkat cell line that is deficient in caspase-8 and resistant to anti-Fas-induced apoptosis, we show that whilst the cleavage of eIF4GI is caspase-8-dependent, the enhancement of eIF2alpha phosphorylation does not require caspase-8 activity and occurs prior to the cleavage of eIF4GI. In addition, activation of the Fas/CD95 receptor results in the caspase-8-dependent dephosphorylation and degradation of p70(S6K), the enhanced binding of 4E-BP1 to eIF4E, and, at later times, the cleavage of eIF2alpha. These data suggest that apoptosis impinges upon the activity of several polypeptides which are central to the regulation of protein synthesis and that multiple signaling pathways are involved in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号